Bayesian inference using Hamiltonian Monte-Carlo algorithm for non-linear joint modelling in the context of cancer immunotherapy

Marion Kerioui1,3

Supervised by Jérémie Guedj1 and Solène Desmée2

1INSERM UMR 1137, "Infection, Antimicrobials, Modeling, Evolution", Paris
2INSERM UMR 1246, "methodS in Patients-centered outcomes & HEalth ResEarch", Tours
3Genentech/Roche Clinical Pharmacology, Paris, France

June, 13th 2019
Clinical data IMvigor210 (phase 2) and IMvigor211 (phase 3) trials: patients suffering from advanced or metastatic bladder cancer who did not respond to chemotherapy and treated with Atezolizumab immunotherapy treatment.

Immunotherapy:
- New treatments based on immune system stimulation (Atezolizumab targets PD-L1 to prevent its interaction with its receptor on immune cell),
- Showed impressive results in several cancer, including bladder cancer,
- But also apparition of new types of response (*Hyper-progression, Pseudo-progression*), higher variability in response than with chemotherapy.
Challenges induced by immunotherapy in clinical development:

- Define characteristics of patients to treat and predictive biomarkers of the response to treatment,
- Combinations with other treatments,
- New endpoints to evaluate treatment adapted to the diversity of responses.

⇒ There is a need to develop mathematical models that can characterize the kinetics of response to immunotherapies in order to optimize clinical development and improve patients follow-up and care.
Two main observed responses to treatment:

Longitudinal data

- y_i: vector of longitudinal measurements,
- Contains early information in response to treatment,
- Can be modelled in a mixed-effects model framework.

Time-to-event data

- T_i: observed event time
- δ_i: event indicator $= \begin{cases} 1 & \text{if event observed} \\ 0 & \text{if event not observed} \end{cases}$
Joint Models

The probability to not observe the biomarker depends on current (unobserved) biomarker value

- "Poor responders" are more likely to drop out or to experience the event
- "Good responders" are overrepresented as time goes by

⇒ Sample is not representative (informative censoring), induce bias

⇒ **Joint modelling**

2 Rizopoulos et al. (2012) Chapman and Hall/CRC
Joint Models

The probability to not observe the biomarker depends on current (unobserved) biomarker value

- "Poor responders" are more likely to drop out or to experience the event
- "Good responders" are overrepresented as time goes by

⇒ Sample is not representative (informative censoring), induce bias

⇒ **Joint modelling**\(^1,2\)

Longitudinal part - Mixed-effect models

\[y_i(t) = X(t, \psi_i) \times (1 + e_i(t)) \]

- **\(X \):** process of interest (Tumor size) **possibly non-linear**
- **\(\psi_i = \tau(\mu, \eta_i) \):** individual longitudinal parameters
- **\(e_i(t) \sim \mathcal{N}(0, \sigma^2) \):** residual error

\(^1\) Tsiasis et al. (1995) Journal of the American Statistical Association
\(^2\) Rizopoulos et al. (2012) Chapman and Hall/CRC
The probability to not observe the biomarker depends on current (unobserved) biomarker value

- "Poor responders" are more likely to drop out or to experience the event
- "Good responders" are overrepresented as time goes by

⇒ Sample is not representative (informative censoring), induce bias

⇒ **Joint modelling**

Longitudinal part - Mixed-effect models

\[y_i(t) = X(t, \psi_i) \times (1 + e_i(t)) \]

- \(X \): process of interest (Tumor size) **possibly non-linear**
- \(\psi_i = \tau(\mu, \eta_i) \): individual longitudinal parameters
- \(e_i(t) \sim N(0, \sigma^2) \) residual error

Survival part - Hazard function for patient \(i \)

\[h_i(t|\psi_i) = h_0(t) \exp(\beta \times f(t, \psi_i)) \quad \text{for} \quad t \geq 0 \]

\[S_i(t|\psi_i) = P(T_i \geq t) = \exp \left[- \int_0^t h_i(u|\psi_i) \, du \right] \]

- Link function \(f \) depends on \(\psi_i \)

Non-Linear Joint Model

Use of mechanistic models can be suited to characterize biomarker kinetics:

- **Many measurements** of biomarker in the context of clinical trial\(^1\),
- High **biological complexity** of the tumor size kinetics,
- Exacerbated in the context of **immunotherapy** by the complex interaction between the drug, the immune response and the tumor.

