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High-Dimensional Regression with
Unknown Variance
Christophe Giraud, Sylvie Huet and Nicolas Verzelen

Abstract. We review recent results for high-dimensional sparse linear re-
gression in the practical case of unknown variance. Different sparsity settings
are covered, including coordinate-sparsity, group-sparsity and variation-
sparsity. The emphasis is put on nonasymptotic analyses and feasible pro-
cedures. In addition, a small numerical study compares the practical perfor-
mance of three schemes for tuning the lasso estimator and some references
are collected for some more general models, including multivariate regres-
sion and nonparametric regression.
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1. INTRODUCTION

In the present paper, we mainly focus on the linear
regression model

Y = Xβ0 + ε,(1)

where Y is a n-dimensional response vector, X is a
fixed n × p design matrix, and the vector ε is made
of n i.i.d. Gaussian random variables with N (0, σ 2)

distribution. In the sequel, X(i) stands for the ith row
of X. Our interest is on the high-dimensional setting,
where the dimension p of the unknown parameter β0
is large, possibly larger than n.

The analysis of the high-dimensional linear regres-
sion model has attracted a lot of attention in the last
decade. Nevertheless, there is a longstanding gap be-
tween the theory where the variance σ 2 is generally
assumed to be known and the practice where it is of-
ten unknown. The present paper is mainly devoted to
reviewing recent results on linear regression in high-
dimensional settings with unknown variance σ 2. A few
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additional results for multivariate regression and the
nonparametric regression model

Yi = f
(
X(i)) + εi, i = 1, . . . , n,(2)

will also be mentioned.

1.1 Sparsity Assumptions

In a high-dimensional linear regression model, ac-
curate estimation is unfeasible unless it relies on some
special properties of the parameter β0. The most com-
mon assumption on β0 is that it is sparse in some sense.
We will consider in this paper the three following clas-
sical sparsity assumptions.

Coordinate-sparsity. Most of the coordinates of β0
are assumed to be zero (or approximately zero). This
is the most common acceptation for sparsity in linear
regression.

Structured-sparsity. The pattern of zero(s) of the co-
ordinates of β0 is assumed to have an a priori known
structure. For instance, in group-sparsity [80], the co-
variates are clustered into M groups, and when the co-
efficient β0,i corresponding to the covariate Xi (the ith
column of X) is nonzero, then it is likely that all the
coefficients β0,j with variables Xj in the same cluster
as Xi are nonzero.

Variation-sparsity. The p−1-dimensional vector βV
0

of variation of β0 is defined by βV
0,j = β0,j+1 − β0,j .

Sparsity in variation means that most of the compo-
nents of βV

0 are equal to zero (or approximately zero).
When p = n and X = In, variation-sparse linear re-
gression corresponds to signal segmentation.
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1.2 Statistical Objectives

In the linear regression model, there are roughly two
kinds of estimation objectives. In the prediction prob-
lem, the goal is to estimate Xβ0, whereas in the inverse
problem it is to estimate β0. When the vector β0 is
sparse, a related objective is to estimate the support of
β0 (model identification problem) which is the set of
the indices j corresponding to the nonzero coefficients
β0,j . Inverse problems and prediction problems are not
equivalent in general. When the Gram matrix XX∗ is
poorly conditioned, the former problems can be much
more difficult than the latter. Since there are only a few
results on inverse problems with unknown variance, we
will focus on the prediction problem, the support esti-
mation problem being shortly discussed in the course
of the paper.

In the sequel, Eβ0[·] stands for the expectation with
respect to Y ∼ N (Xβ0, σ

2In), and ‖ · ‖2 is the Eu-
clidean norm. The prediction objective amounts to
build estimators β̂ so that the risk

R[β̂;β0] := Eβ0[‖X(β̂ − β0)‖2
2](3)

is as small as possible.

1.3 Approaches

Most procedures that handle high-dimensional lin-
ear models [22, 26, 62, 72, 73, 81, 83, 85] rely on
tuning parameters whose optimal value depends on σ .
For example, the results of Bickel et al. [17] suggest
to choose the tuning parameter λ of the lasso of the or-
der of 2σ

√
2 log(p). As a consequence, all these proce-

dures cannot be directly applied when σ 2 is unknown.
A straightforward approach is to replace σ 2 by an es-

timate of the variance in the optimal value of the tuning
parameter(s). Nevertheless, the variance σ 2 is difficult
to estimate in high-dimensional settings (see Proposi-
tion 2.3 below), so a plug-in of the variance does not
necessarily yield good results. There are basically two
approaches to build on this amount of work on high-
dimensional estimation with known variance.

(1) Ad-hoc estimation. There has been some recent
work [16, 68, 71] to modify procedures like the lasso in
such a way that the tuning parameter does not depend
anymore on σ 2; see Section 4.2. The challenge is to
find a smart modification of the procedure, so that the
resulting estimator β̂ is computationally feasible and
has a risk R[β̂;β0] as small as possible.

(2) Estimator selection. Given a collection (β̂λ)λ∈�

of estimators, the objective of estimator selection is to
pick an index λ̂ such that the risk of β̂λ̂ is as small as

possible, ideally as small as the risk R[β̂λ∗;β0] of the
so-called oracle estimator

β̂λ∗ := argmin
{β̂λ,λ∈�}

R[β̂λ;β0].(4)

Efficient estimator selection procedures can then be ap-
plied to tune the aforementioned estimation methods
[22, 26, 62, 72, 73, 81, 83, 85]. Among the most fa-
mous methods for estimator selection, we mention V -
fold cross-validation (Geisser [32]), AIC (Akaike [1])
and BIC (Schwarz [64]) criteria.

The objective of this survey is to describe state-of-
the-art procedures for high-dimensional linear regres-
sion with unknown variance. We will review both au-
tomatic tuning methods and ad-hoc methods. There
are some procedures that we will let aside. For ex-
ample, Baraud [11] provides a versatile estimator se-
lection scheme, but the procedure is computationally
intractable in large dimensions. Linear or convex ag-
gregation of estimators are also valuable alternatives to
estimator selection when the goal is to perform estima-
tion, but only a few theoretical works have addressed
the aggregation problem when the variance is unknown
[33, 34]. For these reasons, we will not review these
approaches in the sequel.

1.4 Why Care about Nonasymptotic Analyses?

AIC [1], BIC [64] and V -fold cross-validation [32]
are probably the most popular criteria for estimator se-
lection. The use of these criteria relies on some clas-
sical asymptotic optimality results. These results fo-
cus on the setting where the collection of estimators
(β̂λ)λ∈� and the dimension p are fixed and consider
the limit behavior of the criteria when the sample size n

goes to infinity. For example, under some suitable con-
ditions, Shibata [67], Li [53] and Shao [66] prove that
the risk of the estimator selected by AIC or V -fold CV
(with V = Vn → ∞) is asymptotically equivalent to
the oracle risk R[β̂λ∗;β0]. Similarly, Nishii [59] shows
that the BIC criterion is consistent for model selection.

