Estimation of hidden climate indices controlling flood occurrence

Benjamin Renard
Irstea Lyon, France
Motivation

Autumn flood occurrences in France

207 stations, 1969-2016
Floods exceeding a threshold such as $\Pr(\text{occurrence}) \approx 0.2$ at all sites

Clear clustering in space, maybe some clustering in time?
⇒ on any given year, %stations with occurrence tends to be either very low or very high, but is rarely close to its interannual average of 20%.

Consequences for risk management at this national scale: insurance companies, disaster response, etc.
Motivation

Autumn flood occurrences in France

207 stations, 1969-2016
Floods exceeding a threshold such as $\text{Pr}(\text{occurrence}) \approx 0.2$ at all sites

As hydrologists, we are interested in:
- Describing this space-time variability
- Understanding its origin (atmospheric / oceanic circulation)
- Making predictions such as $\text{Pr}(\text{occurrence} \mid \text{atmosphere-ocean})$
 - Seasonal forecasting, past reconstructions, future projections, etc.
Introducing climate indices

Ex.: El Niño Southern Oscillation (ENSO)

- **El Niño episode**
 - Warming of the central and eastern tropical Pacific Ocean
 - Worldwide impacts on oceanic and atmospheric circulation, and hence on hydrology
 - e.g. in Southern US: increased precipitations

- **La Niña episode**
 - Cooling of the central and eastern tropical Pacific Ocean
 - e.g. in eastern Australia: increased precipitations

Some degree of seasonal predictability (a few months ahead)
Introducing climate indices

Ex.: El Niño Southern Oscillation (ENSO)

A climate index aims at summarizing a certain climate pattern using a single number.

Here, simple spatial average. Often PCA-like methods are used.
Using climate indices

Used as covariates in a regression model

Example for occurrence data

\[Y(t, x) \sim B(\theta(t, x)) \]

- Occurrence 0/1 variable
- Bernoulli distribution
- Probability of occurrence, varying in time and space
- Effect of climate index at site \(x \)

\[\text{Logit}(\theta(t, x)) = \lambda_0(x) + \lambda_1(x) \times I(t) \]

- Intercept
- Climate index

At one given site \(x \): GLM

Other variable/distribution (e.g. annual maxima / GEV distribution): GAMLSS.

Multi-site: interest of hierarchical modeling for constraining spatial term \(\lambda_1(x) \)
Issues with climate indices

Many, many climate indices…

- Pacific Decadal Oscillation (PDO)
- North Atlantic Oscillation (NAO)
- Atlantic Multidecadal Oscillation (AMO)
- Arctic Oscillation (AO)
- Indian Ocean Dipole (IOD)
- Southern Annular Mode (SAM)
- El Niño Southern Oscillation (ENSO)

Taken from https://www2.ucar.edu/news/backgrounders/weather-maker-patterns-interactive-map
Issues with climate indices

They are sometimes poor predictors!

The (frustrating) case of France:

ENSO effect on maximum daily precipitation (January)

NAO effect on maximum daily precipitation (January)
Hidden climate indices model

Look at the problem from the other way around

Instead of:

Let’s try:

Define climate index

Look for “hidden” climate index

Covariate modeling

Look for associated climate pattern
Hidden climate indices model

Formulation

\[Y(t, x) \sim B(\theta(t, x)) \]

\[\text{Logit}(\theta(t, x)) = \lambda_0(x) + \lambda_1(x) \ast \tau_1(t) + \ldots + \lambda_K(x) \ast \tau_K(t) \]

\(\forall k = 0: K, \ (\lambda_k(x_1), \ldots, \lambda_k(x_n)) \sim MG(\mu_k, \Sigma_k) \)

\(\mu_k = \mathbf{Z}_k \beta_k \)

\((\Sigma_k)_{i,j} = \gamma_1^2 \exp\left(-\frac{\|x_i - x_j\|}{\gamma_2}\right) \)

(conditional) independence of \(Y | \theta \) (in both space and time)

Identifiability constraints:

\(\forall k = 1: K, \ (\tau_k(t_1), \ldots, \tau_k(t_n)) \) has mean 0 and st. dev. 1

Spatial (e.g. elevation) effects

Spatial dependence ("variogram")
Hidden climate indices model

Estimation: stepwise strategy

\[Y(t, x) \sim B(\theta(t, x)) \]

First estimate: \(\text{Logit}(\theta(t, x)) = \lambda_0(x) \)

Then: \(\text{Logit}(\theta(t, x)) = \hat{\lambda}_0(x) + \lambda_1(x) * \tau_1(t) \)

Then: \(\text{Logit}(\theta(t, x)) = \hat{\lambda}_0(x) + \hat{\lambda}_1(x) * \hat{\tau}_1(t) + \lambda_2(x) * \tau_2(t) \)

Etc.