⇒ Biomarker kinetics is described by a **non-linear mixed-effects model**,

- Increase of the likelihood expression complexity,
- Requires high performance algorithm.
- Inference in a frequentist framework can be done by maximum likelihood using SAEM (Stochastic Approximation of EM Algorithm)\(^2\),\(^3\).

\(^1\) Desmée et al. (2016) Biometrics
\(^2\) Desmée et al. (2015) AAPS
\(^3\) Tardivon et al. (2018) CPT
Bayesian Inference and HMC algorithm

The complex likelihood expression of non-linear joint models already requires high-performance algorithm for inference:

- Bayesian approach offers a natural framework to include prior information to increase identifiability,
- A new inference tool could help to go further in modelisation?

Stan\(^1\) bayesian software:

- Hamiltonian Monte-Carlo algorithm\(^2\) known to have good convergence properties for complex models (Hamiltonian dynamics),
- No-U-Turn Sampler Version\(^3\) optimized version of HMC algorithm.

Until now:

- Joint model inference with Stan limited to linear description of the longitudinal process (R package rstanarm),
- No published work using Stan in nonlinear joint model or nonlinear mixed-effects model inference.

⇒ We aim to assess HMC for non-linear joint model parameters inference

\(^1\)Carpenter et al. (2017) Journal of statistical software
\(^2\)Neal (2011) Handbook of Markov Chain Monte Carlo
\(^3\)Hoffman & Gelman (2014) Journal of Machine Learning Research
Simulation Study

Simulation framework build on real data:

- Pattern of the simulated trial,
- Maximum Likelihood estimates for simulation values.

Evaluation Criteria:

- Relative Estimates Error on Posterior mode, mean and median,
- Coverage Rates.

\[\text{To assess HMC algorithm for non-linear joint modeling population parameters inference} \]

Clinical Data Analysis

Cross-Validation method for link function selection

Posterior Analysis:

- Estimated posterior density of population parameters,
- Characteristics of the final posterior distribution (mean, median, maximum, standard deviation, credibility interval),
- Individual fits of tumor size and survival probability, with 95% credibility intervals.
Mechanistic model for tumor size kinetics

Longitudinal part

We rely on the **Sum of the Longest Diameters (SLD)** of the target lesions as a marker of the tumor size kinetics.

\[SLD(t) = \begin{cases}
BSLD \cdot e^{g \cdot t} & \text{if } t < tx \\
BSLD \cdot e^{g \cdot tx} \times (\phi e^{-d(t-tx)} + (1-\phi) e^{g(t-tx)}) & \text{if } t \geq tx
\end{cases} \]

\[\Rightarrow TTG = \frac{\log \left(\frac{d\phi}{g(1-\phi)} \right)}{g+d} + tx \]

\(t \) : time since inclusion (days)
\(tx \) : time elapsed between inclusion and treatment onset

BSLD : SLD at inclusion time (mm)
\(d \) : tumor decreasing parameter (day\(^{-1}\))
\(g \) : tumor growth parameter (day\(^{-1}\))
\(\phi \) : proportion of cells that responds to treatment

Stein-Fojo model\(^1\)

\(^1\) Chatterjee et al. (2017) CPT Pharmacomet Syst Pharmacol
Building a simulation framework

Simulation of tumor size and survival data based on IMvigor210 Phase 2 clinical trial:

- \(y_{i,j} = \text{SLD}(t_{i,j}, \psi_i) \times (1 + e_{i,j}), \ e_{i,j} \sim \mathcal{N}(0, \sigma^2), \)
- \(h_i(t|\text{SLD}(t, \psi_i)) = \frac{1}{\lambda} \exp(\beta \times \text{SLD}(t, \psi_i)), \) exponential base hazard function.