All these asymptotic results can lead to misleading
conclusions in modern statistical settings where the
sample size remains small and the parameter’s dimen-
sion becomes large. For instance it is proved in [12],
Section 3.3.2, and illustrated in [12], Section 6.2, that
BIC (and thus AIC) can strongly overfit and should not
be used for p larger than n. Additional examples are
provided in Appendix A. A nonasymptotic analysis
takes into account all the characteristics of the selection
problem (sample size n, parameter dimension p, num-
ber of models per dimension, design X, etc.). It treats n
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and p as they are, and it highlights important features
hidden by the asymptotic theory. For these reasons, we
will restrict this review to nonasymptotic results.

1.5 Organization of the Paper

In Section 2, we investigate how the ignorance of
the variance affects the minimax risk bounds. In Sec-
tion 3, some “generic” schemes for selecting estima-
tors are presented. The coordinate-sparse setting is ad-
dressed in Section 4 where some theoretical results are
collected, and a small numerical experiment compares
different lasso-based procedures. The group-sparse and
variation-sparse settings are reviewed in Sections 5
and 6, and Section 7 is devoted to some more general
models such as multivariate regression or nonparamet-
ric regression.

In the sequel, C, C1, . . . refer to numerical constants
whose value may vary from line to line, while ‖β‖0
stands for the number of nonzero components of β and
|J | for the cardinality of a set J .

2. THEORETICAL LIMITS

The goal of this section is to address the intrinsic
difficulty of a coordinate-sparse linear regression prob-
lem. We will answer the following questions: Which
range of p can we reasonably consider? When the vari-
ance is unknown, can we hope to do as well as when
the variance is known?

2.1 Minimax Adaptation

A classical way to assess the performance of an es-
timator β̂ is to measure its maximal risk over a class
B ⊂ R

p . This is the minimax point of view. As we are
interested in coordinate-sparsity for β0, we will con-
sider the sets B[k,p] of vectors that contain at most k

nonzero coordinates for some k > 0.
Given an estimator β̂ , the maximal prediction risk

of β̂ over B[k,p] for a fixed design X and a variance
σ 2 is defined by supβ0∈B[k,p] R[β̂;β0] where the risk
function R[·, β0] is defined by (3). Taking the infimum
of the maximal risk over all possible estimators β̂ , we
obtain the minimax risk

R[k,X] = inf
β̂

sup
β0∈B[k,p]

R[β̂;β0].(5)

Minimax bounds are convenient results to assess the
range of problems that are statistically feasible and the
optimality of particular procedures. Below, we say that
an estimator β̂ is “minimax” over B[k,p] if its maxi-
mal prediction risk equals [up to a possible multiplica-
tive constant C(X)] the minimax risk.

In practice, the number of nonzero coordinates of
β0 is unknown. The fact that an estimator β̂ is min-
imax over B[k,p] for some specific k > 0 does not
imply that β̂ performs well when β0 has a number of
nonzero components different from k. Indeed, β̂ can be
strongly biased when β0 has more than k nonzero com-
ponents or the variance of β̂ can be too large compared
to R[k0,X] when β0 has k0 nonzero components with
k0 less than k. A good estimation procedure β̂ should
not require the knowledge of the sparsity k of β0 and
should perform as well as if this sparsity were known.
An estimator β̂ that achieves [up to a possible multi-
plicative constant C(X)] the minimax risk over B[k,p]
for a range of k is said to be adaptive to the sparsity.
Similarly, an estimator β̂ is adaptive to the variance σ 2

if it does not require the knowledge of σ 2 and nearly
achieves the minimax risk for all σ 2 > 0. When possi-
ble, the main challenge is to build adaptive procedures.

In the following subsections, we review sharp bounds
on the minimax prediction risks for both known and
unknown sparsity, known and unknown variance. The
big picture is summed up in Figure 1. Roughly, it says
that adaptation is possible as long as 2k log(p/k) < n.
In contrast, the situation becomes more complex for the
ultra-high-dimensional1 setting where 2k log(p/k) ≥
n. The rest of this section is devoted to explain this big
picture.

FIG. 1. Minimal prediction risk over B[k,p] as a function of k.

1In some papers, the expression ultra-high-dimensional has been

used to characterize problems such that log(p) = O(nθ ) with
θ < 1. We argue here that as soon as k log(p)/n goes to 0, the case
log(p) = O(nθ ) is not intrinsically more difficult than conditions
such as p = O(nδ) with δ > 0.
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2.2 Minimax Risks under Known Sparsity and
Known Variance

The minimax risk R[k,X] depends on the form of
the design X. In order to grasp this dependency, we
define for any k > 0, the largest and the smallest sparse
eigenvalues of order k of X∗X by

Φk,+(X) := sup
β∈B[k,p]\{0p}

‖Xβ‖2
n

‖β‖2
p

and

Φk,−(X) := inf
β∈B[k,p]\{0p}

‖Xβ‖2
n

‖β‖2
p

.

PROPOSITION 2.1. Assume that k and σ are
known. There exist positive numerical constants C1,
C′

1, C2 and C′
2 such that the following holds. For any

(k, n,p) such that k ≤ n/2 and any design X, we have

C1
Φ2k,−(X)

Φ2k,+(X)
k log

(
p

k

)
σ 2

(6)

≤ R[k,X] ≤ C′
1

[
k log

(
p

k

)
∧ n

]
σ 2.

For any (k, n,p) such that k ≤ n/2, we have

C2

[
k log

(
p

k

)
∧ n

]
σ 2

(7)

≤ sup
X

R[k,X] ≤ C′
2

[
k log

(
p

k

)
∧ n

]
σ 2.

The minimax lower bound (6) has been first proved
in [61, 62, 79] while (7) is stated in [77]. Let us
first comment on bound (7). If the vector β0 has
k nonzero components, and if these components are
a priori known, then one may build estimators that
achieve a risk bound of the order k. In a (nonultra)
high-dimensional setting [2k log(p/k) ≤ n], the min-
imax risk is of the order k log(p/k)σ 2. The logarith-
mic term is the price to pay to cope with the fact that
we do not know the position of the nonzero compo-
nents in β0. The situation is quite different in an ultra-
high-dimensional setting [2k log(p/k) > n]. Indeed,
the minimax risk remains of the order of nσ 2, which
corresponds to the minimax risk of estimation of the
vector Xβ0 without any sparsity assumption; see the
blue curve in Figure 1. In other terms, the sparsity in-
dex k does not play a role anymore.

