Nonparametric bayesian modelling of individual co-exposures to various pesticides to determine cocktails

Amélie Crépet and Jessica Tressou

ANSES, French agency for food, environmental and occupational health safety

INRA UR-1204, Mét@risk, Paris, France

The Hong Kong University of Science and Technology, Hong Kong

Applibugs, Paris, 26 November, 2010
For statisticians
What are the cocktails of pesticides simultaneously present in the diet?

- Co-exposure assessment
- Co-exposure clustering

For toxicologists
What are the possible combined effects of multiple residues of pesticides?
Data

- **Contamination levels**: \((\text{DGCCRF, DGAL, SISE-EAUX})\)
 - \(p = 1, \ldots, P = 79\) pesticides
 - \(a = 1, \ldots, 121\) commodities
 - \(H: 0\) if the value < \(\text{LOD}\)

- **Consumption**: the National French survey (INCA 2, 2006)
 - consumed quantities \(c_{ia}\) of \(n = 3,337\) individuals
 - \(n = 1,439\) children (3-17 years) and \(n = 1,898\) adults
 - 7 days detailed
Empirical exposure distribution x_{imp}

$$x_{imp} = \log_{10}\left(\sum_{a=1}^{A_p} c_{ia} \times q_{pam} / w_i\right)$$

$M=100$ values computed by

- randomly sampling for each individual i and pesticide p
 - consumptions of food a observed on a day: c_{ia}
 - pesticide residue levels q_{pam} of the different commodities A_p

- dividing by the associated individual body weight w_i

- normalized the logarithm of exposures
Exposure Structure

Co-exposures, \(\{x_{imp}, i : \text{individuals}; m : \text{residues levels}; p : \text{pesticides}\} \)

- \(M = 1, 95^{th} \) percentile of exposure to each pesticide \(P \)
- \(M = 100 \), account for contamination variability

\[M = 1, 95^{th} \text{ percentile of exposure to each pesticide } P \]
\[M = 100, \text{ account for contamination variability} \]
Co-exposures of 15 children to 79 pesticides

Density

Exposure log mg/kg body weight/day
Children exposure to a single pesticide

![Graph showing exposure log mg/kg body weight/day]

Exposure log mg/kg body weight/day
Infinite Mixture Models
Non-parametric Bayesian Models

- A way of getting very flexible models
- No assumption on the number of mixture components
- No prior parametric assumption
- Infer an adequate model (size/complexity) without doing Bayesian model comparison (AIC, DIC...)
- Derived from finite parametric model with number of parameters going to infinity
Mixture Models

Let \(x = (x_1, \ldots, x_n) \), with \(x_i \) a \(P \) dimensional vector \(x_i = (x_{i1}, \ldots, x_{iP}) \) distributed with a density of probability :

\[
f(x) = \int_\Theta k(x|\theta)G(d\theta)
\]

where

- \(k(\cdot|\theta) \) the known density of the mixture components,
- \(\theta \in \Theta \) is a latent variable,
- \(G \) the unknown mixture distribution, infinite dim. parameter

How to place an appropriate prior on \(G \) ?
Define an a priori on an unknown probability distribution

- \(G|\gamma, H \sim \mathcal{D}(dG|\gamma, H) \) is a Dirichlet process with parameters
 - a real \(\gamma > 0 \)
 - a probability measure \(H \)

- if and only if for any partition \(B_1, \ldots, B_K \) of \(\Omega \),
 \[
 (G(B_1), \ldots, G(B_K)) \sim \text{Dir}(\gamma H(B_1), \ldots, \gamma H(B_K))
 \]

- \(\mathbb{E}[G(B)] = H(B) \)
- \(\mathbb{V}[G(B)] = H(B)(1 - H(B))/(1 + \gamma) \)
Dirichlet Process Mixture Models - DPM

\[G \sim DP(\gamma, H) \]
\[\theta_i | G \sim G \]
\[x_i | \theta_i \sim k(., \theta_i) \]
Stick-Breaking Representation - SB

Sample $G \sim DP(\gamma, H) \iff G = \sum_{k=1}^{\infty} \pi_k \delta_{\phi_k}$

- $\phi_k \sim H$
- Infinite mixing proportions, $\sum_{k=1}^{\infty} \pi_k = 1 : \pi_k = \beta_k \prod_{l=1}^{k-1} (1 - \beta_l)$
- Infinite sequence of Beta r.v. : $\beta_k \sim Beta(1, \gamma)$
- Good quality of approximation for reasonable $K < \infty$

$G = \sum_{k=1}^{K} \pi_k \delta_{\phi_k}$ (Ishwaran and James 2001)
Stick-Breaking Representation - SB
Modeling co-exposure to pesticides $M = 1$

$x = (x_1, \ldots, x_n)$, with x_i a P dimensional vector $x_i = (x_{i1}, \ldots, x_{iP})$

$x_i|\theta_i \sim k(.|\theta_i)$ \hfill (1)

$\theta_i|G \sim G$ \hfill (2)

$G \sim DP(\gamma, H)$ \hfill (3)

- kernel k: a MultivariateNormal $\mathcal{N}(\mu, \tau)$, $\phi = (\mu, \tau)$
- base probability measure H: the conjugate Normal-Wishart
One level of hierarchy

\[x_{im} = (x_{pim}, p = 1, \ldots, P) \] with \(i = 1, \ldots, n \) and \(m = 1, \ldots, M \)

\[
\begin{align*}
 x_{im} | \theta_{im} & \sim k(., \theta_{im}) \\
 \theta_{im} | G_i & \sim G_i \\
 G_i & \sim DP(\alpha_i, G_0) \\
 G_0 & \sim DP(\gamma, H)
\end{align*}
\]
Algorithm and Random Block

- Gibbs sampler based on the Stick-Breaking priors
- Random Block to reduce the heavy computational burden
 - at each Gibbs cycle select $d < P$ pesticides
 - a subset of random observations $x_i = (x_{il_1}, \ldots, x_{il_d})$ is used instead of $x_i = (x_{i1}, \ldots, x_{iP})$
Example of convergence checking

![Graph 1: Number of clusters vs iterations](image)

![Graph 2: Posterior Likelihood vs iterations](image)
Validation data

Comparison between Stick-breaking (SB) and “Random-Block Stick-Breaking” (RB-SB) algorithms ($N = 30$ atomes, 30000 iterations)

Q-criterion of the first 1,000 iterations performed with the SB and the SB-RB algorithms

Optimal partition obtained with the SB algorithm: mixture of 3 gaussian distributions
Children co-exposure to pesticides

Three main clusters of children with similar co-exposures
Box-plot of the cluster 1: 699 children
Box-plot of the cluster 2 : 238 children
Exposures correlations of cluster 1: 699 children

Cocktail 1
Cocktail 2
Cocktail 3
Cocktail 4
Cocktail 5
Cocktail 6
Cocktail 7
Exposures correlations of cluster 2: 238 children

Amélie Crépet (ANSES)
Extensions

- Prior distribution on γ: $\text{Gamma}(a_\gamma, b_\gamma)$
- Use Poisson-Dirichlet process instead of DP: slow convergence
 - a_γ: $\text{Uniform}[0, 1]$
 - b_γ: $\text{Gamma}(0.01, 0.01)$

- Hierarchical model not really adapted

- Pareto kernel for k

- DP for censored data

- 3 of the 7 defined cocktails have toxicological effects
Thanks

- F. Héraud, JC Leblanc and JL Volatier, AFSSA
- ORP (Pesticide Residues Observatory) for financial support
- ANR (National Research Agency) for financial support
- Thank you for your attention