<table>
<thead>
<tr>
<th>Fixed effects (\mu)</th>
<th>Transformation</th>
<th>Standard deviation (\omega)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BSLD(mm)</td>
<td>60</td>
<td>log-normal</td>
</tr>
<tr>
<td>(d(\text{day}^{-1}))</td>
<td>0.0055</td>
<td>log-normal</td>
</tr>
<tr>
<td>(g(\text{day}^{-1}))</td>
<td>0.0015</td>
<td>log-normal</td>
</tr>
<tr>
<td>(\phi)</td>
<td>0.2</td>
<td>logit-normal</td>
</tr>
<tr>
<td>(\sigma)</td>
<td>0.18</td>
<td>-</td>
</tr>
<tr>
<td>(\lambda)</td>
<td>1450</td>
<td>-</td>
</tr>
<tr>
<td>(\beta)</td>
<td>0.01</td>
<td>-</td>
</tr>
</tbody>
</table>

100 datasets of 100 patients, measurements every 9 weeks for 2 years
Sensitivity analysis to prior distributions
Evaluation Criteria

Relative Estimates Error of a population parameter θ estimated on dataset k:

$$\text{REE}^k = \frac{\hat{\theta}^k - \theta^*}{\theta^*} \times 100.$$ (1)

Credibility intervals based on ordered posterior sample of size L $\left(\hat{\theta}^k_{(l)}\right)_{l \in \{1, \ldots, L\}}$:

$$\hat{C}I_{\alpha}^k = \left[\hat{\theta}^k_{(L \times \alpha/2)}; \hat{\theta}^k_{(L \times (1 - \alpha/2))}\right]$$ (2)

Coverage rates:

$$\text{Coverage Rate}_\alpha = \frac{1}{K} \sum_{k=1}^{K} 1\{\theta^* \in \hat{C}I_{\alpha}^k\}$$ (3)
Relative Estimate Errors on point estimates
Coverage rates of 95% credibility intervals
Clinical Data

Figure: Spaghettis-plot of the tumor sizes, estimated overall survival probability by Kaplan-Meier and its 95% confidence interval on clinical data.
Cross-Validation for link function selection

Cross-Validation on patients using the posterior predictive density\(^1\):

\[
p(y_i^{(-m)} | D^m) = \int p(y_i^{(-m)} | \theta) p(\theta | D^m) d\theta
\]

- Monte-Carlo approximation on population parameters
 \[
p(y_i, T_i, \delta_i | D^{(-m)}) = \frac{1}{L} \sum_{l=1}^{L} p(y_i, T_i, \delta_i | \theta_l^{(-m)}),
\]
- Inference on random effects \(p(\eta_i | \theta_l^{(-m)}, y_i, T_i, \delta_i),\)
- Monte-Carlo approximation on random effects
 \[
p(y_i, T_i, \delta_i | \theta_l^{(-m)}) = \frac{1}{S} \sum_{s=1}^{S} \left[\prod_{j=1}^{n_i} p(y_{ij} | \theta_l^{(-m)}, \eta_i^s) p(T_i, \delta_i | \theta_l^{(-m)}, \eta_i^s) \right].
\]

⇒ Selection of the link function which maximized score.

\(^1\)Vehtari & Lampinen (2002) Neural Computation
CROSS-VALIDATION PROCEDURE RESULTS

Joint Model for clinical data analysis:

- \(y_{i,j} = \text{SLD}(t_{i,j}, \psi_i) \times (1 + e_{i,j}), \ e_{i,j} \sim \mathcal{N}(0, \sigma^2), \)

- \(h_i(t|\text{SLD}(t, \psi_i)) = \frac{k}{\lambda} \left(\frac{t}{\lambda} \right)^{k-1} \exp(\beta \times f(\text{SLD}(t, \psi_i))). \)

Selection between the 4 following link functions:

- No link model \(f(\text{SLD}(t, \psi)) = 0, \)

- Current SLD value \(f(\text{SLD}(t, \psi)) = \text{SLD}(t, \psi), \)

- Current Slope of SLD \(f(\text{SLD}(t, \psi)) = \frac{\partial \text{SLD}(t, \psi)}{\partial t}, \)

- Time-to-growth, \(f(\text{SLD}(t, \psi)) = \text{TTG}(\psi) = \frac{\log(\frac{d\phi}{g(1-\phi)} + dx)}{g+d} + tx, \)

<table>
<thead>
<tr>
<th>CV Score</th>
<th>No Link</th>
<th>Current SLD</th>
<th>Models</th>
<th>Current Slope</th>
<th>Time-To-Growth</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-23.44</td>
<td>-22.68</td>
<td></td>
<td>-22.23</td>
<td>-23.11</td>
</tr>
<tr>
<td>Link parameter</td>
<td>0</td>
<td>0.01 (0.001) mm(^{-1})</td>
<td>2.56 (0.70) day.mm(^{-1})</td>
<td>-0.009 (0.001) day(^{-1})</td>
<td></td>
</tr>
</tbody>
</table>
Posterior density on real data

