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Summary

Motivation: Getting and analyzing biological interaction networks is at
the core of systems biology. To help understanding these complex networks,
many recent works have suggested to focus on motifs which occur more fre-
quently than expected in random.

Results: To identify such exceptional motifs in a given network, we propose
a statistical and analytical method which does not require any simulation.
For this, we first provide an analytical expression of the mean and variance of
the count under any exchangeable random graph model. Then we approxi-
mate the motif count distribution by a compound Poisson distribution whose
parameters are derived from the mean and variance of the count. Thanks to
simulations, we show that the compound Poisson approximationoutperforms
the Gaussian approximation. The compound Poisson distribution can then
be used to get an approximate p-value and to decide if an observed count
is significantly high or not. Our methodology is applied on protein-protein
interaction networks (PPI), and statistical issues related to exceptional motif
detection are discussed.

Contact: picard@genopole.cnrs.fr
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1. Introduction

The important progress of high-throughput biology allows us now to con-
sider the cell as a whole system under study. This complex system is mainly
represented by various networks of interacting components (e.g. transcrip-
tional regulatory networks, protein-protein interaction networks, metabolic
networks). To help understanding the organization and dynamics of cell func-
tions, one usually tries to break down these complex networks into functional
modules (Chen and Yuan, 2006) or into basic building blocks (Milo et al.,
2002). These blocks are also called patterns of interconnection or motifs.
Many definitions can be used to designate network motifs. In this paper a
motif will refer to a subgraph with a fixed number of nodes and with a given
topology. This type of motif is also called topological motif, which are dif-
ferent from dense subgraphs studied by Koyutürk et al. (2007) for instance.
For transcriptional regulatory networks, some motifs such as the three-node
feed-forward loop or the four-node bi-fan, may perform specific regulatory
functions (Shen-Orr et al., 2002; Lee et al., 2002; Mangan and Alon, 2003;
Ingram et al., 2006). Moreover, motifs seem to be conserved across species,
which suggests a strong link between protein evolution and their belonging
to particular topological structures (Wuchty et al., 2003; Batada et al., 2006;
Chen and Dokholyan, 2006). Many recent works have suggested to focus on
motifs which occur more frequently than expected in random (Milo et al.,
2002; Shen-Orr et al., 2002; Milo et al., 2004; Prill et al., 2005). Such motifs
seem indeed to reflect functional or computational units which combine to
regulate the cellular behavior as a whole. Their possible function can be
provided by common themes of the system in which they appear. Additional
insight may be gained by mathematical analysis of their dynamics (Mangan
and Alon, 2003; Prill et al., 2005; Ingram et al., 2006).

The common method that has been used for now to detect significantly
over-represented motifs is based on simulations. Random graphs are first
generated such that they preserve some characteristics of the biological net-
work like the numbers of vertices and edges or the degree sequence (numbers
of edges per vertex) (Milo et al., 2002; Milo et al., 2004). Then, either a
z-score is calculated thanks to the empirical mean and variance of the count
(Milo et al., 2002; Milo et al., 2004; Prill et al., 2005), or an estimation of
the empirical p-value is derived from the empirical distribution of the count
(Shen-Orr et al., 2002; Milo et al., 2002). Such methods are not totally sat-
isfactory from a probabilistic point of view. Indeed, using a z-score means
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to assume that the motif count follows a Gaussian distribution which is only
true asymptotically under some restrictive conditions. Moreover, to evaluate
a p-value close to zero, a huge number of simulations have to be performed,
which is usually not the case in previous studies because of high computa-
tional times. Getting theoretical properties on the motif count distribution
would thus be very valuable to identify exceptional motifs.

Several approximations have been proposed under the so-called Erdös-
Rényi model (see Janson et al. (2000) for a complete overview). This basic
model originating in Erdös (1947) assumes that edges are independent and
distributed according to a Bernoulli distribution with same parameter π.
It means in particular that the probability to connect two nodes does not
depend on the nodes. Under these assumptions, Poisson and compound
Poisson approximations have been first proposed for rare motifs satisfying
some conditions on their number of vertices and edges (Erdös and Rényi,
1960; Bollobas, 1981; Barbour, 1982; Karoński and Ruciński, 1983; Stark,
2001; See also Barbour et al., 1992). The asymptotic normality of the motif
count has been also extensively studied and bounds on the approximation
error have been derived (e.g. Barbour et al. (1987), Janson et al. (2000) and
references therein). However, except for the mean count which is simple to
derive under the Erdös-Rényi model, no explicit formula of the parameters
of these limiting distributions has never been provided. In particular, no
general expression exists for the variance of the count.

Despite an important number of theoretical results on the motif count
distribution, the Erdös-Rényi model can not be used as a reference model for
biological networks, since it does not fit the connectivity heterogeneity which
exists in these networks (Barabási and Albert, 1999). Finding an appropri-
ate reference model is of major importance when searching for exceptional
events, since a too simple reference model would consider any observation as
being exceptional. Alternative models have been proposed to describe real
networks (Barabási and Albert, 1999; Newman et al., 2001; Newman, 2003).
Nevertheless, they are mainly based on summary statistics such as the de-
gree distribution, whereas theoretical strategies to identify exceptional motifs
need a reference model for the edge distribution, and not only for the degree
distribution. Similarly, Middendorf et al. (2005) explored different models
to understand the design of complex networks. However, their contribution
is based on algorithms which allow the construction of networks, and no the-
oretical probabilistic model can be associated with the proposed algorithms.
For those reasons, Matias et al. (2006) proposed exact formulas for the mean
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and the variance of the count under a general model assuming that edges are
still independent but depend on both connected vertices. However, despite
a nice theoretical framework, the non-exchangeability of this model hampers
any calculus from the practical point of view.

As a matter of fact, there exists no consensus regarding the choice of
an appropriate reference model for biological networks, and our point is not
to solve this issue in the present work. However, the assessment of motif
exceptionality requires the use of a reference model, and we consider four
different models in the following. The first one is the Erdös-Rényi model
(ER), which is used for illustration purposes. Then we consider the popular
fixed degree distribution model (FDD) (Newman et al., 2001), which is used
by Milo et al. (2002) in the Mfinder software. We also study a random graph
model with expected degree distribution (EDD) which is an exchangeable
version of the FDD model. Some of its general properties have been studied in
Park and Newman (2003) and Chung and Lu (2002). The last model is based
on mixture distributions which are used to model heterogenous connectivity
often observed in real networks. It is called the Erdös-Rényi Mixture for
Graphs (ERMG) model. It has been studied in Daudin et al. (2008) and is
analogous to the stochastic block model of Nowicki and Snijders (2001).

