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Asymptotics for geometric spectral densities
and a stochastic approach of the lattice-point

problem

Kiên Kiêu, Marianne Mora

Abstract How many points of a lattice hit a given planar domain? This
question is known as the lattice-point problem. In stereology the problem
is to assess the precision of the area estimator based on number of hits. A
stochastic approach of the lattice-point problem has been first developped
by D. Kendall. In this paper we extend this approach. The key point is a
convergence result for the spectral density of random sets. As a statis-
tical application we consider the stereological estimation of planar area.
Approximation formulae for mean square errors are provided.

Keywords area, estimation, lattice, mean square error, random set, sys-
tematic sampling, spectral density, stereology.
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1 Introduction

The lattice-point problem dates back (at least) from Gauss who stated that
the number of points P of the integral lattice Z2 hitting a disc with radius r
(and centered at the origin) is such that

P − πr2 = O(r) , r → ∞. (1)

Note that the asymptotic can be reversed by replacing the fixed lattice
Z2 by a lattice

√
aZ2 (the area a of a fundamental region of the sampling

lattice tends to 0) and by replacing the variable disc by the (fixed) unit disc.
Then Formula (1) can be rewritten as

aP − π = O
(√

a
)
.

The stereological interpretation of the formula above is as follows: the error
of the disc area estimator aP is of the order

√
a (i.e. lattice spacing) for

sufficiently dense sampling lattices. Since Gauss the exponent of a has
been further and further refined. Moreover more general domains than
discs (e.g. convex sets) have been considered.

A stochastic approach has been first proposed by D. Kendall [9, 10]
where the location of the lattice with respect to the (convex) domain is
randomized. Kendall derived an asymptotic approximation of the mean
square error

E
[
(aP − A)2

]
, a→ 0,

where A is the area of the domain. Kendall’s result was further consid-
ered with a more practical point of view by Matheron [11, 12]. Matheron
decomposed Kendall’s approximation into 2 terms: the extension term and
the fluctuating term. Although both terms are of the same asymptotic or-
der, Matheron suggested to ignore the fluctuating term. Empirical studies
e.g. [6] show that the fluctuating term is small compared to the extension
term.

In this paper we further randomize the problem: both the sampling
lattice and the domain under investigation are considered as random. Only
the location of the lattice is supposed to be random. The domain under
investigation is assumed to be random in size and orientation. In such a
framework, it can be shown that the fluctuating term of the mean square
error is of higher order compared to the extension term. Our result may be
considered as a theoretical justification of approximations used in practical
stereology, see e.g. [17, 18, 6, 2, 3, 4].
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Figure 1: A compact planar domain (in gray) sampled by a lattice of points.
The domain area is estimated by the number of lattice points hitting the
domain multiplied by the area of a fundamental region of the lattice (paral-
lelogram).

Section 2 introduces the estimation problem. In Section 3 the mean
square error is expressed in terms of the so-called geometric spectral den-
sity of a (deterministic) domain. Previous asymptotic approximations of
spectral densities are reviewed in Section 4.

In Section 5, asymptotics of geometric spectral densities are estab-
lished in a stochastic framework. Finally applications to the lattice-point
problem are discussed in Section 6.

2 Unbiased area estimation

Let X be a (fixed) compact subset of the Euclidean space R2. The pa-
rameter to be estimated is the area A of X. The planar domain X is not
observed in extenso: only the intersection X ∩ Y of X with a stationary
random lattice Y is available, see Figure 1. Only the location of the lattice
is randomized: Y can be written as

Y = Λ + U,

where Λ is a fixed lattice and U is a random translation vector uniformly
distributed in a fundamental region of the lattice Λ. It is easy to check that
Y is a stationary random set. The intensity ν of Y is defined by

E
[
λ0 (Y ∩ C)

]
= νλ2 (C) ,
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where λi is the i-dimensional Hausdorff measure for i = 0, 1, 2 and C is
any compact subset of R2. Simple calculations yield

ν = a−1,

where a is the area of a fundamental region of Λ. It follows that the area
estimator

Â = aλ0 (Y ∩X) (2)

is unbiased.
Hence the mean estimation error is equal to 0. What about the preci-

sion of the estimator (2)? In statistics it is common to assess the precision
of estimators from their mean square error:

MSE[Â] = E

[(
Â − A

)2
]
.