Why a stepwise strategy?

Full model still not identifiable
Need additional constraint: uncorrelated \((\tau_i, \tau_j) \)
Creates other problems…
Hidden climate indices model

Estimation: Bayesian / MCMC setup

Posterior distribution

\[
p(\tau_k, \lambda_k, \beta_k, \gamma_k | \hat{\lambda}_0, \hat{\lambda}_{1:k-1}, \hat{\tau}_{1:k-1}, y, z)
\]

\[
\propto p(y | \tau_k, \lambda_k, \hat{\lambda}_0, \hat{\lambda}_{1:k-1}, \hat{\tau}_{1:k-1})
\cdot p(\lambda_k | \beta_k, \gamma_k, z)
\cdot p(\beta_k, \gamma_k, \tau_k)
\]

MCMC sampling

Customized block Metropolis sampler:

• Update parameter vector one-component-at-a-time
• Many simplifications in Metropolis ratio => quite fast!
• Adaptive: jump size adapted in order to keep acceptance rates within reasonable bounds
• Burn, thin, convergence check
Synthetic case study

Data generation

207 sites, 1905-2014

$\lambda_0 \equiv \text{Logit}(0.2)$
Synthetic case study

Estimated model

3-component model

\[
\text{Logit} \left(\theta(t, x) \right) = \lambda_0(x) + \lambda_1(x) \times \tau_1(t) + \lambda_2(x) \times \tau_2(t) + \lambda_3(x) \times \tau_3(t)
\]

\[
(\lambda_0(x_1), \ldots, \lambda_0(x_n)) \sim MG(\mu_0 I_n, \sigma_0^2 I_n)
\]

\[
(\lambda_k(x_1), \ldots, \lambda_k(x_n)) \sim MG(\mu_k I_n, \Sigma_k)
\]

Missing data mask:

Short-period estimation

Full-period estimation
Synthetic case study

Ability to recover hidden climate indices

- Truth
- 95% CI (short-period)
- 95% CI (full-period)
Synthetic case study

Ability to estimate HCI effects

Value of HCI effect

-1 0 1
Synthetic case study
Ability to estimate occurrence probabilities
Autumn flood occurrences in France

Data

207 stations, 1905-2014

Floods exceeding a threshold such as $\text{Pr(occurrence)} \approx 0.2$ at all sites
Autumn flood occurrences in France

Hidden climate indices

No trend, autocorrelation or low-frequency variability in estimated HCI’s
Autumn flood occurrences in France

HCI effects

First HCI: always positive, but large only in oceanic part of France

Second HCI: opposition Britany – Cevennes

Third HCI: effect gets smaller…

Overall, first HCI has by far the largest effects
Autumn flood occurrences in France

Probabilities of occurrence

1982

1994

2003

probability of occurrence

0.00

0.25

0.50

0.75

1.00

Flood did occur
Autumn flood occurrences in France

Climate patterns associated with 1st HCl

- Z850 (atmos. pressure)
- U850 (W→E wind)
- CAPE (convection)
- V850 (S→N wind)
Conclusions

A Bayesian hierarchical model to describe the space-time variability of (flood) occurrence data

Based on the identification of hidden climate indices

Useful in cases where standard climate indices have poor predictive capability

Synthetic case study shows that extracting hidden climate indices from occurrence data alone is feasible

Real-life case study suggests that hidden climate indices are linked with specific climate patterns, giving hope for predictictability
Future work

Prediction, cross-validation
- So far, link with large-scale climate only exploratory (correlation maps)
- Develop the method to predict occurrences from large-scale climate data (as opposed to standard climate indices)
- Implement cross-validation experiments

Apply to an even larger spatial scale… but computational issues
- Number of sites is the computational bottleneck
- Virtually intractable with thousands of sites
- Numerical tricks are possible (approximation of the Metropolis ratio)
Future work

Clarify links with other existing approaches
• “Continuous” version of a Hidden Markov model
• Principal component analysis
 • The rationale is quite similar, adaptation to occurrence data
 • If Gaussian rather than Bernoulli distribution, back to PCA? (cf. Tipping and Bishop 1999)
 • Spatial hyperdistribution makes a difference though

Modelling intensities rather than occurrences
• Replace occurrences by seasonal maxima, Bernoulli by GEV
• 3 parameters, but see GLM / GAMLSS
• Are intensities predictable from large-scale climate? (my guess: not much)
• Link with spatial extremes theory (cf. Reich and Shaby 2012)