Dependency of R[k,X] on the design X. It follows
from (6) that supX R[k,X] is nearly achieved by de-
signs X satisfying Φ2k,−(X)/Φ2k,+(X) ≈ 1, when the
setting is not ultra-high-dimensional. For some designs
such that Φ2k,−(X)/Φ2k,+(X) is small, the minimax

prediction risk R[k,X] is possibly faster; see [77] for
a discussion. In an ultra-high-dimensional setting, the
form of the minimax risk (nσ 2) is related to the fact
that no designs can satisfy Φ2k,−(X)/Φ2k,+(X) ≈ 1;
see, for example, [10]. More precisely, the lower bound
(6) enforces the following geometrical constrain:

Φ2k,−(X)

Φ2k,+(X)
≤ C

n

k log(p/k)

for any design X. The lower bound R[k,X] ≥ C[k ·
log(p/k) ∧ n]σ 2 in (7) is, for instance, achieved by
realizations of a standard Gaussian design, that is, de-
signs X whose components follow independent stan-
dard normal distributions. See [77] for more details.

2.3 Adaptation to the Sparsity and to the Variance

Adaptation to the sparsity when the variance is
known. When σ 2 is known, there exist both model se-
lection and aggregation procedures that achieve this
[k log(p/k)∧n]σ 2 risk simultaneously for all k and for
all designs X. Such procedures derive from the work
of Birgé and Massart [18] and Leung and Barron [52].
However, these methods are intractable for large p ex-
cept for specific forms of the design. We refer to the
supplementary material [38] for more details.

Simultaneous adaptation to the sparsity and the vari-
ance. We first restrict to the nonultra high-dimensional
setting, where the number of nonzero components k is
unknown but satisfies 2k log(p/k) < n. In this setting,
some procedures based on penalized log-likelihood
[12] are simultaneous adaptive to the unknown sparsity
and to the unknown variance and this for all designs X.
Again such procedures are intractable for large p. See
the supplementary material [38] for more details. If we
want to cover all k (including ultra-high-dimensional
settings), the situation is different as shown in the next
proposition (from [77]).

PROPOSITION 2.2 (Simultaneous adaptation is im-
possible). There exist positive constants C, C′, C1,
C2, C3, C′

1, C′
2 and C′

3, such that the following holds.
Consider any p ≥ n ≥ C and k ≤ p1/3 ∧ n/2 such that
k log(p/k) ≥ C′n. There exist designs X of size n × p

such that for any estimator β̂ , we have either

sup
σ 2>0

R[β̂;0p]
σ 2 > C1n or

sup
β0∈B[k,p],σ 2>0

R[β̂;β0]
σ 2

> C2k log
(

p

k

)
exp

[
C3

k

n
log

(
p

k

)]
.
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Conversely, there exist two estimators β̂(n) and β̂BGH

(defined in the supplementary material [38]) that re-
spectively satisfy

sup
X

sup
β0∈Rp,σ 2>0

R[β̂(n);β0]
σ 2 ≤ C′

1n,

sup
X

sup
β0∈B[k,p],σ 2>0

R[β̂BGH ;β0]
σ 2

≤ C′
2k log

(
p

k

)
exp

[
C′

3
k

n
log

(
p

k

)]

for all 1 ≤ k ≤ [(n − 1) ∧ p]/4.

As a consequence, simultaneous adaptation to the
sparsity and to the variance is impossible in an ultra-
high-dimensional setting. Indeed, any estimator β̂ that
does not rely on σ 2 has to pay at least one of these two
prices:

(1) The estimator β̂ does not use the sparsity of the
true parameter β0, and its risk for estimating X0p is of
the same order as the minimax risk over R

n.
(2) For any 1 ≤ k ≤ p1/3, the risk of β̂ fulfills

sup
σ>0

sup
β0∈B[k,p]

R[β̂;β0]
σ 2

≥ C1k log(p) exp
[
C2

k

n
log(p)

]
.

It follows that the maximal risk of β̂ increases expo-
nentially fast in an ultra-high-dimensional setting (red
curve in Figure 1), while the minimax risk is stuck to
n (blue curve in Figure 1). The designs that satisfy the
minimax lower bounds of Proposition 2.2 include real-
izations of a standard Gaussian design.

In an ultra-high-dimensional setting, the prediction
problem becomes extremely difficult under unknown
variance because the variance estimation itself is in-
consistent as shown in the next proposition (from [77]).

PROPOSITION 2.3. There exist positive constants
C, C1 and C2 such that the following holds. Assume
that p ≥ n ≥ C. For any 1 ≤ k ≤ p1/3, there exist de-
signs X such that

inf
σ̂

sup
σ>0,β0∈B[k,p]

Eβ0

[∣∣∣∣σ 2

σ̂ 2 − σ̂ 2

σ 2

∣∣∣∣
]

≥ C1
k

n
log

(
p

k

)
exp

[
C2

k

n
log

(
p

k

)]
.

2.4 What Should We Expect from a Good
Estimation Procedure?

Let us consider an estimator β̂ that does not depend
on σ 2. Relying on the previous minimax bounds, we
will say that β̂ achieves an optimal risk bound (with
respect to the sparsity) if

R[β̂;β0] ≤ C1‖β0‖0 log(p)σ 2,(8)

for any σ > 0 and any vector β0 ∈ R
p such that

1 ≤ ‖β0‖0 log(p) ≤ C2n. Such risk bounds prove
that the estimator is approximately [up to a possible
log(‖β0‖0) additional term] minimax adaptive to the
unknown variance and the unknown sparsity. The con-
dition ‖β0‖0 log(p) ≤ C2n ensures that the setting is
not ultra-high-dimensional. As stated above, some pro-
cedures achieve (8) for all designs X, but they are in-
tractable for large p; see [38]. One purpose of this re-
view is to present fast procedures that achieve these
kind of bounds under possible restrictive assumptions
on the design matrix X.

For some procedures, (8) can be improved into a
bound of the form

R[β̂;β0]
(9)

≤ C1 inf
β �=0

{‖X(β − β0)‖2
2 + ‖β‖0 log(p)σ 2},

with C1 close to one. Again, the dimension ‖β0‖0 is
restricted to be smaller than Cn/ log(p) to ensure that
the setting is not ultra-high-dimensional. This kind of
bound makes a clear trade-off between a bias and a
variance term. For instance, when β0 contains many
components that are nearly equal to zero, the bound
(9) can be much smaller than (8).