For an unbiased estimator, the variance and the mean square error coin-
cide. In his book [15] on integral geometry and geometric probability, Luis
A. Santaló wrote

The problem of determining the variance of the number of lat-
tice points covered by a random region is in general difficult.

First let us mention some results on the error range which can be de-
rived from deterministic geometric inequalities. A quick review of such
inequalities involving lattices is provided by Santaló [15].

In particular, Blichfeldt’s theorem yields the following lower bound for
the worst positive error:

sup Â −A ≥ a

⌊
A

a

⌋
− A+ a,

where b.c means “integral part”. In case the domain X is convex, the

estimator Â is lower bounded:

inf Â− A ≥ −B
2

√
a,

where B is the boundary length of the convex X, see Bokowski et al. [1].
Further results are provided by asymptotic deterministic approaches

where the lattice density is supposed to tend to infinity. Gauss result for a
disc has already been mentionned in Section 1. A recent progress is due
to Huxley [8]:

Â− A = O

(
a

50
73

(
log

1

a

) 315
146

)
. (3)
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The latter result holds for a convex domain X with a C2 boundary. Further-
more it is assumed that the curvature is non-zero on the boundary.

3 Mean square error and spectral density

Kendall [9] has been the first author to consider a stochastic approach
where the location of the sampling lattice with respect to the domain X is
randomized. Using Parseval equality, Kendall expressed the mean square
error as

MSE[Â] =
∑′

y∈Λ∗

PSDX (y) , (4)

where Λ∗ is the lattice dual of Λ, the prime exponent means that the origin
is excluded from the summation and PSDX is the (power) spectral density
of the area measure restricted to X:

PSDX (y) =

∣∣∣∣

∫

X
exp (−2πix · y) dx

∣∣∣∣
2

.

The dual Λ∗ of Λ is the lattice such that for any pair (x, y) ∈ Λ × Λ∗ the
scalar product x · y is an integer, see Figure 2. The determinants of dual
lattices are inverse: |Λ∗| = 1/ |Λ|. So are their densities. In particular if
we consider a very dense sampling lattice, the lattice sum in Equation (4)
depends only on the behavior of the spectral density PSDX for points y
far from the origin.

The spectral density PSDX may also be defined as the Fourier trans-
form of the (geometric) covariogram k of IX :

k (h) =

∫

R2

IX (x+ h) IX (x) dx = λ2 (X ∩ (X − h)) , h ∈ R2.

Note that the covariogram k may be written as the convolution product
IX ∗ I−X . The covariogram is continuous, admits a maximum at the orgin
and is a positive definite function.

The end of Section 4 involves spectral densities and covariograms of
more general functions. The spectral density of a function f is defined as
the squared modulus of its Fourier transform. It can be defined also as the
Fourier transform of its covariogram g = f ∗ f̌ where f̌ (x) = f (−x).

4 Previous asymptotics for spectral densities

In general Equation (4) is not of direct use because the spectral density of
the planar domain X is not known. Previous authors [9, 12] have derived
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Figure 2: Dual lattices and their fundamental regions.

“simple” asymptotics for the spectral density of X which can be used in
Equation (4).

In this section we do not restrict ourselves to the plane R2. The domain
is a compact subset of the general Euclidean space Rd.

Let us assume that the boundary ∂X of X is a continuously differen-
tiable manifold. For any point x ∈ ∂X, let n (x) be the outer normal unit
vector to X at x. The coordinates of n (x) are denoted by nj (x). The
Fourier transform of the indicator function IX fulfills the following equation

2πiyj (FIX) (y) = (FUj) (y) , j = 1, . . . , d

where Uj is the measure on Rd defined by

Uj (φ) =

∫

∂X
φ (x)nj (x) dx.

The relationship between the Fourier transform of IX and Uj may be es-
tablished using the Gauss-Green theorem and standard Fourier calculus.
Summing the squared modulus for j = 1, . . . , d on both sides, one gets

4π2 ‖y‖2 PSDX (y) =
d∑

j=1

PSDUj
(y) . (5)

Asymptotics for Fourier type integrals may be obtained using the method
of the stationary phase, see e.g. [7]. Using such an approach, Kendall [9]
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obtained the following convergence result:

4π2 ‖y‖d+1 PSDX (y) ∼
∑

x1∈∂X:n(x1)‖y
x2∈∂X:n(x2)‖y

Z (x1, x2, y) , ‖y‖ → +∞ (6)

where

• n (x) ‖ y stands for “n (x) is parallel to y”.