The first question we address in this paper is how to calculate in a unified
way the exact mean and variance of a motif count under any exchangeable
random graph model. These two quantities are indeed crucial to identify
unexpected motifs. Provided that the occurrence probability of a given mo-
tif does not depend on the occurrence position (exchangeability assumption)
and that disjoint occurrences are independent, we derive the expression of the
first two moments of the count. When calculating the variance, we introduce
the new concept of super-motifs, which are formed by two overlapping oc-
currences of a given motif. Then we calculate the first two moments for all 3
and 4-node undirected motifs on 3 protein-protein interaction (PPI) networks
from the DIP database (Salwinski et al., 2004), and we discuss the influence
of the reference models on those moments. We use the ER, EDD and ERMG
models as exchangeable reference models for which our methodology can be
applied. Theoretical moments under those models will be compared with
estimated moments (simulation based) for the FDD model.

The second question we focus on is which approximation of the motif
count distribution to use to get accurate p-values. Note that no result exists
yet on the exact distribution of this count. As regard to existing theoretical
results under the Erdös-Rényi model, we compare the approximation quality
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of the following distributions: the Gaussian distribution, and the Pólya-
Aeppli distribution. The later is a special compound Poisson distribution
whose two parameters can be set from the exact mean and variance of the
count we provide. Using simulations, we show that the Compound Poisson
approximation is more appropriate than the Gaussian approximation to as-
sess the exceptionality of network motifs. In a last step, we apply our method
to identify exceptional undirected motifs of size 3 and 4 in 3 PPI networks
(Salwinski et al., 2004). For the sake of simplicity, we consider undirected
graphs and motifs. However, our methodology can be easily generalized to a
directed framework as it is discussed in the conclusion.
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2. Definitions and notations

2.1 Random graph with exchangeable distribution.

Let us define a random graph G, where V denotes the set of fixed ver-
tices with V = {1, . . . , n}. Random edges are described by a set of random
variables X = {Xij, (i, j) ∈ V2} such that Xij equals 1 if nodes i and j are
connected, and 0 otherwise (Xij = Xji for undirected graphs). In the follow-
ing, we consider random graphs with exchangeable probability distributions.
Taking {i1, . . . , iℓ} ∈ Vℓ, it means that:

∀ℓ ∈ {1, . . . , n},
(

Xi1,i2 , . . . , Xiℓ−1,iℓ

)

∼
(

Xσ(i1),σ(i2), . . . , Xσ(iℓ−1),σ(iℓ)

)

,

for every permutation σ defined on the set {i1, . . . , iℓ}. This exchangeability
property is analogous to the stationarity property for random processes.

2.2 Network motif.

We denote by m a network motif of size k, which is a connected subgraph
with k vertices. It is defined by a fixed topology through its adjacency matrix
also denoted by m, with general term muv = 1 if nodes u and v are connected,
and 0 otherwise. A typical example is the motif, which can be defined by
three adjacency matrices depending on the position of the central edge, as
shown in Table 1.

[Table 1 about here.]

2.3 Position and occurrence of a motif.

To define an occurrence of motif m we introduce notation Ik which is the
set of all k-tuples of V , namely

Ik =
{

{i1, . . . , ik} ⊂ {1, . . . , n}k | ij 6= iℓ,∀j 6= ℓ
}

.

We consider α ∈ Ik, a potential position of m in G. The number of such
positions is

(

n
k

)

. In order to match a position with an adjacency matrix,
we consider that α = (i1, . . . , ik) with i1 < . . . < ik. Then we introduce
the random indicator variable Yα(m) which equals one if motif m occurs at
position α and 0 otherwise :

Yα(m) =
∏

1≤u<v≤k

Xmuv

iuiv
.

Since the distribution of X is exchangeable, the distribution of Yα(m) does
not depend on α, and Yα(m) is distributed according to a Bernoulli distri-
bution B(µ(m)), where µ(m) is the probability of occurrence of motif m at
any position.
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2.4 Motif permutation.

Considering the occurrence of the motif at position α = (i1, i2, i3) (Ta-
ble 1), one can see that occurs at α with a given permutation on indices.
This is why we need to define R(m), the set of non redundant permutations
of m, and we denote ρ(m) = |R(m)|, which equals 3 in the case of the
motif, and 1 for the triangle. Note that ρ(m) = k!/|aut(m)|, where aut(m) is
the set of automorphisms of motif m: aut(m) = {σ ∈ S, σ(m) = m}, with
S the set of permutations on the vertices of m. We consider permutations
of the motif rather than permutations of positions.
From a practical point of view, we propose to avoid the calculation of |aut(m)|,
and to focus on ρ(m). This calculation can be done by considering the k!
simultaneous permutations of the rows and columns of m, each new element
being compared with the previous ones to check for redundancy. The com-
plexity of this method is then in O(k!2) and does not depend on the size of
the complete graph. Moreover, since we are searching for small-size motifs
(k = 3, 4 typically), the computational time of this procedure is moderate.

2.5 Number of occurrences of m.

Finally we define N(m) the count of motif m such that:

N(m) =
∑

α∈Ik

∑

m′∈R(m)

Yα(m′).

Considering example in Figure 1, there is one occurrence of the triangle at
position (1, 2, 3), 6 occurrences of the motif: one occurrence of m and m′′

at (1, 2, 3), and 4 occurrences of m′ at positions (1, 2, 3), (1, 3, 4), (2, 3, 4),
(3, 4, 5) (with m,m′,m′′ defined in Table 1).

[Figure 1 about here.]
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3. Calculating moments under an exchangeable model

In this section, we aim at providing an automatic method to calculate the
first and second moments of N(m). This method requires the knowledge of
µ(m), the probability of occurrence of motif m. In a first step, we develop
our method with µ(m) as a general term. This probability depends on the
distribution of X and its derivation under different models will be given in
the next section.