2.5 Other Statistical Problems in an
Ultra-High-Dimensional Setting

We have seen that adaptation becomes impossible
for the prediction problem in an ultra-high-dimensional
setting. For other statistical problems, including the
prediction problem with random design, the inverse
problem (estimation of β0), the variable selection prob-
lem (estimation of the support of β0), the dimension
reduction problem [47, 77, 78], the minimax risks in-
crease exponentially fast in an ultra-high-dimensional
setting. This kind of phase transition has been observed
in a wide range of random geometry problems [28],
suggesting some universality in this limitation. In prac-
tice, the sparsity index k is not known, but given (n,p),
we can compute k∗ := max{k : 2k log(p/k) ≥ n}. One
may interpret that the problem is still reasonably dif-
ficult as long as k ≤ k∗. This gives a simple rule of
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thumb to know what we can hope from a given re-
gression problem. For example, setting p = 5000 and
n = 50 leads to k∗ = 3, implying that the prediction
problem becomes extremely difficult when there are
more than 4 relevant covariates; see the simulations in
[77].

3. SOME GENERIC SELECTION SCHEMES

Among the selection schemes not requiring the
knowledge of the variance σ 2, some are very specific
to a particular algorithm, while some others are more
generic. We describe in this section three versatile se-
lection principles and refer to the examples for the
more specific schemes.

3.1 Cross-Validation Procedures

The cross-validation schemes are nearly universal in
the sense that they can be implemented in most statis-
tical frameworks and for most estimation procedures.
The principle of the cross-validation schemes is to split
the data into a training set and a validation set: the es-
timators are built on the training set, and the valida-
tion set is used for estimating their prediction risk. This
training/validation splitting is eventually repeated sev-
eral times. The most popular cross-validation schemes
are:

• Hold-out [27, 57] which is based on a single split of
the data for training and validation.

• V -fold CV [32]. The data is split into V subsamples.
Each subsample is successively removed for valida-
tion, the remaining data being used for training.

• Leave-one-out [69] which corresponds to n-fold CV.
• Leave-q-out (also called delete-q-CV) [65] where

every possible subset of cardinality q of the data
is removed for validation, the remaining data being
used for training.

We refer to Arlot and Célisse [5] for a review of the
cross-validation schemes and their theoretical proper-
ties.

3.2 Penalized Empirical Loss

Penalized empirical loss criteria form another class
of versatile selection schemes, yet less universal than
CV procedures. The principle is to select among a fam-
ily (β̂λ)λ∈� of estimators by minimizing a criterion of
the generic form

Crit(λ) = LX(Y, β̂λ) + pen(λ),(10)

where LX(Y, β̂λ) is a measure of the distance between
Y and Xβ̂λ, and pen is a function from � to R

+. The
penalty function sometimes depends on data.

Penalized log-likelihood. The most famous criteria
of the form (10) are AIC and BIC. They have been
designed to select among estimators β̂λ obtained by
maximizing the likelihood of (β, σ ) with the con-
straint that β lies on a linear space Sλ (called model).
In the Gaussian case, these estimators are given by
Xβ̂λ = 
SλY , where 
Sλ denotes the orthogonal pro-
jector onto the model Sλ. For AIC and BIC, the function
LX corresponds to twice the negative log-likelihood
LX(Y, β̂λ) = n log(‖Y − Xβ̂λ‖2

2) and the penalties are
pen(λ) = 2 dim(Sλ) and pen(λ) = dim(Sλ) log(n), re-
spectively. We recall that these two criteria can perform
very poorly in a high-dimensional setting.

In the same setting, Baraud et al. [12] propose al-
ternative penalties built from a nonasymptotic per-
spective. The resulting criterion can handle the high-
dimensional setting where p is possibly larger than n,
and the risk of the selection procedure is controlled by
a bound of the form (9); see Theorem 2 in [12].

Plug-in criteria. Many other penalized-empirical-
loss criteria have been developed in the last decades.
Several selection criteria [14, 18] have been designed
from a nonasymptotic point of view to handle the case
where the variance is known. These criteria usually
involve the residual least-square LX(Y, β̂λ) = ‖Y −
Xβ̂λ‖2

2 and a penalty pen(λ) depending on the variance
σ 2. A common practice is then to plug in the penalty
an estimate σ̂ 2 of the variance in place of the variance.
For linear regression, when the design matrix X has a
rank less than n, a classical choice for σ̂ 2 is

σ̂ 2 = ‖Y − 
XY‖2
2

n − rank(X)
,

with 
X the orthogonal projector onto the range of X.
In the Gaussian setting, this estimator σ̂ 2 has the nice
feature to be independent of 
XY on which usually
rely the estimators β̂λ. Nevertheless, the variance of σ̂ 2

is of order σ 4/(n − rank(X)) which is small only when
the sample size n is quite large in front of the rank of X.
This situation is unfortunately not likely to happen in a
high-dimensional setting where p can be larger than n.

3.3 Approximation Versus Complexity
Penalization: LinSelect

The criterion proposed by Baraud et al. [12] can
handle high-dimensional settings, but it suffers from
two rigidities. First, it can only handle fixed collections
of models (Sλ)λ∈�. In some situations, the size of �

is huge (e.g., for complete variable selection) and the
estimation procedure can then be computationally in-
tractable. In this case, we may want to work with a
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subcollection of models (Sλ)λ∈�̂, where �̂ ⊂ � may
depend on data. For example, for complete variable se-
lection, the subset �̂ could be generated by efficient
algorithms like Lars [30]. The second rigidity of the
procedure of Baraud et al. [12] is that it can only han-
dle constrained-maximum-likelihood estimators. This
procedure then does not help for selecting among arbi-
trary estimators such as the lasso or elastic-net.

These two rigidities have been addressed recently
by Baraud et al. [13]. They propose a selection proce-
dure, LinSelect, which can handle both data-dependent
collections of models and arbitrary estimators β̂λ. The
procedure is based on a collection S of linear spaces
which gives a collection of possible “approximative”
supports for the estimators (Xβ̂λ)λ∈�. A measure of
complexity on S is provided by a weight function
� : S → R

+. We refer to Sections 4.1 and 5 for ex-
amples of collection S and weight � in the context
of coordinate-sparse and group-sparse regression. We
present below a simplified version of the LinSelect pro-
cedure. For a suitable, possibly data-dependent, subset
Ŝ ⊂ S (depending on the statistical problem), the esti-
mator β̂λ̂ is selected by minimizing the criterion

Crit(β̂λ) = inf
S∈Ŝ

[
‖Y − 
SXβ̂λ‖2

2

(11)

+ 1

2
‖Xβ̂λ − 
SXβ̂λ‖2

2 + pen(S)σ̂ 2
S

]
,

where 
S is the orthogonal projector onto S,

σ̂ 2
S = ‖Y − 
SY‖2

2

n − dim(S)

and pen(S) is a penalty depending on �. In the cases
we will consider here, the penalty pen(S) is roughly
of the order of �(S), and therefore it penalizes S ac-
cording to its complexity. We refer to Appendix B for
a precise definition of this penalty and more details on
its characteristics. We emphasize that criterion (11) and
the family of estimators {β̂λ, λ ∈ �} are based on the
same data Y and X. In other words, there is no data-
splitting occurring in the LinSelect procedure. The first
term in (11) quantifies the fit of the projected estima-
tor to the data, the second term evaluates the approxi-
mation quality of the space S and the last term penal-
izes S according to its complexity. We refer to Proposi-
tion B.1 in Appendix B and Theorem 1 in [12] for risk
bounds on the selected estimator. Instantiations of the
procedure and more specific risks bounds are given in
Sections 4 and 5 in the context of coordinate-sparsity
and group-sparsity.

