Biips software: Bayesian inference with interacting particle systems
Rencontres AppliBUGS

Adrien Todeschini†, François Caron*, Pierrick Legrand†, Pierre Del Moral‡ and Marc Fuentes†

†Inria Bordeaux, *Univ. Oxford, ‡UNSW Sydney

Montpellier, Novembre 2014
Outline

Context

Graphical models and BUGS language

SMC

Biips software

Particle MCMC
Summary

Context

Graphical models and BUGS language

SMC

Biips software

Particle MCMC
Context

Biips = Bayesian inference with interacting particle systems

Bayesian inference

- Sample from a posterior distribution \(p(X|Y) = \frac{p(X,Y)}{p(Y)} \)
- High dimensional, arbitrary complexity
- Simulation methods: MCMC, SMC...

Motivation

- Last 20 years: success of SMC in many applications
- No general and easy-to-use software for SMC
Context

\textit{Biips} = Bayesian inference with interacting particle systems

Bayesian inference

- Sample from a posterior distribution \[p(X \mid Y) = \frac{p(X,Y)}{p(Y)} \]
- High dimensional, arbitrary complexity
- Simulation methods: MCMC, SMC...

Motivation

- Last 20 years: success of SMC in many applications
- No general and easy-to-use software for SMC
Context

Biips = **B**ayesian **i**nference with **i**nteracting **p**article **s**ystems

Objectives

- BUGS language compatible
- Extensibility: custom functions/samplers
- Black-box SMC inference engine
- Interfaces with popular software: Matlab/Octave, R
- Post-processing tools
Summary

Context

Graphical models and BUGS language

SMC

Biips software

Particle MCMC
The graph displays a factorization of the joint distribution:

\[p(x_{1:3}, y_{1:2}) \]
Graphical models

The graph displays a factorization of the joint distribution:

\[
p(x_{1:3}, y_{1:2}) = p(x_1) \ p(x_2|x_1) \ p(y_1|x_2) \\
+ p(x_3|x_1, x_2) \ p(y_2|x_2, x_3)
\]
Graphical models

The graph displays a factorization of the joint distribution:

\[
p(x_{1:3}, y_{1:2}) = p(x_1) \ p(x_2|x_1) \ p(y_1|x_2) \\
\quad \ p(x_3|x_1, x_2) \ p(y_2|x_2, x_3)
\]
The graph displays a factorization of the joint distribution:

\[p(x_{1:3}, y_{1:2}) = p(x_1) \; p(x_2|x_1) \; p(y_1|x_2) \; p(x_3|x_1, x_2) \; p(y_2|x_2, x_3) \]
The graph displays a factorization of the joint distribution:

\[
p(x_{1:3}, y_{1:2}) = p(x_1) \, p(x_2|x_1) \, p(y_1|x_2) \\
p(x_3|x_1, x_2) \, p(y_2|x_2, x_3)
\]
The graph displays a factorization of the joint distribution:

\[p(x_{1:3}, y_{1:2}) = p(x_1) \ p(x_2|x_1) \ p(y_1|x_2) \]
\[\quad \ p(x_3|x_1, x_2) \ p(y_2|x_2, x_3) \]
BUGS language

- S-like declarative language for describing graphical models
 - Stochastic relations
 - Deterministic relations

Linear regression:

```plaintext
model {
  Y ~ dnorm(mu, tau)
  tau ~ dgamma(0.01, 0.01)
  mu <- beta * X + alpha
  alpha ~ dnorm(0, 1E-6)
  beta ~ dnorm(0, 1E-6)
}
```

Goal: Estimate $p(\alpha, \beta, \tau | X, Y)$
BUGS language

- S-like declarative language for describing graphical models
- Stochastic relations
- Deterministic relations

Linear regression:

```r
model {
  Y ~ dnorm(mu, tau)
}
```

Goal: Estimate $p(\alpha, \beta, \tau | X, Y)$
BUGS language

- S-like declarative language for describing graphical models
- Stochastic relations
- Deterministic relations

Linear regression:

```r
model {
  Y ~ dnorm(mu, tau)
  tau ~ dgamma(0.01, 0.01)
  mu <- beta * X + alpha
  beta ~ dnorm(0, 1E-6)
  alpha ~ dnorm(0, 1E-6)
}
```

Goal:

Estimate \(p(\alpha, \beta, \tau | X, Y) \)
BUGS language

- S-like declarative language for describing graphical models
- Stochastic relations
- Deterministic relations

Linear regression:

```r
model {
  Y ~ dnorm(mu, tau)
  tau ~ dgamma(0.01, 0.01)
  mu <- beta * X + alpha
}
```

Goal:

Estimate $p(\alpha, \beta, \tau | X, Y)$
BUGS language

- S-like declarative language for describing graphical models
- Stochastic relations
- Deterministic relations

Linear regression:
model {
 Y ~ dnorm(mu, tau)
 tau ~ dgamma(0.01, 0.01)
 mu <- beta * X + alpha
 alpha ~ dnorm(0, 1E-6)
 beta ~ dnorm(0, 1E-6)
}

Goal: Estimate \(p(\alpha, \beta, \tau | X, Y) \)
BUGS language

- S-like declarative language for describing graphical models
- Stochastic relations
- Deterministic relations

Linear regression:

```r
model {
  Y ~ dnorm(mu, tau)
  tau ~ dgamma(0.01, 0.01)
  mu <- beta * X + alpha
  alpha ~ dnorm(0, 1E-6)
  beta ~ dnorm(0, 1E-6)
}
```

Goal:
Estimate $p(\alpha, \beta, \tau|X, Y)$
BUGS software using MCMC

BUGS = **B**ayesian inference **U**sing **G**ibbs **S**ampling

- WinBUGS, OpenBUGS, JAGS [Plummer, 2012]
- Expert system automatically derives **MCMC methods** (Gibbs, Slice, Metropolis, ...) in a ‘black-box’ fashion
- Very **popular** among practitioners, applying MCMC methods to a wide range of applications [Lunn et al., 2012]
Summary

Context

Graphical models and BUGS language

SMC

Biips software

Particle MCMC
Ordering of the graph

The statistical model decomposes as

\[p(x_1', x_2', y_1', y_2') = p(x_1') \cdot p(y_1'|x_1') \cdot p(x_2'|x_1', y_1') \cdot p(y_2'|x_2') \]
Ordering of the graph

Topological sort (with priority to measurement nodes):

\((X_1, Y_1, Y_3, X_3, X_2, Y_4, Y_2)\)
Ordering of the graph

Topological sort (with priority to measurement nodes):

\[
(X_1, Y_1, Y_3, X_3, X_2, Y_4, Y_2, X_1', Y_1', X_2', Y_2')
\]
Ordering of the graph

Topological sort (with priority to measurement nodes):

$$(X_1, Y_1, Y_3, X_3, X_2, Y_4, Y_2)$$

Rearrangement of the directed acyclic graph:

The statistical model decomposes as

$$p(x'_1, x'_2, y'_1, y'_2) =$$

$$p(x'_1)p(y'_1|x'_1)$$

$$p(x'_2|x'_1, y'_1)p(y'_2|x'_2)$$
SMC algorithm

More generally, assume that we have sorted variables \((X_1, Y_1, \ldots, X_n, Y_n)\).
The statistical model decomposes as

\[
p(x_1:n, y_1:n) = p(x_1)p(y_1|x_1) \prod_{t=2}^{n} p(x_t|\text{pa}(x_t))p(y_t|\text{pa}(y_t))
\]

where \(\text{pa}(x)\) denotes the set of parents of variable \(x\).
SMC algorithm

- A.k.a. interacting MCMC, particle filtering, sequential Monte Carlo methods (SMC) ...
- Sequentially sample from conditional distributions of increasing dimension

\[\pi_1(x_1|y_1) \rightarrow \pi_2(x_{1:2}|y_{1:2}) \rightarrow \ldots \rightarrow \pi_n(x_{1:n}|y_{1:n}) \]

where, for \(t = 1, \ldots, n \)

\[
\pi_t(x_{1:t}|y_{1:t}) = \frac{p(x_{1:t}, y_{1:t})}{p(y_{1:t})} = \pi_{t-1}(x_{1:t-1}|y_{1:t-1}) \frac{p(x_t|\text{pa}(x_t))p(y_t|\text{pa}(y_t))}{p(y_t|y_{1:t-1})}
\]

Two stochastic mechanisms:

- **Mutation/Exploration**
- **Selection** [Doucet et al., 2001, Del Moral, 2004, Doucet and Johansen, 2010]
Standard SMC Algorithm