3.1 Calculating the mean.

This calculation can be done directly since the distribution of Yα does
not depend on α. Indeed, the exchangeability assumption implies that per-
mutations of motif m have the same probability of occurrence (µ(m) =
µ(m′), ∀m′ ∈ R(m)). It follows that:

EN(m) = |Ik| ×
∑

m′∈R(m)

EYα(m′) =

(

n

k

)

ρ(m)µ(m). (1)

3.2 Calculating the variance.

This calculation is based on the expectation of the squared count:

N2(m) =
∑

α,β∈Ik

∑

m′,m′′∈R(m)

Yα(m′)Yβ(m′′), (2)

and each term of this sum depends on the cardinality of the intersection α∩β
denoted by s. When s = 0, meaning that positions α and β are disjoint, the
independence assumption between Yα and Yβ leads to E [Yα(m)Yβ(m)] =
EYα(m)EYβ(m). For s ≥ 1, m′ at α and m′′ at β share s vertices. Then
we consider all possible overlaps between the two versions of m occurring at
each position. We define the overlapping operation with s common vertices
(denoted by Ω

s
) between motifs m′ and m′′. Consequently,

∀s = |α ∩ β| ≥ 1, Yα(m′)Yβ(m′′) = Yα∪β(m′Ω
s
m′′),

where m′Ω
s
m′′ represents what we call a ”super-motif”, which is a motif with

(2k − s) edges made of two overlapping occurrences of m′ and m′′, two ver-
sions of m. An example of super-motif built from the motif is provided
in Figure 2.
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[Figure 2 about here.]

To define the adjacency matrix of the super-motif m′Ω
s
m′′, we break down

m′ and m′′ such that

m′ =







m′
11

(k−s)×(k−s)

m′
12

(k−s)×s

m′
21

s×(k−s)

m′
22

s×s






,

m′′ =







m′′
11

s×s

m′′
12

s×(k−s)

m′′
21

(k−s)×s

m′′
22

(k−s)×(k−s)






,

where m′
22 and m

′′

11 correspond to vertices in α ∩ β, and we set

m′Ω
s
m′′ =





m′
11 m′

12 0

m′
21 max(m′

22,m
′′
11) m′′

12

0 m′′
21 m′′

22



 .

The max function in the central term indicates that for the s common ver-
tices of α and β, all edges of m′

22 and m′′
11 must be present; It is equivalent

to the logical OR. Note that the operation Ω
s

is not symmetric. Note that

we also have to consider the number of possible super-motifs of type m′Ω
s
m′′

which is |R(m)|2. The complexity of this enumeration is therefore smaller
than O(k!2).

The squared count can be rewritten as

N2(m) =
∑

α, β ∈ Ik :
|α ∩ β| = 0

∑

m′,m′′∈R(m)

Yα(m′)Yβ(m′′)

+
k

∑

s=1

∑

α, β ∈ Ik :
|α ∩ β| = s

∑

m′,m′′∈R(m)

Yα∪β(m′Ω
s
m′′),
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and its expectation is:

EN2(m) =

(

n

n − 2k, k, k

)





∑

m′∈R(m)

µ(m′)





2

(3)

+
k

∑

s=1

(

n

k − s, s, k − s, n − 2k + s

)

∑

m′,m′′∈R(m)

µ(m′Ω
s
m′′).

The calculation of the first term follows from the independence of disjoint
occurrences are independent. Put together, we can derive the formula for
the variance of the count since VN(m) = EN2(m) − (EN(m))2.

3.3 Calculating the occurrence probability

Once the method to calculate the first and second moments of the count
has been settled, we need to choose an appropriate model for the distribution
of X in order to calculate µ(m), the probability of occurrence of motif m. We
derive this calculus in the case of three exchangeable random graph models.

Erdös-Rényi. The ER model assumes that all edges Xij are independent
and exist with probability π. Thanks to this independence property, the
occurrence probability is a simple product:

µ(m) =
∏

1≤u<v≤k

Pr{Xiuiv = 1}muv =
∏

1≤u<v≤k

πmuv = πm++/2,

where m++ =
∑

u,v muv is twice the total number of edges in motif m.

Expected degree distribution. This model generates graphs whose de-
grees follow a given distribution. It is defined as follows. Let D a random
variable with a given distribution p, p(d) = Pr{D = d}, and {Di}’s are
i.i.d random variables with this distribution p. Conditionally to the {Di}’s,
edges {Xij}’s are supposed to be independent and exist with a probability
proportional to the product DiDj:

{

Pr{Xij = 1 |Di, Dj} = γDiDj if i 6= j

Pr{Xij = 1 |Di, Dj} = 0 otherwise

Denoting by Ki =
∑

j 6=i Xij the degree of node i, γ must be equal to
1/[(n − 1)E(D)] to insure that E(Ki|Di) = Di.
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In the EDD model, the conditional occurrence probability of the motif,
given the expected degrees {Di}, is

Pr{Yα(m) = 1 | Di1 , . . . , Dik} = γm++/2

k
∏

u=1

D
mu+

iu
.

The occurrence probability µ(m) is obtained by summation over the distri-
bution of the Dis:

µ(m) =
∑

di1
,...,dik

k
∏

u=1

p(diu) Pr{Yα(m) = 1 | Di1 = di1 , . . . , Dik = dik}

= γm++/2

k
∏

u=1

∑

diu

p(diu)d
mu+

iu
= γm++/2

k
∏

u=1

E(Dmu+
u ).

Thus the occurrence probability of m only depends on the product of some
moments of the expected degree D.

Mixture Model. The ERMG model is defined as follows: Nodes are
spread among Q hidden classes with respective proportions α1, . . . , αQ. Edges
{Xij} are independent conditionally to the class of the nodes. The connexion
probability depends on the classes of both nodes such that:

Pr{Xij = 1 | i ∈ q, j ∈ ℓ} = πqℓ.

In the ERMG model, the conditional occurrence probability of the motif
given the class of each node is:

Pr{Yα(m) | i1 ∈ c1, . . . , ik ∈ ck} =
∏

1≤u<v≤k

πmuv

cucv
.

The occurrence probability µ(m) of motif m is then

µ(m) =

Q
∑

c1=1

. . .

Q
∑

ck=1

αc1 . . . αck

∏

1≤u<v≤k

πmuv

cucv
.

Calculus are illustrated in Table 2 for motifs and in the 3 models, and a
computational trick is provided in Appendix A in the case of ERMG.