From a computational point of view, the algorith-
mic complexity of LinSelect is at most proportional to
|�| × |̂S|, and in many cases there is no need to scan
the whole set Ŝ for each λ ∈ � to minimize (11). In the
examples of Sections 4 and 5, the whole procedure is
computationally less intensive than V -fold CV; see Ta-
ble 3. Finally, we mention that for the constrained least-
square estimators Xβ̂λ = 
SλY , the LinSelect proce-
dure with Ŝ = {Sλ :λ ∈ �} simply coincides with the
procedure of Baraud et al. [12].

4. COORDINATE-SPARSITY

In this section, we focus on the high-dimensional lin-
ear regression model Y = Xβ0 + ε where the vector β0

itself is assumed to be sparse. This setting has attracted
a lot of attention in the last decade, and many estima-
tion procedures have been developed. Most of them re-
quire the choice of tuning parameters which depend on
the unknown variance σ 2. This is, for instance, the case
for the lasso [24, 72], Dantzig Selector [22], Elastic Net
[85], MC+ [81], aggregation techniques [21, 26], etc.

We first discuss how the generic schemes introduced
in the previous section can be instantiated for tuning
these procedures and for selecting among them. Then,
we pay a special attention to the calibration of the lasso.
Finally, we discuss the problem of support estimation
and present a small numerical study.

4.1 Automatic Tuning Methods

Cross-validation. Arguably, V -fold cross-validation
is the most popular technique for tuning the above-
mentioned procedures. To our knowledge, there are no
theoretical results for V -fold CV in large dimensional
settings.

In practice, V -fold CV seems to give rather good re-
sults. The problem of choosing the best V has not yet
been solved [5], Section 10, but it is often reported that
a good choice for V is between 5 and 10. Indeed, the
statistical performance does not increase for larger val-
ues of V , and averaging over 10 splits remains compu-
tationally feasible [42], Section 7.10.

LinSelect. The procedure LinSelect can be used for
selecting among a collection (β̂λ)λ∈� of sparse regres-
sors as follows. For J ⊂ {1, . . . , p}, we define XJ as
the matrix [Xij ]i=1,...,n,j∈J obtained by only keeping
the columns of X with index in J . We recall that the
collection S gives some possible “approximative” sup-
ports for the estimators (Xβ̂λ)λ∈�. For sparse linear re-
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gression, a possible collection S and measure of com-
plexity � are

S = {
S = range(XJ ), J ⊂ {1, . . . , p},

1 ≤ |J | ≤ n/(3 logp)
}

and

�(S) = log
(

p

dim(S)

)
+ log(dim(S)).

Let us introduce the spaces Ŝλ = range(Xsupp(β̂λ)) and
the subcollection of S

Ŝ = {Ŝλ, λ ∈ �̂} where �̂ = {λ ∈ � : Ŝλ ∈ S}.
The following proposition gives a risk bound when se-
lecting λ̂ with LinSelect with the above choice of Ŝ

and �.

PROPOSITION 4.1. There exists a numerical con-
stant C > 1 such that for any minimizer λ̂ of the crite-
rion (11), we have

R[β̂λ̂;β0]
≤ CE

[
inf
λ∈�

{
‖Xβ̂λ − Xβ0‖2

2

+ inf
S∈Ŝ

{‖Xβ̂λ − 
SXβ̂λ‖2
2

(12)
+ dim(S) log(p)σ 2}

}]
≤ CE

[
inf
λ∈�̂

{‖Xβ̂λ − Xβ0‖2
2

+ ‖β̂λ‖0 log(p)σ 2}
]
.

Proposition 4.1 is a simple corollary of Proposi-
tion B.1 in Appendix B. The first bound involves three
terms: the loss of the estimator β̂λ, an approximation
loss, and a variance term. Hence, LinSelect chooses an
estimator β̂λ that achieves a trade-off between the loss
of β̂λ and the closeness of Xβ̂λ to some small dimen-
sional subspace S. Bound (12) cannot be formulated in
the form (9) due to the random nature of the set �̂. Nev-
ertheless, a bound similar to (8) can be deduced from
(12) when the estimators β̂λ are least-squares estima-
tors; see Corollary 4 in [13]. Furthermore, we note that
increasing the size of � leads to a better risk bound
for β̂λ̂. It is then advisable to consider a family of
candidate estimators {β̂λ, λ ∈ �} as large as possible.
Proposition 4.1 is valid for any family of estimators
{β̂λ, λ ∈ �}. For the specific family of lasso estima-
tors {β̂L

λ , λ > 0} we provide a refined bound in Propo-
sition 4.3, Section 4.3.

4.2 Lasso-Type Estimation under Unknown
Variance

The lasso is certainly one of the most popular meth-
ods for variable selection in a high-dimensional set-
ting. Given λ > 0, the lasso estimator β̂L

λ is defined
by β̂L

λ := argminβ∈Rp ‖Y − Xβ‖2
2 +λ‖β‖1. A sensible

choice of λ must be homogeneous with the square-root
of the variance σ 2. As explained above, when the vari-
ance σ 2 is unknown, one may apply V -fold CV or Lin-
Select to select λ. Some alternative approaches have
also been developed for tuning the lasso. Their com-
mon idea is to modify the �1 criterion so that the tun-
ing parameter becomes pivotal with respect to σ 2. This
means that the method remains valid for any σ > 0 and
that the choice of the tuning parameter does not depend
on σ . For the sake of simplicity, we assume throughout
this subsection and the next one that the columns of X
are normalized to one.

�1-Penalized log-likelihood. In low-dimensional re-
gression, it is classical to consider a penalized log-
likelihood criterion instead of a penalized least-square
criterion to handle the unknown variance. Following
this principle, Städler et al. [68] propose to minimize
the �1-penalized log-likelihood criterion

β̂LL
λ , σ̂ LL

λ

:= argmin
β∈Rp,σ ′>0

[
n log(σ ′)(13)

+ ‖Y − Xβ‖2
2

2σ ′2 + λ
‖β‖1

σ ′
]
.