Figure: Posterior density of current SLD slope model population parameters on clinical data depending on the prior information scenario.
Posterior density characteristics on real data

<table>
<thead>
<tr>
<th></th>
<th>Maximum</th>
<th>Mean</th>
<th>Median</th>
<th>Sd</th>
<th>RSd(%)</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Longitudinal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BSLD (mm)</td>
<td>61.43</td>
<td>61.77</td>
<td>61.63</td>
<td>2.25</td>
<td>3.65</td>
<td>[57.34;66.29]</td>
</tr>
<tr>
<td>d (day$^{-1}$)</td>
<td>0.0059</td>
<td>0.0060</td>
<td>0.0059</td>
<td>0.0011</td>
<td>18.79</td>
<td>[0.0040;0.0084]</td>
</tr>
<tr>
<td>g (day$^{-1}$)</td>
<td>0.0025</td>
<td>0.0025</td>
<td>0.0025</td>
<td>0.00036</td>
<td>14.01</td>
<td>[0.0010;0.0021]</td>
</tr>
<tr>
<td>ϕ</td>
<td>0.17</td>
<td>0.21</td>
<td>0.21</td>
<td>0.083</td>
<td>38.99</td>
<td>[0.074;0.39]</td>
</tr>
<tr>
<td>Standard deviations</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BSLD (mm)</td>
<td>0.66</td>
<td>0.66</td>
<td>0.66</td>
<td>0.028</td>
<td>4.22</td>
<td>[0.60;0.72]</td>
</tr>
<tr>
<td>d (day$^{-1}$)</td>
<td>1.09</td>
<td>1.06</td>
<td>1.05</td>
<td>0.15</td>
<td>14.34</td>
<td>[0.80;1.37]</td>
</tr>
<tr>
<td>g (day$^{-1}$)</td>
<td>0.86</td>
<td>0.89</td>
<td>0.89</td>
<td>0.14</td>
<td>16.02</td>
<td>[0.60;1.21]</td>
</tr>
<tr>
<td>ϕ</td>
<td>4.05</td>
<td>4.23</td>
<td>4.18</td>
<td>0.52</td>
<td>12.2</td>
<td>[3.36;5.35]</td>
</tr>
<tr>
<td>Survival</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>κ</td>
<td>1.19</td>
<td>1.14</td>
<td>1.14</td>
<td>0.12</td>
<td>10.7</td>
<td>[0.922;1.41]</td>
</tr>
<tr>
<td>λ (day)</td>
<td>659</td>
<td>694</td>
<td>679</td>
<td>91</td>
<td>13.1</td>
<td>[549;915]</td>
</tr>
<tr>
<td>β (day.mm$^{-1}$)</td>
<td>2.06</td>
<td>2.56</td>
<td>2.45</td>
<td>0.70</td>
<td>27.2</td>
<td>[1.47;4.24]</td>
</tr>
</tbody>
</table>

Table: Posterior density characteristics of current SLD slope model parameters with inference under the low prior information scenario
Individual fits and 95% credibility intervals

Figure: Individual fits and 95% credibility intervals of real data patients under the current SLD slope model with inference under the low prior information scenario on population parameters.

1. Kerioui et al. (2019) *preprint version*
A full Bayesian inference for non-linear joint model is now possible.

- Some remaining talking points:
 - Sensitivity to prior information,
 - Integration method for survival probability computation,
 - Further exploration for Bayesian model selection.
⇒ A full Bayesian inference for non-linear joint model is now possible.

- Some remaining talking points:
 - Sensitivity to prior information,
 - Integration method for survival probability computation,
 - Further exploration for Bayesian model selection.

- These results open the way to further work for a better understanding of the large variability between patients in the response to atezolizumab:
 - Impact of new lesions appearance on survival (recurrent events)\(^1\),
 - Modelling individual lesions and intra-patients variability in response to treatment,
 - Comparison with chemotherapy arm,
 - Prediction of the phase 3 outcome.

\(^1\) Krol et al (2018) Stat in Med
Acknowledgements

- IAME INSERM UMR 1137, Paris
- SPHERE INSERM UMR 1246, Tours
- René Bruno (gRED), Jin Jin (gRED), François Mercier (pRED), Ben Wu (gRED), Genentech/Roche Clinical Pharmacology Paris