• If K (x) denotes the Gauss-Kronecker curvature of ∂X at x, the
function Z is defined by

Z (x1, x2, y) =
cos (2π (x2 − x1) · y)√

|K (x1)K (x2)|
when both normals are equal. When the normals are opposite, the
cosine function must be replaced by a − sin.

Note that Kendall [9] only considered convex sets in R2. Therefore his
result is somewhat simpler. Also the convergence result (6) holds under
some regularity conditions. For instance in the paper [9], Kendall assumed
that the boundary of the convex set X is C4 and that the Gauss curvature
is positive for all boundary points.

Note that computing the approximation (6) would require precise mea-
surements of distance, normals and curvature along the boundary ∂X.
The double sum in (6) can be decomposed into two partial sums. The par-
tial sum obtained by summing over pairs of type (x, x) may be expressed
in terms of the surface area S of ∂X and of the rose r of (non-oriented)
normal directions. The rose of normal directions is characterized by the
identity

∫

∂X
φ (n (x)) dx = S

∫

Ω+

φ (ω) r (ω) dω,

for any symmetric function φ on the unit sphere (Ω+ is the unit hemi-
sphere). When the normals to the boundary ∂X are isotropically dis-
tributed, the rose r is constant:

r (ω) ≡ 2

σd
,

where σd is the (d− 1)-dimensional Hausdorff measure of the unit hyper-
sphere in Rd. The partial sum for x1 = x2 can be written as

∑

x∈∂X:n(x)‖y

Z (x, x, y) = Sr (ω) , ω ∈ Ω+, ω ‖ y.
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For pairs (x1, x2) where x1 6= x2, the function y → Z (x1, x2, y) is
bounded and oscillates around 0. When the boundary ∂X has a complex
shape, the sum of the oscillating functions may turn out to be rather small
compared to Sr (ω). This is why in practice the oscillating part of the spec-
tral density is just ignored although in view of Formula (6) the two partial
sums are of the same order. Hence we get the following approximation of
the spectral density

4π2 ‖y‖d+1 PSDX (y) ' Sr (ω) , ‖y‖ → ∞. (7)

Note that Matheron used a different approach in order to derive this
asymptotic approximation. This is due to the fact that he did not consider
only indicator functions. For a general function f there is no general con-
vergence result for its spectral density PSDf . We have seen in Section 3
that PSDf is the Fourier transform of the covariogram g. Thus the asymp-
totic behavior of PSDf depends on local differentiability properties of the
covariogram. Special attention is paid to the behavior of the covariogram
at the origin for if the covariogram is e.g. continuously differentiable at the
origin then it is continuously differentiable everywhere. Let us consider the
case where in a neighbourhood of the origin the covariogram behaves as

g (h) = a+ b ‖h‖ +O
(
‖h‖2

)
. (8)

Such a covariogram is not differentiable at the origin and the contribution
of this singularity to its Fourier transform (i.e. to the spectral density of f )
is

− d− 1

2π2σd−1
b ‖y‖−(d+1) .

In the particular case where f = IX and the normals to ∂X are
isotropically distributed, Matheron [12, 13] showed that

g (h) = V − σd−1

(d− 1) σd
S ‖h‖ +O

(
‖h‖2

)
. (9)

Thus the contribution of the singularity of the covariogram at the origin to
its Fourier transform is

S

2π2σd
‖y‖−(d+1) .

This result is consistent with the approximation (7) when the normals are
isotropically distributed. Singularities of the covariogram not occuring at
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the origin contribute to the spectral density as oscillating functions. This
was shown by Matheron [11] on a simple example.

The local model (9) holds under regularity conditions. Following Serra [16],
(9) holds when X belongs to the convex ring and also when X is invariant
under a combination of an opening and a closing by a ball (regular model).