By reparametrizing (β, σ ), Städler et al. [68] obtain
a convex criterion that can be efficiently minimized.
Interestingly, the penalty level λ is pivotal with re-
spect to σ . Under suitable conditions on the design
matrix X, Sun and Zhang [70] show that the choice
λ = c

√
2 logp, with c > 1 yields optimal risk bounds

in the sense of (8).

Square-root lasso and scaled lasso. Sun and Zhang
[71], following an idea of Antoniadis [3], propose to
minimize a penalized Huber loss [45], page 179,

β̂SR
λ , σ̂ SR

λ

:= argmin
β∈Rp,σ ′>0

[
nσ ′

2
+ ‖Y − Xβ‖2

2

2σ ′(14)

+ λ‖β‖1

]
.

This convex criterion can be minimized with roughly
the same computational complexity as a Lars-lasso
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path [30]. Interestingly, their procedure (called the
scaled lasso in [71]) is equivalent to the square-root
lasso estimator previously introduced by Belloni et al.
[16]. The square-root lasso of Belloni et al. is obtained
by replacing the residual sum of squares in the lasso
criterion by its square-root

β̂SR
λ = argmin

β∈Rp

[√
‖Y − Xβ‖2

2 + λ√
n
‖β‖1

]
.(15)

The equivalence between the two definitions follows
from the minimization of the criterion in (14) with re-
spect to σ ′. In (14) and (15), the penalty level λ is again
pivotal with respect to σ . Sun and Zhang [71] state
sharp oracle inequalities for the estimator β̂SR

λ with
λ = c

√
2 log(p), with c > 1; see Proposition 4.2 below.

Their empirical results suggest that criterion (15) pro-
vides slightly better results than the �1-penalized log-
likelihood. In the sequel, we shall refer to β̂SR

λ as the
square-root lasso estimator.

Bayesian lasso. The Bayesian paradigm allows us
to put prior distributions on the variance σ 2 and the
tuning parameter λ, as in the Bayesian lasso [60].
Bayesian procedures straightforwardly handle the case
of unknown variance, but no frequentist analysis of
these procedures is so far available.

4.3 Risk Bounds for Square-Root Lasso and
Lasso-LinSelect

Let us state a bound on the prediction error for the
square-root lasso (also called scaled lasso). For the
sake of conciseness, we only present a simplified ver-
sion of Theorem 1 in [71]. Consider some number
ξ > 0 and some subset T ⊂ {1, . . . , p}. The compati-
bility constant κ[ξ, T ] is defined by

κ[ξ, T ] = min
u∈C(ξ,T )

{ |T |1/2‖Xu‖2

‖uT ‖1

}

where C(ξ, T ) = {u :‖uT c‖1 < ξ‖uT ‖1}.
PROPOSITION 4.2. There exist positive numerical

constants C1, C2 and C3 such that the following holds.
Let us consider the square-root lasso with the tuning
parameter λ = 2

√
2 log(p). If we assume that:

(1) p ≥ C1;
(2) ‖β0‖0 ≤ C2κ

2[4, supp(β0)] n
log(p)

then, with high probability,

‖X(β̂SR − β0)‖2
2

≤ inf
β �=0

{
‖X(β0 − β)‖2

2 + C3
‖β‖0 log(p)

κ2[4, supp(β)]σ
2
}
.

This bound is comparable to the general objective
(9) stated in Section 2.4. Interestingly, the constant
before the bias term ‖X(β0 − β)‖2

2 equals one. If
‖β0‖0 = k, the square-root lasso achieves the minimax
loss k log(p)σ 2 as long as k log(p)/n is small, and
κ[4, supp(β0)] is away from zero. This last condition
ensures that the design X is not too far from orthogo-
nality on the cone C(4, supp(β0)). State of the art re-
sults for the classical lasso with known variance [17,
49, 74] all involve this condition.

In what follows, we call lasso-LinSelect the lasso
estimator of β0 obtained by choosing the parameter
λ in � = R

+ with LinSelect. We next state a risk
bound for this procedure. For J ⊂ {1, . . . , p}, we de-
fine φJ as the largest eigenvalue of XT

J XJ . The fol-
lowing proposition involves the restricted eigenvalue
φ∗ = max{φJ : Card(J ) ≤ n/(3 logp)}.

PROPOSITION 4.3. There exist positive numerical
constants C, C1, C2 and C3 such that the following
holds. Take � = R

+, and assume that

‖β0‖0 ≤ C
κ2[5, supp(β0)]

φ∗
× n

log(p)
.

Then, with probability at least 1 − C1p
−C2 , the lasso

estimator β̂L
λ̂

selected according to the LinSelect pro-
cedure described in Section 4.1 fulfills

‖X(β0 − β̂L
λ̂
)‖2

2

≤ C3 inf
β �=0

{
‖X(β0 − β)‖2

2(16)

+ φ∗‖β‖0 log(p)

κ2[5, supp(β)]σ
2
}
.

The bound (16) is similar to the bound stated above
for the square-root lasso, the most notable differences
being the constant larger than 1 in front of the bias term
and the quantity φ∗ in front of the variance term. We
refer to the supplementary material [38] for a proof of
Proposition 4.3.

4.4 Support Estimation and Inverse Problem

Until now, we only discussed estimation methods
that perform well in prediction. Little is known when
the objective is to infer β0 or its support under un-
known variance.

Inverse problem. The square-root lasso [16, 71] is
proved to achieve near optimal risk bound for the in-
verse problems under suitable assumptions on the de-
sign X.
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Support estimation. Up to our knowledge, there are
no nonasymptotic results on support estimation for
the aforementioned procedures in the unknown vari-
ance setting. Nevertheless, some related results and
heuristics have been developed for the cross-validation
scheme. If the tuning parameter λ is chosen to mini-
mize the prediction error [i.e., take λ = λ∗ as defined
in (4)], the lasso is not consistent for support estima-
tion; see [51, 56] for results in a random design setting.
One idea to overcome this problem, is to choose the
parameter λ that minimizes the risk of the so-called
Gauss-lasso estimator β̂GL

λ which is the least square
estimator over the support of the lasso estimator β̂L

λ

β̂GL
λ := argmin

β∈Rp :supp(β)⊂supp(β̂L
λ )

‖Y − Xβ‖2
2.(17)

When the objective is support estimation, some numer-
ical simulations [62] suggest that it may be more ad-
visable not to apply the selection schemes based on
prediction risk (such as V -fold CV or LinSelect) to the
lasso estimators, but rather to the Gauss-lasso estima-
tors. Similar remarks also apply for the Dantzig Selec-
tor [22].

4.5 Numerical Experiments

We present two numerical experiments to illustrate
the behavior of some of the above mentioned proce-
dures for high-dimensional sparse linear regression.
The first one concerns the problem of tuning the pa-
rameter λ of the lasso algorithm for estimating Xβ0.
The procedures will be compared on the basis of the
prediction risk. The second one concerns the problem
of support estimation with lasso-type estimators. We
will focus on the false discovery rates (FDR) and the
proportion of true discoveries (Power).

