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@ Prospective study: classical epidemiology risk factor (environmental
exposures, lifestyle) and genomic data (in particular SNPs)

e Transcriptomic data (gene expression and methylation): at time of diagnosis

Post-GWAS

Transcriptomic data in a prospective nested CC (case-control) design:

@ Hybrid between the prospective and nested CC designs

@ Main distinction with prospective GWAS :
Transcriptomics change over carcinogenic process # SNPs are constant.
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Example of post-GWAS design: the NOWAC cohort

Prospective nested case-control design
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Example of post-GWAS design: the NOWAC cohort

Prospective nested case-control design ¢ case

e: control J
______________ -
______________ -
@ 6 years of follow-up
50,000 |F----=-ccccoooo oo )
@ 700 case-control pairs
women | == === = *
for breast cancer
——————— -
- - Time
Blood sample Diag 1 Diag 2
+ questionnaire
_—>
T1
T2

Data: for each case-control pair i,

e T;: Follow-up time.

o AG; = log G$3¢ — log G¢°"trel: Difference of gene expression at time 7
before diagnosis (25,000 genes).

o AFE;: Exposure of CC pair i at time T; before diagnosis.
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O Novel statistical appi hes to explore carci ic | 1st of October 2012 4 /14




© Exploration of functional changes on gene expression
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Carcinogenesis and transcription
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@ Prospective GWAS and post-GWAS: a different statistical point of view
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al analysis models in

P[T|G,E] with

o T follow-up time
o F: exposures
o G: genomic data
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Survival analysis models in Functional changes for

prospective GWAS post-GWAS
P[T|G,E] with P[G|T,E] with
o T follow-up time o T follow-up time
o E: exposures o E: exposures
e (G: genomic data e G: transcriptomic data

What is different?

@ Omic data are considered as:
- Risk factor in prospective GWAS.
- Biomarkers of carcinogenic process in post-GWAS.

o Different goals:
- GWAS: relative risk estimation.
- Post-GWAS: analysis of functional changes.
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Limits of survival analysis models in post-GWAS
analysis: illustration with Cox model.

o Cox (proportional hazard) model: A(t|G, E) = Ao(t) exp ({8, (G, E)))
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Limits of survival analysis models in post-GWAS
analysis: illustration with Cox model.

e Cox (proportional hazard) model: A(t|G, E) = Ao(t) exp ({8, (G, E)))
o Partial likelihood for nested CC:
-1
L) =[] (1-exp ((3,(AG1AE))) ) + pen(d)
i CC pair
<> The follow-up time disappears = simple logistic regression.

@ Stratified coefficients: .
3= pr it T < to
,82 if T; >t
< Penalization selects the most differentially expressed genes in each strata.
e More generally: A(¢t|G, E,T):
< Not directly interpretable.
— Association between gene expression and no-carcinogen exposures?
e Summing up
e Survival analysis for nested CC: detect genes that discriminate between cases
and controls.
o Our goal: detect genes that discriminate between "long” and "short”
follow-up times.
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@ Statistical approaches for post-GWAS: P[G|E, T
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[0 Novel statistical appi hes to explore carcil ic | 1st of October 2012 13 / 14




Differential gene expression
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General model: AG, 4 = f(T;, AE;|O4) + € 4.

Testing time-effect for each gene + correction for multiple testing.
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General model: AG, 4 = f(T;, AE;|O4) + € 4.
Testing time-effect for each gene + correction for multiple testing.
Controls used as reference.

Flexibility allows to include biological assumptions:
- Cancer driven by exposures,
- Paths of genes with hierarchical FDR, ...
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i=1...,311 CC pairs Linear model

Differential gene expression
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" Hockey-stick”

AG; g=af+alTi+e; 4 AG; g=ad+af(T;—tg)N(T>tg)+e; 4

General model: AG, 4 = f(T;, AE;|O4) + € 4.

Testing time-effect for each gene + correction for multiple testing.

Controls used as reference.

Flexibility allows to include biological assumptions:
- Cancer driven by exposures,
- Paths of genes with hierarchical FDR, ...

Latent variable model based on multistage model of carcinogenesis.
AGi,g = f(TZLa AE“LS”@!]) + Ei,g

with LS; the length of the last stage for case 1.
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Conclusion

@ From prospective GWAS to post-GWAS.

o Different design:

genomics — transcriptomics
o Different goals:

relative risk estimation — exploration of functional changes
o Different statistical point of view:

P[T|G, E] — P[G|T, E]
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@ From prospective GWAS to post-GWAS.

o Different design:
genomics — transcriptomics
o Different goals:
relative risk estimation — exploration of functional changes
o Different statistical point of view:
P[T|G, E] — P[G|T, E]
@ Statistical approaches for analysis of functional changes on transcriptomic
data:
o Gene-by-gene model.
¢ Latent variable model which accounts for individual dynamics.

o What's next?

o Parametrization of the time effect.

o Determinate the exposures which affects gene expression (huge subject!)
o Stratified with respect to the stages of cancer.

o etc...

Takk!
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