Matheron considered other local models than (8) for the covariogram
near the origin. Let us write these models as follows

g (h) ' a+ ψ (h) ,

where ψ is an isotropic function on Rd. Computing the Fourier transform
of ψ and using a straightforward generalization of Equation (4), one can
compute asymptotic approximations of mean square errors. The so-called
correspondance principle given by Matheron provides a correspondance
between a function ψ and its contribution to the mean square error.

Note that Matheron’s methods are based on isotropy assumptions. An
extension to a very simple case of anisotropy is provided in [12].

5 Asymptotics for the geometric spectral densities
of random sets

In this section the results from the previous section are derived using an-
other approach. We assume that the domain of interest is random. It is
denoted by X instead of X. We will see that an asymptotic approximation
of the (mean) spectral density can be derived using tools much simpler that
the method of the stationary phase. The obtained approximation does not
involve any oscillating term: this provides a theoretical argument for ignor-
ing the oscillating terms involved in the previous section. Also no isotropy
assumption is required and regularity conditions turn out to be rather sim-
ple.

5.1 A weak convergence result

For a start let us stay in a deterministic framework: the domain X is fixed.
It is assumed that the boundary ∂X is a compact continuously differen-
tiable manifold. It follows from Equation (5) that asymptotics of PSDX

can be derived from asymptotics of the spectral densities of the surface
measures Uj .

The key point is the following result provided by Hörmander [7].
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Theorem 1 Let M be a C1 compact q-dimensional manifold in Rd. Let U
be a measure on M with density u with respect the Hausdorff measure
λq. The density u is assumed to be squared integrable. Then we have

‖ρy‖q PSDU (ρy)
weakly−−−−→ W, (10)

where W is the measure on Rd defined by

φ→
∫

M

∫

N(x)
|u (x)|2 φ (n) ‖n‖q dndx.

Above, N (x) denotes the normal subspace to M at x.

A straightforward application of this theorem combined with Equation (5)
yields the limit (in a weak sense) of 4π2 ‖y‖d+1 PSDX (y). There is a fur-
ther simplification due to the fact that the sum of squared densities of the
measures Uj is equal to 1. Hence we get

4π2 ‖ρy‖d+1 PSDX (ρy)
weakly−−−−→ SR, (11)

where R is the measure on Rd defined by

φ→
∫

Ω+

∫

R

φ (tω) td−1r (ω) dtdω.

Note that above it is implicitly assumed that the rose of normal directions
exists as a function (i.e. the boundary of ∂X has no flat parts). However it
is easy to see that such an assumption is not necessary. A more general
result is obtained by defining the rose of normal directions as a measure.

The convergence result (11) and the approximation (7) are somewhat
equivalent. However in order to approximate the lattice sum (4) we need a
pointwise convergence instead of a weak convergence as in (11).

5.2 Stochastic interpretation

We will see below that weak convergence can be reinterpreted as point-
wise convergence through randomization. Let h be a random positive real
variable and P be a random orthogonal transformation on Rd. Consider
the random compact set X = hPX. This random set has a fixed shape,
but its size and orientation are random. Define the spectral density of X as
the mean squared modulus of the Fourier transform of the random function
IX. It is easy to check that

PSDX (y) = E
[
h2d PSDX

(
hP′y

)]
.
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Now consider the random point y = hP′ω where ω ∈ Ω+ and ω ‖ y.
The spectral density of X can be expressed as

PSDX (y) = E
[
‖y‖2d PSDX (‖y‖y)

]
.

Let us assume for the moment that the joint distribution of the random vari-
ables h and P is such that the distribution of y has a continuous density
ψω with compact support with respect to the Lebesgue measure on Rd.
The spectral density of X can be rewritten as

‖y‖d+1 PSDX (y) =

∫

Rd

ψω (z) ‖z‖d−1 (‖y‖‖z‖)d+1 PSDX (‖y‖ z) dz.

In view of the convergence result (11), we have

4π2 ‖y‖d+1 PSDX (y) −−−−−→
‖y‖→∞

S

∫

Ω+

∫

R

ψω (tη) t2d−2r (η) dtdη.

Note that above the surface area S and the rose of normal directions are
defined for the deterministic set X. The limit can be rewritten using the
mean surface area SX and the rose rX of normal directions of the random
set X.