Simulation design. The simulation design is the
same as the one described in Sections 6.1 and 8.2 of
[13], except that we restrict to the case n = p = 100.
Therefore, 165 examples are simulated. They are in-
spired by examples found in [43, 72, 84, 85] and cover
a large variety of situations. The simulation were car-
ried out with R www.r-project.org, using the library
elasticnet.

Experiment 1: Tuning the lasso for prediction. In the
first experiment, we compare 10-fold CV [32], LinSe-
lect [13] and the square-root lasso [16, 71] (also called
scaled lasso) for tuning the lasso. The lasso-LinSelect
requires one to minimize criterion (11) over � = R+.
In fact, the minimum of (11) is achieved at some λ

corresponding to a Lars-lasso [30] step. Consequently,

only the steps of the regularization path of the lasso
have to be considered so that the lasso-LinSelect esti-
mator can be computed with roughly the same com-
putational complexity as a Lars-lasso path [30]. The
square-root lasso is computed using the algorithm de-
scribed in Sun and Zhang [71]. We set λ = √

2 log(p)

which corresponds to the value recommended by the
authors.2

For each tuning procedure � ∈ {10-fold CV,

LinSelect, square-root lasso}, we focus on the predic-
tion risk R[β̂L

λ̂�
;β0] of the selected lasso estimator β̂L

λ̂�
.

For each simulated example e = 1, . . . ,165, we esti-
mate on the basis of 400 runs:

• the risk of the oracle (4): Re = R[β̂λ∗;β0];
• the risk when selecting λ with procedure �: R�,e =

R[β̂λ̂�
;β0].

The comparison between the procedures is based on
the comparison of the means, standard deviations and
quantiles of the risk ratios R�,e/Re computed over all
the simulated examples e = 1, . . . ,165. The results are
displayed in Table 1.

For 10-fold CV and LinSelect, the risk ratios are close
to one. For 90% of the examples, the risk of the lasso-
LinSelect is smaller than the risk of the lasso-CV, but
there are a few examples where the risk of the lasso-
LinSelect is significantly larger than the risk of the
lasso-CV. For the square-root lasso procedure, the risk
ratios are clearly larger than for the two others. An in-
spection of the results reveals that the square-root lasso
selects estimators with supports of small size. This fea-
ture can be interpreted as follows. Due to the bias of
the lasso-estimator, the residual variance tends to over-
estimate the variance, leading the square-root lasso to

TABLE 1
For each procedure �, mean, standard-error and quantiles of the

ratios {R�,e/Re, e = 1, . . . ,165}

Quantiles

Procedure Mean Std-err 0% 50% 75% 90% 95%

Lasso 10-fold CV 1.13 0.08 1.03 1.11 1.15 1.19 1.24
Lasso LinSelect 1.19 0.48 0.97 1.03 1.06 1.19 2.52
Square-root lasso 5.15 6.74 1.32 2.61 3.37 11.2 17

2More precisely, Sun and Zhang advocate λ0 = √
2 log(p)/n in

their paper. This choice is equivalent to λ = √
2 log(p) in (14) be-

cause the normalizations of X and of (14) are different from [71].

http://www.r-project.org
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TABLE 2
For each procedure �, mean, standard-error and quantiles of FDR and Power values

Quantiles

Procedure Mean Std-err 0% 25% 50% 75% 90%

False discovery rate
Gauss-lasso 10-fold CV 0.28 0.26 0 0.08 0.22 0.35 0.74
Gauss-lasso LinSelect 0.12 0.25 0 0.002 0.02 0.13 0.33
Square-root lasso 0.13 0.26 0 0.009 0.023 0.07 0.32

Power
Gauss-lasso 10-fold CV 0.67 0.18 0.4 0.52 0.65 0.71 1
Gauss-lasso LinSelect 0.56 0.33 0.002 0.23 0.56 0.93 1
Square-root lasso 0.59 0.28 0.013 0.41 0.57 0.80 1

select a lasso estimator β̂L
λ with large λ. Consequently

the risk is high.

Experiment 2: Variable selection with Gauss-lasso
and square-root lasso. We consider now the problem
of support estimation, sometimes referred as the prob-
lem of variable selection. We implement three proce-
dures. The Gauss-lasso procedure tuned by either 10-
fold CV or LinSelect and the square-root lasso. The
support of β0 is estimated by the support of the selected
estimator.

For each simulated example, the FDR and the Power
are estimated on the basis of 400 runs. The results are
given on Table 2.

It appears that the Gauss-lasso CV procedure gives
greater values of the FDR than the two others. The
Gauss-lasso LinSelect and the square-root lasso behave
similarly for the FDR, but the values of the power are
more variable for the LinSelect procedure.

Computation time. Let us conclude this numerical
section with the comparison of the computation times
between the methods. For all methods the computation
time depends on the maximum number of steps in the
lasso algorithm, and for the LinSelect method, it de-
pends on the cardinality of S or equivalently on the
maximum number of nonzero components of β̂ . The
results are shown at Table 3. The square-root lasso is
the less time consuming method, closely followed by
the lasso LinSelect method. The V -fold CV carried out
with the function cv.enet of the R package elas-
ticnet, pays the price of several calls to the lasso
algorithm.

5. GROUP-SPARSITY

In the previous section, we have made no prior as-
sumptions on the form of β0. In some applications,

there are some known structures between the covari-
ates. As an example, we treat the now classical case
of group sparsity. The covariates are assumed to be
clustered into M groups, and when the coefficient β0,i

corresponding to the covariate Xi is nonzero, then it is
likely that all the coefficients β0,j with variables Xj in
the same group as Xi are nonzero. We refer to the intro-
duction of [8] for practical examples of this so-called
group-sparsity assumption. Let G1, . . . ,GM form a
given partition of {1, . . . , p}. For λ = (λ1, . . . , λM), the
group-lasso estimator β̂λ is defined as the minimizer of
the convex optimization criterion

‖Y − Xβ‖2
2 +

M∑
k=1

λk‖βGk‖2,(18)

where βGk = (βj )j∈Gk
. Criterion (18) promotes so-

lutions where all the coordinates of βGk are either
zero or nonzero, leading to group selection [80]. Un-
der some assumptions on X, Huang and Zhang [44]
or Lounici et al. [54] provide a suitable choice of
λ = (λ1, . . . , λM) that leads to near optimal prediction
bounds. As expected, this choice of λ = (λ1, . . . , λM)

is proportional to σ .
As for the lasso, V -fold CV is widely used in practice

to tune the penalty parameter λ = (λ1, . . . , λM). To our
knowledge, there is not yet any extension of the proce-
dures described in Section 4.2 to the group lasso. An
alternative to cross-validation is to use LinSelect.