For $t = 1, \ldots, n$

- For $i = 1, \ldots, N$
 - Sample: $X_{t,t}^{(i)} \sim q_t$ and let $X_{t,1:t}^{(i)} = (\tilde{X}_{t-1,1:t-1}^{(i)}, X_{t,t}^{(i)})$
 - Weight: $w_t^{(i)} = \frac{\pi(y_t|\text{pa}(y_t))\pi(x_{t,t}^{(i)}|\text{pa}(x_{t,t}^{(i)}))}{q_t(x_{t,t}^{(i)})}$
 - Normalize: $W_t^{(i)} = \frac{w_t^{(i)}}{\sum_{j=1}^{N} w_t^{(j)}}$
 - Resample: $\{X_{t,1:t}^{(i)}, W_t^{(i)}\}_{i=1,\ldots,N} \rightarrow \{\tilde{X}_{t,1:t}^{(i)}, \frac{1}{N}\}_{i=1,\ldots,N}$

Outputs

- Weighted particles $(W_t^{(i)}, X_{t,1:t}^{(i)})_{i=1,\ldots,N}$ for $t = 1, \ldots, n$
- Estimate of the marginal likelihood $\hat{Z} = \prod_{t=1}^{n} \left(\frac{1}{N} \sum_{i=1}^{N} w_t^{(i)} \right)$
SMC algorithm

Marginal distributions

\[\pi_1(x_1|y_1) \rightarrow \pi_2(x_{1:2}|y_{1:2}) \rightarrow \ldots \rightarrow \pi_n(x_{1:n}|y_{1:n}) \]

Filtering: \[\pi_1(x_1|y_1) \rightarrow \pi_2(x_2|y_{1:2}) \rightarrow \ldots \rightarrow \pi_n(x_n|y_{1:n}) \]

Smoothing: \[\pi_1(x_1|y_{1:n}) \rightarrow \pi_2(x_2|y_{1:n}) \rightarrow \ldots \rightarrow \pi_n(x_n|y_{1:n}) \]
Example: hidden Markov/state space model

-4
-3
-2
-1
0
1
2
3
4
t
x
t=0, N=50
Particles generation

ESS = 50.00
Example: hidden Markov/state space model

$t=1, N=50$

Particles mutation

Particle weights

ESS_1 = 22.27
Example: hidden Markov/state space model

\[t=1, \ N=50 \]

Particles resampling

Particle weights

\[\text{ESS}_1 = 22.27 \]
Example: hidden Markov/state space model
Example: hidden Markov/state space model

Particles resampling

Particle weights

ESS² = 28.78
Example: hidden Markov/state space model

t=3, N=50
Particles mutation

Particle weights
ESS_3 = 25.50
Example: hidden Markov/state space model

![Diagram showing particles resampling and ESS]

- $t=3$, $N=50$
- Particles resampling
- Particle weights
- ESS$_3$ = 25.50
Example: hidden Markov/state space model

\[t=4, N=50 \]

Particles mutation

Particle weights

ESS\(_4\) = 3.39
Example: hidden Markov/state space model

$t=4, N=50$

Particles resampling

Particle weights

$\text{ESS}_4 = 3.39$
Example: hidden Markov/state space model

\[t=5, \ N=50 \]

Particles mutation

Particle weights

\[\text{ESS}_5 = 30.92 \]
Example: hidden Markov/state space model

\[t=5, \ N=50 \]

Particles resampling

Particle weights

ESS\[5\]=30.92
Example: hidden Markov/state space model

$t=6, N=50$

Particles mutation

Particle weights

ESS$_6 = 33.01$
Example: hidden Markov/state space model

Particles resampling

ESS6 = 33.01
Example: hidden Markov/state space model

$t=7, N=50$

Particles mutation

Particle weights

ESS $= 31.77$
Example: hidden Markov/state space model

$t=7, N=50$

Particles resampling

Particle weights

ESS$_7 = 31.77$
Example: hidden Markov/state space model

\[t=8, N=50 \]