The rose rX of normal directions to ∂X is defined by the identity

E

∫

∂X

φ (n (x)) dx = SX

∫

Ω+

φ (η) rX (η) dη.

Both characteristics SX and rX can be derived from S, r and some fea-
tures of the random variables h and P. It turns out that only the density
ψω, is required:

SXrX (ω) = S

∫

Ω+

∫

R

ψω (tη) t2d−2r (η) dtdη.

Hence the convergence result may be simplified into

4π2 ‖y‖d+1 PSDX (y) −−−−−→
‖y‖→∞

SXrX (ω) , (12)

where the convergence is pointwise.
Obviously the type of random set we have considered so far is quite

particular (fixed shape, random size and orientation). Such random set
does not seem to be a very realistic model for e.g. biological structures.
Let us consider two arbitrary compact sets X1, X2 ⊂ Rd. The shapes
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of X1 and X2 coincide if there exist a translation vector v, an orthogonal
transformation P and a dilatation by a factor h such that

X2 = hPX2 + v.

Shapes may be defined as orbits under the transformations above. Fur-
thermore using orbit representative, any compact set X may be uniquely
decomposed as

X = hPF + v, F ⊂ Rd.

The set F represents the shape of X. Thus any random compact set X

defines a random shape say F. The decomposition

X = hPF + v

defines also a random translation by a vector v, a random orthogonal
transformation P and a random dilatation by a factor h.

Obviously the random translation does not matter here: the random
probe Y is already stationary. Therefore without loss of generality, we
may assume that v ≡ 0:

X = hPF.

Now consider the “spectral density of X conditionally to F”. Under some
regularity conditions to be discussed below, the convergence of the “condi-
tional” spectral density is given by Formula (12) where the means involved
in the limit should be replaced by conditional means:

4π2 ‖y‖d+1 PSDX/F (y) −−−−−→
‖y‖→∞

SX/FrX/F (ω) . (13)

Taking the mean with respect to the shape F on both sides in the previ-
ous formula, we extend the convergence result (11) to “arbitrary” random
compact sets. Of course deriving the unconditional convergence (12) from
the conditional convergence (13) requires some extra argument. Using an
auxiliary result provided together with Theorem 1 by Hörmander [7], one
obtains an upper bound for the left-hand side of Formula (13). This up-
per bound is proportional to supψω. Now the density ψω (density of the
conditional distribution of y = hP′ω given F) depends on the shape F. If
the density ψω is uniformly bounded, a deterministic upper bound for the
left-hand side of Formula (13) may be derived:

4π2 ‖y‖d+1 PSDX/F (y) ≤ C < +∞. (14)
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Thus using Lebesgue dominated convergence, one may derive (12) from (13).
Further details are omitted here because they do not involve other technics
than those used until now.

Some comments about regularity conditions are needed. In order to
apply Theorem 1, the boundary of X must be (almost surely) a compact
C1 manifold with finite mean area. Next the densities ψω need to be con-
tinuous with compact support. This condition is fulfilled if X is a.s. uni-
formly bounded and if the conditional joint distribution of (h,P) given F

has a continuous density with respect to the product of the Haar probabil-
ity measure on the group of orthogonal transformations and the Lebesgue
measure on the R+. Finally in order to derive the unconditional conver-
gence (12) from the conditional convergence (13), we need a uniform up-
per bound for the densities ψω. The existence of such an upper bound can
be proved if the density of the conditional distribution of (h,P) given F is
uniformly bounded.

Compare results (12) and (7). In Formula (12) we have a strict asymp-
totic equivalence: omitted terms are of higher-order. In Formula (7) omit-
ted terms are just assumed (based on empirical evidence) to be small
compared to the approximating term.

6 Approximations of the mean square error of the
area estimator

Let X be a random compact set in the plane R2. This section provides
asymptotic approximations of the mean square error of the estimator (2)
based on the convergence results from Section 5. We assume that the
regularity conditions discussed at the end of Section 5.2 are fulfilled. In or-
der to stick to standard stereological notations, the mean perimeter length
is denoted by B instead of SX.