[Table 2 about here.]
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3.4 Application to PPI networks.

To illustrate the calculation of moments, we studied the protein-protein
interaction (PPI) networks of H. pylori, E. coli and S. cerevisæ from the DIP
database (Salwinski et al., 2004). We consider three exchangeable models,
whose parameters were estimated such that:

ER: The connexion probability π of the ER model is estimated by the pro-
portion of observed edges in the network.

EDD-E: We calculated the empirical (E) distribution of the degrees in the
network and used it as the distribution of the expected degrees {Di}.
This corresponds to the typical use of the EDD model.

ERMG: We fitted the mixture model using the variational method de-
scribed in Daudin et al. (2008).

We also consider the FDD model for which the first two moments are esti-
mated using simulations. For each model, we considered all undirected motifs
of size k = 3 and 4. Table 3 gives the corresponding moments.

[Table 3 about here.]

A first general remark is that the expectation and the variance are of dif-
ferent magnitude. This indicates that Poisson approximations for the count
distribution (Barbour, 1982) would not be suitable, and will not be used in
the following. We see that the choice of the model has a strong influence on
the first two moments, which depends on the topology of the motifs.

and : The expected count under the ER and EDD-E models are very
different. This is due to nodes with high degree (D ≃ 50) which are
observed in the empirical distribution and which generate lots of oc-
currences of these motifs. In the ER model, the probability for a node
to have such a degree is about 10−35. The larger standard deviation
obtained under EDD-E is due to the random sampling among the de-
grees.

: For H.pylori and E.Coli, the expected number of triangles under ERMG
is close to the observed one, while the other models are quite far. This
also holds for and motifs which reveal local clustering. This
clustering trend is well captured by the ERMG model which detects
communities of nodes.
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Then Table 3 shows that moments are lower for the FDD models, especially
for the variance, since the conservation of the empirical degree distribution
consitutes a strong constraint when generating networks. The extreme case is
given by the and the , whose counts are exactly specified by the empirical
degree distribution, leading to a null variance (this is true for all star motifs
with more than 3 branches). This comparative study of the first two moments
of the counts reveals that the reference model will have a deep impact on the
assessment of motifs exceptionality, and this point will be investigated in the
last section.
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4. Compound Poisson approximation

The knowledge of the moments of the count under some null model is not
sufficient to assess its significance. To decide whether a motif m is over-
represented in a given network, one needs to calculate the probability Pr{N(m) ≥
Nobs(m)}, where Nobs(m) is the observed number of occurrences of m and
N(m) the random number of occurrence under the reference model. To do
so, we need to specify the distribution of N(m) under the reference model.
Unfortunately, even in the Erdös-Rényi model, the exact distribution seems
very difficult to derive, so only an approximate distribution can be proposed
at this time.

4.1 Motivations

One particularity of network motifs is that their occurrences naturally
tend to overlap. Two occurrences of a motif m overlap if they share at
least one vertex. Thus, the approximate distribution must account for the
existence of clumps, i.e. sets of overlapping occurrences. Clumps result in
numerous occurrences with a reduced number of vertices. For example, an
occurrence of the four-branch star motif accounts for 4 overlapping occur-
rences of the three-branch star motif, i.e. for a clump of size 4 involving
only 5 vertices. Another example is provided with the whisk motif in Figure
2 which shows 5 occurrences of the motif, leading to a clump of size 5
involving 4 vertices.

Compound Poisson distributions are particularly relevant to describe how
the count of events occurring in clumps may vary. The number of clumps is
supposed to have a Poisson distribution with mean λ, and the clump sizes are
supposed to be independent with common distribution. The Pólya-Aeppli
(denoted by PA) distribution (or geometric Poisson, Johnson et al. (1992))
is obtained when the clump size has a geometric distribution G(1 − a), so
the mean size of a clump is (1 − a)−1. In this case, the number of observed
events W has distribution PA(λ, a), and Pr{W = w} is equal to:







e−λaw
∑

c=1..w

1

c!

(

w − 1

c − 1

)[

λ(1 − a)

a

]c

if w > 0,

e−λ if w = 0.

We propose to use the Pólya-Aeppli distribution as an approximation of
the distribution of the count N(m) for two main reasons. (i) This distribu-
tion is an excellent approximation (from both a theoretical and a practical
point of view) for word counts in random sequences (Schbath, 1995; Robin
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and Schbath, 2001) (ii) The Pólya-Aeppli distribution only involves two pa-
rameters that can be easily computed when the first two moments are known.
Note that argument (i) is not sufficient because the topology of a network
motif is quite different from the topology of a sequence motif. Still, parame-
ter a could be interpreted as the overlapping probability of the motif m, i.e.
the probability that an occurrence of m overlaps another one.

The first two moments of the PA(λ, a) distribution are λ/(1 − a) and
λ(1 + a)/(1 − a)2. Given these moments, parameters can be calculated as:

a = [VN(m) − EN(m)]/[EN(m) + VN(m)] (4)

λ = (1 − a)EN(m).

p-values can be calculated using the algorithms given in Barbour et al. (1992)
or in Nuel (2006).

4.2 Simulation based comparison of distribution approximations

Simulation design. The objective of the simulations is to compare the
Gaussian and the Póly-Aeppli approximations for the distribution of the
motif counts. To do so, we focus on all 3 and 4-node undirected motifs, and
we use the PPI networks of 3 organisms provided by the DIP database (Sal-
winski et al., 2004). Our aim is to study the approximation quality whatever
the underlying random graph model. For each PPI, 10,000 random graphs
are generated according to the following models: fixed-degree distribution
(FDD), expected-degree distribution (EDD), and ERMG. Since the FDD
and the EDD models are based on the observed degree distributions, we also
check that the ERMG model leads to degree distributions which are in ac-
cordance with the observed networks (Figure 3). Technical details regarding
this aspect of the ERMG model can be found in Daudin et al. (2008).

[Figure 3 about here.]

As previously, the FDD model can not be theoretically used in our frame-
work, and we use empirical moments based on simulations to calculate pa-
rameters (a, λ), and we propose to compare the Gaussian and the compound
Poisson approximations in this setting.

Quality of approximation. Comparisons are based on two criteria:
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• The Kolmogorov-Smirnov distance KS = supi |F̂ (i) − F (i)| between
the theoretical (F ) and empirical (F̂ ) cumulative distribution functions.
This criterion allows a global comparison along the whole range of a
random variable.