Particles mutation

Particle weights

\[\text{ESS}_8 = 33.86 \]
Example: hidden Markov/state space model

$t=10, N=50$

Particles mutation

Particle weights

$ESS_{10} = 18.93$
Limitations and diagnosis of SMC algorithms

For a given $t \leq n$, for each unique value $X_{n,t}'(k)$, $k = 1, \ldots, K_{n,t}$, let $W_{n,t}'(k) = \sum_{i \mid X_t^{(i)} = X_t'(k)} W_n(i)$ be its associated total weight. A measure of the quality of the approximation of the posterior distribution $p(x_{t:n} \mid y_{1:n})$ is given by the smoothing effective sample size (SESS):

$$SESS_t = \frac{1}{\sum_{k=1}^{K_{n,t}} \left(W_{n,t}'(k) \right)^2}$$

with $1 \leq SESS_t \leq N$.
Summary

Context

Graphical models and BUGS language

SMC

Biips software

Particle MCMC
Technical implementation

- Interfaces: Matlab/Octave, R
- Multi-platform: Windows, Linux, Mac OSX
- Free and open source (GPL)
Example: Stochastic kinetic Lotka-Volterra model

- Evolution of two species $X_1(t)$ (prey) and $X_2(t)$ (predator) at time t
- Continuous-time Markov jump process described by three reaction equations:

$$
X_1 \xrightarrow{c_1} 2X_1 \quad \text{prey reproduction},
$$

$$
X_1 + X_2 \xrightarrow{c_2} 2X_2 \quad \text{predator reproduction},
$$

$$
X_2 \xrightarrow{c_3} \emptyset \quad \text{predator death}
$$

where $c_1 = 0.5$, $c_2 = 0.0025$ and $c_3 = 0.3$.

$$
Pr(X_1(t + dt) = x_1(t) + 1, X_2(t + dt) = x_2(t)|x_1(t), x_2(t)) = c_1 x_1(t) dt + o(dt)
$$

$$
Pr(X_1(t + dt) = x_1(t) - 1, X_2(t + dt) = x_2(t) + 1| x_1(t), x_2(t)) = c_2 x_1(t) x_2(t) dt + o(dt)
$$

$$
Pr(X_1(t + dt) = x_1(t), X_2(t + dt) = x_2(t) - 1 | x_1(t), x_2(t)) = c_3 x_2(t) dt + o(dt)
$$

[Boys et al., 2008]
Gillespie algorithm

R function to forward simulate from the LV model with Gillespie algorithm

```r
lotka_volterra_gillespie <- function(x, c1, c2, c3, dt) {
  z <- matrix(c(1, -1, 0, 0, 1, -1), nrow=2, byrow=TRUE)
  t <- 0
  while (TRUE) {
    rate <- c(c1*x[1], c2*x[1]*x[2], c3*x[2])
    sum_rate <- sum(rate);
    # Sample the next event from an exponential distribution
    t <- t - log(runif(1))/sum_rate
    if (t>dt)
      break
    # Sample the type of event
    ind <- which((sum_rate*runif(1)) <= cumsum(rate))[1]
    x <- x + z[,ind]
  }
  return(x)
}
```

[Gillespie, 1977, Golightly and Gillespie, 2013]
Add a custom sampler

Rbiips

```r
biips_add_distribution(name = 'LV',
                       n_param = 5,
                       fun_dim = lotka_volterra_dim,
                       fun_sample = lotka_volterra_gillespie)
```

A. Todeschini
Example: Stochastic kinetic Lotka-Volterra model

- We observe at some time $t = 1, 2, \ldots, t_{\text{max}}$ the number of preys with some additive noise

$$Y(t) = X_1(t) + \epsilon(t), \quad \epsilon(t) \sim \mathcal{N}(0, \sigma^2)$$

- Objective: approximate $\Pr(X_1(t), X_2(t)|Y(1), \ldots, Y(t_{\text{max}}))$ at $t = 1, \ldots, t_{\text{max}}$.
Example: Stochastic kinetic Lotka-Volterra model

```
model
{
  x[1,1] ~ LV(x_init, c[1], c[2], c[3], 1)
  y[1] ~ dnorm(x[1,1], 1/sigma^2)
  for (t in 2:t_max)
  {
    x[,t] ~ LV(x[,t-1], c[1], c[2], c[3], 1)
    y[t] ~ dnorm(x[1,t], 1/sigma^2)
  }
}
```

\[X_{t-1} \rightarrow X_t \rightarrow X_{t+1} \rightarrow \ldots \]

\[Y_{t-1} \rightarrow Y_t \rightarrow Y_{t+1} \rightarrow \ldots \]
Model compilation