In view of the convergence result (12), the inequality (14) and Equa-
tion (4), we can compute the following limit for the MSE of the area esti-
mator

MSE[Â] ∼ B

4π2

∑′

y∈Λ∗

r (ω (y))

‖y‖3
, (15)

where r is the rose of normal directions to the boundary of X. The rose
r is considered as a function on a unit half circle Ω+ and ω (y) is the unit
vector from Ω+ which is parallel to y.
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Note that the mean square error is now defined by

MSE[Â] = E

[(
Â − A

)2
]
,

where A is the area of the random set X. Hence it is the mean square dif-
ference between two random variables instead of the mean square differ-
ence between a fixed parameter and its estimation. In some way MSE[Â]
may be considered more like a prediction error than a mean square error
as usually defined in statistics.

Let us consider the special case where the normals to the boundary
∂X are isotropically distributed: r ≡ π−1. The mean square error simpli-
fies into

MSE[Â] ∼ B

4π3

∑′

y∈Λ∗

1

‖y‖3 .

Similar formulae based on the approaches described in Section 4 have
been derived by Kendall [9] and Matheron [12].

The lattice sum is an instance of the zeta function defined by Epstein
(see [5]) as

ZΛ (s) =
∑′

x∈Λ

‖x‖−s , s > 2. (16)

In order to distinguish the density of the sampling lattice from its shape,
let us write it as Λ =

√
aΛ0. The determinant of the lattice Λ0 is equal to

1. All lattices associated with the same Λ0 only differ by scale. Using this
decomposition, the mean square error can be written as

MSE[Â] ∼ B

4π3
a

3
2ZΛ∗

0
(3) . (17)

Hence the MSE is of the same order as a
3
2 : doubling the sampling density

decreases the MSE by a factor 2.8. Also compare the rate of convergence
in (17) with Huxley’s result (3). If we consider the standard error (i.e. the
square root of the MSE) of Â we get

SE[Â] = O
(
a

3
4

)
.

Note that this result holds even if the normals to ∂X are not isotropically
distributed.

Furthermore the effect of the lattice shape can be assessed by compar-
ing ZΛ∗

0
(3) for various “unit” lattices Λ0. It has been shown by Rankin [14]
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that ZΛ∗

0
(3) is least for the hexagonal lattice. For an hexagonal lattice Λ0

(note that the unit hexagonal lattice is self-dual), we have

ZΛ∗

0
(3) = 8

(√
3

2

)5
2

ζ (3) ImLi3 (exp (2πi/3)) = 8.89,

where ζ is the Riemann zeta function and the Lis’s are polylogarithmic
functions.

For a (self-dual) square lattice

ZΛ∗

0
(3) = 4ζ (3) Im Li3 (exp (2πi/2)) = 9.03.

Thus the difference between square and hexagonal lattices is not very
important.

For arbitrary lattice shapes, the Epstein zeta function may be numeri-
cally computed from Formula (16). However the convergence of the lattice
sum involved in Formula (16) is very slow. An alternative is to use the
Chowla-Selberg expansion of the Esptein zeta function. Let e1 and e2 be
two basis vectors of the unit lattice Λ0. Let α be the norm of the projection
of e2 onto the axis orthogonal to e1. And define β such that βe1 is the
projection of e2 onto the axis spanned by e1. Then the Chowla-Selberg
expansion may be written as follows:

ZΛ0
(s) = 2αsζ (s) + 2

√
π

Γ
(

s−1
2

)

Γ
(

s
2

) α1−sζ (s − 1) +
2

3−s
2

√
π

Γ
(

s
2

) α2−s

×
∑

k1,k2 6=0

exp (2πiβk1k2) |k2|1−s (2πα2 |k1k2|
) s−1

2 K1−s
2

(
2πα2 |k1k2|

)
.

(18)

Matheron’s correspondance rules mentionned at the end of Section 4 are
based on the first two terms of the Chowla-Selberg expansion. Note that
better convergence of the double sum is obtained by ordering the lattice
basis so that e1 is shorter than e2. Using this expansion, the computation
of Epstein zeta function is much faster.

For a unit rectangular lattice (β = 0) such that ‖e2‖ = 3‖e1‖, we get

ZΛ0
(3) = 16.3.

Hence the performance of highly anisotropic sampling lattices is poor for
isotropic random domains.

Note that all results for isotropic random domains hold for anisotropic
random domains if the orientation of the sampling lattice is isotropically
randomized.
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