Since we are more concerned by the tails of the distribution for computing
the p-values of the count, we use a second quality criterion:

• 1− F̂ (QN ) and 1− F̂ (QPA) are the empirical probabilities of exceeding
the 0.999 Gauss and Pólya-Aeppli quantiles respectively. This criterion
should be close to 0.001 for a good approximation.

Note that these criteria will not be calculated in the case of the and the
under the FDD model, as the empirical variance of their respective counts

is nul as explained previously (reulting in − in the tables).

Results.

1. A first result is that the shape of the count distributions highly depends
on the model (Figure 4). Typically, the FDD model generates symetri-
cal distributions, whereas the EDD model generates highly skewed and
peaked distributions whatever the motifs and the network, as shown
in Table 4. Distributions from the ERMG show intermediate skewness
and kurtosis. The fact that the FDD model leads to count distribu-
tions which are symetrical reflects how constraint is the model. This
symmetry, as well as the small variance of the count means that visited
configurations among simulations are very similar. On the contrary,
highly skewed distributions (EDD model) indicate that extreme con-
figurations are explored (with high values for the count). This behavior
is linked to the simulation procedure, in which the expected degree is
sampled using the observed degree.

[Figure 4 about here.]

[Table 4 about here.]

2. Then the Kolmogorov-Smirnov distance indicates that the Pólya-Aeppli
approximation allows a better fit to the count distribution, compared
with the Gaussian approximation. This result is consistent accross mo-
tifs and accross networks, with few exceptions (Tables 5, 6 and 7).
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3. Tables 5, 6 and 7 show that the 0.999 quantile is systematically under-
estimated by the Gaussian approximation. Consequently, the use of
the Gaussian approximation can lead to false positive results: some
motifs could be thought as being exceptional, whereas they are not.

[Table 5 about here.]

[Table 6 about here.]

[Table 7 about here.]
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5. Exceptional motifs in PPI networks - Discussion

In this last section, we propose to assess the exceptionality of all 3 and 4-node
undirected motifs in 3 PPI networks (Table 8). This assessment is done using
the FDD, EDD and ERMG models, and the Gaussian and the Pólya-Aeppli
approximations.
The first result is that the magnitude of the p-values strongly depends on
the reference model. In the case of the FDD model, observed counts are so
far from the expectation that p-values are close to zero. On the contrary, for
ERMG, p-values are moderate, and can always be calculated. This tendency
is reinforced by the approximation used to calculate the p-values, as already
mentioned in the simulation study: using the Gaussian approximation leads
to the assessment of more exceptional motifs, and regarding the simulation
study, some of those exceptional motifs are likely to be false positives. Nev-
ertheless, Table 8 clearly shows that the first factor influencing the procedure
is the reference model, and not the distribution approximation.

Even if our primary objective was not to provide an appropriate prob-
abilistic reference model for biological networks, these results suggest some
comments. Since the count of every motif is exceptional when using the FDD
model, one explanation is that this model is too simple to account for the
observed biological variability. As previously mentioned, the degree sequence
is one of the characteristics of biological networks, and using this character-
istic only does not seem to be sufficient to model the complexity of biological
networks. Then using the EDD model could be an alternative, since the
model considers the expected degree distribution, and shows more flexibility
than the FDD model. However, considering the expected degree distribution
instead of the fixed degree distribution does not lead to convicing results
regarding Table 8: motifs are either all exceptional or all non exceptional.
Such drastic behavior, may be linked to a variable quality of fit of the model
to the data. Finally, the ERMG model leads to moderate results. While no
motif is exceptional in the PPI network of E.coli, the and motifs are
exceptional at the 5% level in H. Pylori network, and 6 over 8 undirected
motifs are exceptional in the PPI network of S. cerevisiæ, with moderate
p-values. This could indicate that ERMG could be an appropriate reference
model for PPI networks. However this will have to be further explored (work
in progress).

[Table 8 about here.]
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6. Conclusion

We provide an exact method to calculate the mean and variance of the count
of any network motif, whatever its topology. These formula hold for any
exchangeable random graph model satisfying the independence property of
disjoint motif occurrences. The generalization of our method to the directed
case is straightforward. In this case adjacency matrices X and m are not
symmetric anymore, and formulas to calculate the mean and variance still
hold. Moreover, our method can be applied when the purpose is to count
strict occurrences of a motif only: Instead of counting the number of sub-
graphs of G which are isomorphic to a given motif, for instance to a ,
one may be interested in counting the so-called induced subgraphs. For in-
stance, one may wish to count no occurrence of the motif in a (rather
than three occurrences with our current definition). It means to take care of
absent edges in the motif i.e. to consider the new random indicator

Y ′
α(m) =

∏

1≤u<v≤k

Xmuv

iu,iv
(1 − Xiu,iv)

(1−muv).

The number of induced occurrences of motif m denoted by N ′(m), is thus
simply the sum of these indicators over all positions α and all versions of
the motif m. Explicit formulas for the mean and variance of N ′(m) can be
deduced from our results. The key argument is that the count N ′(m) can
be expressed like a linear combination of counts of the form N(w) for some
motifs w of size k Kocay, 1981. For instance, N ′( ) = N( ) and N ′( ) =
N( )−3N( ). Getting the expectation EN ′(m) is then trivial and getting
the variance just requires the expression of the covariance between the counts
N(m1) and N(m2) of two motifs m1 and m2 of size k. This covariance is
equal to EN(m1)N(m2) − EN(m1)EN(m2) and the first term is obtained
like for Equation (3):

EN(m1)N(m2) =

(

n

n − 2k, k, k

)

∑

m′
1∈R(m1),m′

2∈R(m2)

µ(m′
1)µ(m′

2)

+
k

∑

s=1

(

n

k − s, s, k − s, n − 2k − s

)

∑

m′
1∈R(m1),m′′

2∈R(m2)

µ(m′
1Ω

s
m′′

2).

The main difficulty when searching for exceptional network motifs is that
the theoretical count distribution remains unknown in real networks. Con-
sequently, getting exact results on the moments of the count is of primary
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interest for the future characterization of this distribution. Our approach fo-
cuses on the first two moments, but can be extended to moments of any order.