Rbiips

data <- list(t_max=40, c=c(.5, .0025, .3),
 x_init=c(100, 100), sigma=10)
model <- biips_model(model_file = 'stoch_kinetic_gill.bug',
 data = data,
 sample_data = TRUE)
data <- model$data()
SMC samples

```r
out_smc <- biips_smc_samples(model, variable_names = 'x',
                              n_part=10000, type= 'fs')

diag_smc <- biips_diagnosis(out_smc)
summ_smc <- biips_summary(out_smc, probs=c(.025, .975))
x_s_mean <- summ_smc$x$s$mean
x_s_quant <- summ_smc$x$s$quant
```

(a) Estimates

(b) Smoothing effective sample size
Kernel density estimates

Rbiips

```r
kde_smc <- biips_density(out_smc)
```

Predator at t=5

Predator at t=10

Predator at t=15

A. Todeschini
Probability mass estimates

\texttt{Rbiips}

\texttt{tab_smc <- biips_table(out_smc)}
Summary

Context

Graphical models and BUGS language

SMC

Biips software

Particle MCMC
Particle MCMC

Recent algorithms that use SMC algorithms within a MCMC algorithm

- Particle Independant Metropolis-Hastings (PIMH)
- Particle Marginal Metropolis-Hastings (PMMH)

[Andrieu et al., 2010]
Static parameter estimation

Due to the successive resamplings, SMC estimations of $p(\theta | y_{1:n})$ might be poor.

The PMMH splits the variables in the graphical model into two sets:

- a set of variables X that will be sampled using a SMC algorithm
- a set $\theta = (\theta_1, \ldots, \theta_p)$ sampled with a MH proposal
Standard PMMH algorithm

Set $\hat{Z}(0) = 0$ and initialize $\theta(0)$

For $k = 1, \ldots, n_{\text{iter}}$,

- Sample $\theta^* \sim \nu(.)|\theta^{(k-1)}$)
- Run a SMC to approximate $p(x_{1:n}|y_{1:n}, \theta^*)$ with output $(X_{1:n}^{*}(i), W_{n}^{*}(i))_{i=1,\ldots,N}$ and $\hat{Z}^* \approx p(y_{1:n}|\theta^*)$
- With probability

$$\min\left(1, \frac{\nu(\theta^*|\theta(k-1))p(\theta^*)\hat{Z}^*}{\nu(\theta(k-1)|\theta^*)p(\theta(k-1))\hat{Z}(k-1)}\right)$$

set $X_{1:n}(k) = X_{1:n}^{*}(\ell), \theta(k) = \theta^*$ and $\hat{Z}(k-1) = \hat{Z}^*$, where $\ell \sim \text{Discrete}(W_{n}^{*}(1), \ldots, W_{n}^{*}(N))$

- otherwise, keep previous iteration values

Outputs

- MCMC samples $(X_{1:n}(k), \theta(k))_{k=1,\ldots,n_{\text{iter}}}$
Example: Stochastic kinetic Lotka-Volterra model

```
model
{
  logc[1] ~ dunif(-7,2)
  logc[2] ~ dunif(-7,2)
  logc[3] ~ dunif(-7,2)
  c[1] <- exp(logc[1])
  c[2] <- exp(logc[2])
  c[3] <- exp(logc[3])
  ...
}
```
Run a PMMH algorithm

```r
# create a pmmh object
obj_pmmh = biips_pmmh_init(model,
    param_names = c('logc[1]',
                     'logc[2]',
                     'logc[3]'),
    inits = list(-1, -5, -1),
    latent_names = 'x')

# adaptation and burn-in iterations
biips_pmmh_update(obj_pmmh, n_iter = 2000, n_part = 100)

# samples
out_pmmh = biips_pmmh_samples(obj_pmmh, n_iter = 20000,
                               n_part = 100, thin = 10)

summ_pmmh = biips_summary(out_pmmh, probs = c(.025, .975))
kde_pmmh = biips_density(out_pmmh)
```
Posterior samples
Conclusion

- BUGS language compatible
- Extensibility: custom functions/samplers
- Black-box SMC inference engine
- Interfaces with popular software: Matlab/Octave, R
- Post-processing tools
- And more: backward smoothing algorithm, particle independent Metropolis-Hastings algorithm, sensitivity analysis, some optimal/conditional samplers (Gaussian-Gaussian, beta-Bernoulli, finite discrete)

THANK YOU

http://alea.bordeaux.inria.fr/hiips