Since no theoretical result is yet available on the motif count distribu-
tion, we proposed an approximation, which is based on the Pólya-Aeppli
distribution. We showed that this approximation is accurate in a large range
of situations, and we demonstrated that the Gaussian approximation is not
satisfactory. Consequently, strategies based on z-scores such as the method
proposed by Shen-Orr et al. (2002) are not reliable. In addition, p-values can
be easily computed thanks to the Pólya-Aeppli approximation we propose.
However, let us recall that when using the Pólya-Aeppli approximation, the
underlying hypothesis is that the distribution of the size of the motif clumps
is geometric, which is unlikely to be true. Future developments will be needed
to theoretically address the distribution of these clumps size.

Our approach is based on direct computations avoiding simulations that
would be very numerous to be accurate in the case of small p-values. Typi-
cally, a p-value of about 10−5 would require at least 107 simulations. From a
historical point of view, the question of motif exceptionality has first arisen
in the case of DNA sequences analysis. In this context, the first shuffling-
based approaches were rapidly competed by Markov models which allowed
the derivation of statistical tools without any simulation. In the case of net-
work motifs, similar developments should be done and our results constitute
one step towards this direction.
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Appendix A

Practical calculation of µ(m)

We recall that when using ERMG as a reference model, the probability of
occurrence of motif m is:

µ(m) =

Q
∑

c1=1

· · ·

Q
∑

ck

αc1 . . . αck

∏

1≤u<v≤k

πmu,v

cu,cv
. (A.1)

The computation of this formula might have a complexity as high as
O(Qk) since the products might have to be computed for each (αc1 , . . . , αck

) ∈
[[1, Q]]k (depending on the values of the binary digits mu,v). Since the compu-
tation of each sum indexed say by u ∈ {1, . . . , k} is of complexity O(Qdu+1),
where du is the number of indexes v such that mu,v = 1, we propose to reduce
the computation time by computing the indexes of lowest degrees first.

Let 1 ≤ u ≤ k be an index and let us call m-degree of u the cardinal of
the set {1 ≤ v ≤ k, mu,v = 1}. We define recursively the reduced m-degree
of any index the following way.

1. The indexes of lowest m-degree have a reduced m-degree equal

to their m-degree.

2. The indexes whose reduced m-degree is computed are removed

from the formula.

3. If there remains indexes go back to step 1, else end.

Lemma. The computation time of formula (A.1) is O(kQD+1) where D is
the maximum of the reduced m-degrees of the indexes u ∈ [[1, k]].

Proof. Let us call dmin the lowest m-degree of the indexes. Let u be any
index of m-degree dmin. The reduced m-degree of u is dmin. We compute all
the terms involving u in formula (A.1), which costs O(Qdmin+1). Then formula
(A.1) involves k−1 indexes. The m-degrees of the indexes previously involved
in the computations of the terms containing the index u have decreased by
1 and the others did not change.

The first time any index v is of minimal m-degree is when its m-degree
equals its reduced m-degree d. Consequently the computation of the terms
involving v costs Qd+1 products at most. This proves that the computation
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time is at most QD+1 for the removal of any index. This has to be done k
times. Hence the total computation time is O(kQD+1).

Remark. Removing the indexes whose reduced m-degree has been com-
puted decreases the degrees of the remaining indexes. Hence, the reduced
m-degree of an index is at most its degree.
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Figure 1. A graph with 1 and 6 .
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2

1 3

4

Figure 2. Example of motif overlap. Let m be the version of the motif
defined in Table 1; it is present at α = (1, 2, 4) and β = (2, 3, 4). In this
case α∩ β = (2, 4), and the corresponding super-motif mΩ

2
m is the so-called

whisk graph of size 4.
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Figure 3. PP-plots of the fitted degree distributions for 3 PPI networks
using ERMG.
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Table 1

Non redundant permutations of the motif at position α = (i1, i2, i3).

m m
′

m
′′





0 1 1
. 0 0
. . 0









0 1 0
. 0 1
. . 0









0 0 1
. 0 1
. . 0





i2 i3

i1

i2 i3

i1

i2 i3

i1
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Table 2

Occurrence probabilities of the and motif in 3 models.

Motif ER EDD ERMG

π2 γ2[E(D)]2E(D2)

Q
∑

c1=1

Q
∑

c2=1

Q
∑

c3=1

αc1αc2αc3πc1c2πc1c3

π3 γ3[E(D2)]3
Q

∑

c1=1

Q
∑

c2=1

Q
∑

c3=1

αc1αc2αc3πc1c2πc1c3πc2c3
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Table 3

Expectations and standard deviations for the count of all 3 and 4-motifs in
3 PPI networks. EN(m) and

√

VN(m) have been theoretically calculated

under ER, EDD-E and ERMG models. ÊN(m) and

√

V̂N(m) are the
empirical estimators calculated using simulations under the FDD model.

EN(m) ÊN(m)
p

VN(m)

q

V̂N(m)

Hpylo Nobs ER EDD-E ERMG FDD ER EDD-E ERMG FDD

14113 5704.08 13549.90 13602.97 14113 311.08 3611.74 2659.18 0

75 10.85 196.63 66.91 52.82 3.40 102.06 20.41 7.80

98697 22880.50 142771.00 94578.81 84115.87 1919.66 62567.50 27039.88 3324.82

112490 7626.83 101428.00 93741.08 112490 681.76 46043.30 27257.36 0

1058 32.64 1553.90 516.66 284.88 6.89 1105.05 208.76 27.40

3535 130.55 13247.10 2897.13 2410.48 44.07 9617.37 1120.34 452.89

79 0.37 614.58 34.80 22.09 0.66 666.63 20.00 9.88

0 0.00 20.26 0.17 0.10 0.02 32.40 0.45 0.32

Ecoli Nobs ER EDD-E ERMG FDD ER EDD-E ERMG FDD

248093 52744.70 99126.40 243846.93 248093 1281.87 20851.70 51676.68 0

11368 72.47 2197.38 10221.17 3579.49 8.90 797.30 3041.98 68.58

9557956 399151.00 2339200.00 9555414.55 5950903.40 14743.70 774109.00 3019630.93 67739.86

6425495 133050.00 1537740.00 5772005.15 6425495 5089.62 484152.00 1672086.51 0

487408 411.31 38890.60 417190.55 76467.39 29.14 19122.60 170502.21 1117.56

2154048 1645.22 306789.00 1929516.68 547802.44 214.52 145764.00 739836.65 15593.00

273621 3.39 20117.90 204093.45 18422.25 2.04 12876.60 94018.80 891.99

14882 0.00 867.24 8904.75 317.27 0.05 707.94 4660.71 32.96

Scere Nobs ER EDD-E ERMG FDD ER EDD-E ERMG FDD

436131 123668.00 87993.40 389503.34 436131 1900.49 14409.10 43699.24 0

10567 58.74 253.21 4499.68 596.01 7.78 97.79 1026.22 27.78

7530597 873206.00 1011160.00 6453832.37 5643320.62 20415.70 292154.00 984085.02 83158.13

12227236 291069.00 1065250.00 7974881.99 12227236 7065.36 427908.00 1653822.72 0

165085 311.08 2182.33 86658.32 7659.12 20.29 1133.64 35938.74 196.22

993733 1244.32 27588.80 442611.59 76434.54 170.94 17622.20 144261.26 5851.70

116667 0.89 376.37 40118.23 276.40 0.97 407.40 18259.56 51.11

8601 0.00 5.41 1959.07 0.43 0.01 10.71 993.27 0.66
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Table 4

Empirical skewness and kurtosis of the count distributions.

Skewness Kurtosis

Hpylo FDD EDD ERMG FDD EDD ERMG

- 0.79 0.35 - 4.10 3.13

0.18 1.55 0.59 3.05 7.59 3.45

0.17 1.34 0.64 2.97 6.34 3.59

- 1.22 0.44 - 5.83 3.28

0.34 2.36 0.97 3.26 14.40 4.56

0.40 2.27 0.80 3.23 13.58 3.94

1.08 3.89 1.21 4.95 37.78 5.30

3.60 6.49 3.01 17.64 101.81 15.48

Ecoli FDD EDD ERMG FDD EDD ERMG

- 0.54 0.50 - 3.49 3.36

0.03 0.93 0.73 2.94 4.48 3.88

0.04 0.89 0.80 2.98 4.40 4.07

- 0.81 0.70 - 4.20 3.80

0.19 1.35 1.04 3.12 6.24 4.87

0.10 1.27 0.98 3.01 5.90 4.66

0.20 1.77 1.19 3.10 8.68 5.53

0.29 2.32 1.37 3.19 13.05 6.46

Scere FDD EDD ERMG FDD EDD ERMG

- 0.61 0.23 - 3.55 3.05

0.05 1.30 0.76 3.01 5.89 3.89

0.12 1.01 0.41 3.04 4.62 3.27

- 0.97 0.32 - 4.34 3.12

0.18 1.78 1.27 3.01 8.43 5.55

0.24 1.88 1.11 3.09 9.02 4.97

0.73 3.34 1.25 4.10 22.21 5.40

1.60 6.34 1.48 5.79 70.29 7.31
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Table 5

Quality approximation of the count distribution for Hpylo PPI network.
KS: Kolmogorov-Smirnov distance (×100), 1 − F̂ (Q): empirical probability
of exceeding the 0.999 quantile (×1000). FDD: fixed-degree distribution,

EDD: expected-degree distribution, ERMG: Erdös-Rényi mixture for graphs.

FDD ÊN(m)

q

V̂(m) KSN KSPA 1 − F̂ (QN ) 1 − F̂ (QPA)

14113 0 - - - -

52.82 7.80 4.26 0.92 1.70 0.20

84115.87 3324.82 1.34 0.96 1.30 1.00

112490 0 - - - -

284.88 27.40 3.00 1.37 2.50 1.50

2410.48 452.89 3.43 1.65 3.90 0.80

22.09 9.88 8.71 2.52 9.60 2.70

0.10 0.32 52.88 0.04 0.80 0.00

EDD EN(m)
p

V(m) KSN KSPA 1 − F̂ (QN ) 1 − F̂ (QPA)

13549.90 3611.74 5.62 3.02 6.80 2.80

196.63 102.06 9.93 4.57 12.50 4.70

142771.00 62567.50 8.63 4.30 11.30 4.00

101428.00 46043.30 7.85 3.31 10.40 3.30

1553.90 1105.05 12.86 8.45 15.60 5.20

13247.10 9617.37 12.35 7.78 15.40 4.80

614.58 666.63 18.22 19.94 18.10 4.50

20.26 32.40 21.63 39.40 17.50 3.50

ERMG EN(m)
p

V(m) KSN KSPA 1 − F̂ (QN ) 1 − F̂ (QPA)

13602.97 2659.18 2.48 0.56 2.90 0.70

66.91 20.41 5.41 1.42 4.80 1.00

94578.81 27039.88 4.40 1.78 5.90 0.90

93741.08 27257.36 2.97 0.81 4.60 0.70

516.66 208.76 6.32 2.30 8.90 2.40

2897.13 1120.34 5.60 1.82 6.90 1.60

34.80 20.00 9.18 2.60 10.10 2.10

0.17 0.45 50.06 0.15 2.40 0.50
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Table 6

Quality approximation of the count distribution for Ecoli PPI network.
KS: Kolmogorov-Smirnov distance (×100), 1 − F̂ (Q): empirical probability
of exceeding the 0.999 quantile (×1000). FDD: fixed-degree distribution,

EDD: expected-degree distribution, ERMG: Erdös-Rényi mixture for graphs.

FDD ÊN(m)

q

V̂(m) KSN KSPA 1 − F̂ (QN ) 1 − F̂ (QPA)

248093 0 - - - -

3579.49 68.58 0.91 0.52 0.80 0.60

5950903.40 67739.86 0.62 0.51 1.20 1.20

6425495 0 - - - -

76467.39 1117.56 2.04 1.87 2.30 2.00

547802.44 15593.00 0.95 0.82 1.30 1.10

18422.25 891.99 1.63 1.16 1.90 1.40

317.27 32.96 2.69 1.13 2.90 1.60

EDD-E EN(m)
p

V(m) KSN KSPA 1 − F̂ (QN ) 1 − F̂ (QPA)

99126.40 20851.70 2.74 1.17 4.80 2.00

2197.38 797.30 5.55 2.34 8.90 3.20

2339200.00 774109.00 5.00 2.18 9.10 2.90

1537740.00 484152.00 4.52 1.94 7.90 2.40

38890.60 19122.60 7.83 4.08 13.00 4.10

306789.00 145764.00 7.50 3.58 12.10 3.90

20117.90 12876.60 10.02 6.00 14.40 4.40

867.24 707.94 12.61 9.76 16.80 4.50

ERMG EN(m)
p

V(m) KSN KSPA 1 − F̂ (QN ) 1 − F̂ (QPA)

243846.93 51676.68 3.30 1.33 4.80 2.20

10221.17 3041.98 4.64 1.77 7.30 2.20

9555414.55 3019630.93 5.13 2.03 7.90 2.70

5772005.15 1672086.51 4.54 1.65 6.90 2.50

417190.55 170502.21 6.50 2.56 10.30 2.50

1929516.68 739836.65 6.14 2.34 9.50 2.70

204093.45 94018.80 7.30 3.06 11.00 3.00

8904.75 4660.71 8.46 3.90 12.50 3.50
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Table 7

Quality approximation of the count distribution for Scere PPI network.
KS: Kolmogorov-Smirnov distance (×100), 1 − F̂ (Q): empirical probability
of exceeding the 0.999 quantile (×1000). FDD: fixed-degree distribution,

EDD: expected-degree distribution, ERMG: Erdös-Rényi mixture for graphs.

FDD ÊN(m)

q

V̂(m) KSN KSPA 1 − F̂ (QN ) 1 − F̂ (QPA)

436131 0 - - - -

596.01 27.78 1.54 0.46 1.00 0.50

5643320.62 83158.13 1.08 0.94 1.70 1.60

12227236 0 - - - -

7659.12 196.22 1.62 1.28 1.50 1.30

76434.54 5851.70 1.79 1.13 2.00 1.40

276.40 51.11 5.05 2.87 6.10 3.80

0.43 0.66 39.62 0.08 1.50 0.00

EDD-E EN(m)
p

V(m) KSN KSPA 1 − F̂ (QN ) 1 − F̂ (QPA)

87993.40 14409.10 4.83 3.21 4.80 3.10

253.21 97.79 8.93 5.06 11.80 3.50

1011160.00 292154.00 7.15 4.36 8.60 3.30

1065250.00 427908.00 6.87 2.97 7.80 2.10

2182.33 1133.64 11.19 6.59 15.40 4.60

27588.80 17622.20 11.73 7.18 15.60 4.10

376.37 407.40 18.64 21.09 20.20 4.10

5.41 10.71 25.44 35.90 17.70 2.70

ERMG EN(m)
p

V(m) KSN KSPA 1 − F̂ (QN ) 1 − F̂ (QPA)

389503.34 43699.24 1.48 0.52 2.40 1.60

4499.68 1026.22 5.41 3.18 7.00 3.20

6453832.37 984085.02 2.90 1.42 3.80 2.30

7974881.99 1653822.72 2.38 0.42 3.30 1.00

86658.32 35938.74 8.15 4.35 11.50 3.90

442611.59 144261.26 7.35 4.29 10.40 4.60

40118.23 18259.56 8.60 4.25 12.10 3.90

1959.07 993.27 9.29 4.35 11.90 3.20
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Table 8

Exceptional motifs in 3 PPI networks using 3 reference models and 2
distribution approximations. p−values lower than 5% are written in bold.

Hpylo Nobs FDD-PvN FDD-PvPA EDD-PvN EDD-PvPA ERMG-PvN ERMG-PvPA

14113 - - 4.38e−01 4.13e−01 4.24e−01 4.06e−01

75 2.23e−03 4.36e−03 8.83e−01 9.06e−01 3.46e−01 3.31e−01

98697 5.78e−06 1.22e−05 7.59e−01 7.42e−01 4.39e−01 4.12e−01

112490 - - 4.05e−01 3.65e−01 2.46e−01 2.34e−01

1058 2.15e−175 1.80e−52 6.73e−01 6.15e−01 4.76e−03 1.33e−02

3535 6.51e−03 1.11e−02 8.44e−01 8.58e−01 2.85e−01 2.63e−01

79 4.27e−09 2.54e−05 7.89e−01 7.51e−01 1.35e−02 3.11e−02

0 6.18e−01 1.00e−00 7.34e−01 1.00e−00 6.52e−01 8.50e−01

Ecoli Nobs FDD-PvN FDD-PvPA EDD-PvN EDD-PvPA ERMG-PvN ERMG-PvPA

248093 - - 4.53e−13 1.24e−08 4.67e−01 4.46e−01

11368 0.00e+00 0.00e+00 6.43e−31 7.02e−13 3.53e−01 3.30e−01

9557956 0.00e+00 0.00e+00 5.54e−21 2.33e−10 5.00e−01 4.68e−01

6425495 - - 2.89e−24 1.14e−11 3.48e−01 3.26e−01

487408 0.00e+00 0.00e+00 5.90e−122 3.48e−23 3.40e−01 3.10e−01

2154048 0.00e+00 1.03e−265 4.18e−37 1.15e−12 3.81e−01 3.49e−01

273621 0.00e+00 1.24e−115 1.39e−86 1.09e−17 2.30e−01 2.14e−01

14882 0.00e+00 2.61e−41 1.59e−87 3.30e−15 9.98e−02 1.09e−01

Scere Nobs FDD-PvN FDD-PvPA EDD-PvN EDD-PvPA ERMG-PvN ERMG-PvPA

436131 - - 2.86e−129 6.21e−33 1.43e−01 1.44e−01

10567 0.00e+00 1.31e−128 0.00e+00 1.13e−22 1.69e−09 1.21e−06

7530597 2.51e−114 8.44e−99 1.32e−110 8.61e−27 1.37e−01 1.38e−01

12227236 - - 2.70e−150 3.11e−22 5.07e−03 9.54e−03

165085 0.00e+00 1.09e−322 0.00e+00 3.19e−22 1.45e−02 2.73e−02

993733 0.00e+00 1.64e−65 0.00e+00 9.33e−22 6.66e−05 8.90e−04

116667 0.00e+00 1.71e−33 0.00e+00 1.28e−18 1.38e−05 7.22e−04

8601 0.00e+00 1.54e−10 0.00e+00 3.19e−16 1.14e−11 5.25e−06
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