Tuning the Group-Lasso with LinSelect

For any K ⊂ {1, . . . ,M}, we define the submatrix
X(K) of X by only keeping the columns of X with in-
dex in

⋃
k∈K Gk . We also write XGk

for the submatrix
of X, built from the columns with index in Gk . The
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TABLE 3
For each procedure computation time for different values of n and p. The maximum number of steps in the lasso algorithm is taken as
max.steps= min{n,p}. For the LinSelect procedure, the maximum number of nonzero components of β̂ , denoted kmax is taken as

kmax = min{p,n/ log(p)}

n p max.steps kmax Lasso 10-fold CV Lasso LinSelect Square-root lasso

100 100 100 21 4 s 0.21 s 0.18 s
100 500 100 16 4.8 s 0.43 s 0.4 s
500 500 500 80 300 s 11 s 6.3 s

collection S and the function � are given by

S =
{

range
(
X(K)

)
: 1 ≤ |K| ≤ n/(3 log(M))

and
∑
k∈K

|Gk| ≤ n/2 − 1
}

and �(range(X(K))) = log[|K|(|K|
M

)]. For a given � ⊂
R

M+ , similarly to Section 4.1, we define K̂λ = {k :

‖β̂Gk

λ ‖2 �= 0} and

Ŝ = {
range

(
X(K̂λ)

)
, λ ∈ �̂

}
,

with �̂ = {
λ ∈ �, range

(
X(K̂λ)

) ∈ S
}
.

Proposition B.1 in Appendix B ensures that we have
for some constant C > 1,

R[β̂λ̂;β0] ≤ CE

[
inf
λ∈�̂

{‖Xβ̂λ − Xβ0‖2
2

+ (‖β̂λ‖0 ∨ |K̂λ| log(M)
)
σ 2}]

.

In the following, we provide a more explicit bound.
For simplicity, we restrict to the specific case where
each group Gk has the same cardinality T . For K ⊂
{1, . . . ,M}, we define φ(K) as the largest eigenvalue of
XT

(K)X(K), and we set

φ∗ = max
{
φ(K) : 1 ≤ |K| ≤ n − 2

2T ∨ 3 log(M)

}
.(19)

We assume that all the columns of X are normalized to
1, and following Lounici et al. [54], we introduce for
1 ≤ s ≤ M ,

κG[ξ, s] = min
1≤|K|≤s

min
u∈�(ξ,K)

‖Xu‖2

‖u(K)‖2
,(20)

where �(ξ, K) is the cone of vectors u ∈ R
M \ {0}

such that
∑

k∈Kc λk‖uGk‖2 ≤ ξ
∑

k∈K λk‖uGk‖2. In the
sequel, K0 stands for the set of groups containing
nonzero components of β0.

PROPOSITION 5.1. There exist positive numerical
constants C, C1, C2 and C3 such that the follow-
ing holds. Assume that � contains

⋃
λ∈R+{(λ, . . . , λ)},

that T ≤ (n − 2)/4 and that

1 ≤ |K0| ≤ C
κ2
G[3, |K0|]

φ∗
× n − 2

log(M) ∨ T
.

Then, with probability larger than 1 − C1M
−C2 , we

have

‖Xβ̂λ̂ − Xβ0‖2
2 ≤ C3

φ∗
κ2
G[3, |K0|]

|K0|(T ∨ log(M)
)
.

This proposition provides a bound comparable to the
bounds of Lounici et al. [54], without requiring the
knowledge of the variance. Its proof can be found in
the supplementary material [38].

6. VARIATION-SPARSITY

We focus in this section on the variation-sparse re-
gression. We recall that the vector βV ∈ R

p−1 of the
variations of β has for coordinates βV

j = βj+1 − βj

and that the variation-sparse setting corresponds to the
setting where the vector of variations βV

0 is coordinate-
sparse. In the following, we restrict to the case where
n = p, and X is the identity matrix. In this case, the
problem of variation-sparse regression coincides with
the problem of segmentation of the mean of the vector
Y = β0 + ε.

For any subset I ⊂ {1, . . . , n − 1}, we define SI =
{β ∈ R

n : supp(βV ) ⊂ I} and β̂I = 
SI Y . For any in-
teger q ∈ {0, . . . , n − 1}, we define also the “best” sub-
set of size q by

Îq = argmin
|I|=q

‖Y − β̂I ‖2
2.

Though the number of subsets I ⊂ {1, . . . , n − 1} of
cardinality q is of order nq+1, this minimization can be
performed using dynamic programming with a com-
plexity of order n2 [40]. To select Î = Îq̂ with q̂ in
{0, . . . , n − 1}, any of the generic selection schemes of
Section 3 can be applied. Below, we instantiate these
schemes and present some alternatives.
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6.1 Penalized Empirical Loss

When the variance σ 2 is known, penalized log-
likelihood model selection amounts to select a subset Î
which minimizes a criterion of the form ‖Y − β̂I ‖2

2 +
pen(Card(I)). This is equivalent to select Î = Îq̂ with
q̂ minimizing

Crit(q) = ‖Y − β̂Îq
‖2

2 + pen(q).(21)

Following the work of Birgé and Massart [18],
Lebarbier [50] considers the penalty

pen(q) = (q + 1)
(
c1 log

(
n/(q + 1)

) + c2
)
σ 2

and determines the constants c1 = 2, c2 = 5 by ex-
tensive numerical experiments (see also Comte and
Rozenholc [25] for a similar approach in a more gen-
eral setting). With this choice of the penalty, the proce-
dure satisfies a bound of the form

R[β̂Î , β0]
≤ C inf

I⊂{1,...,n−1}
{‖β̂I − β0‖2

2(22)

+ (1 + |I|) log
(
n/(1 + |I|))σ 2}

.

When σ 2 is unknown, several approaches have been
proposed.

Plug-in estimator. The idea is to replace σ 2 in
pen(q) by an estimator of the variance such as σ̂ 2 =∑n/2

i=1(Y2i − Y2i−1)
2/n, or one of the estimators pro-

posed by Hall et al. [41]. No theoretical results are
proved in a nonasymptotic framework.

Estimating the variance by the residual least-
squares. Baraud et al. [12], in Section 5.4.2, propose
to select q by minimizing a penalized log-likelihood
criterion. This criterion can be written in the form
Crit(q) = ‖Y − β̂Îq

‖2
2(1 + K pen(q)), with K > 1 and

the penalty pen(q) solving

E
[(

U − pen(q)V
)
+

] = 1

(q + 1)
(n−1

q

) ,
where (·)+ = max(·,0), and U , V are two independent
χ2 variables with respectively q + 2 and n − q − 2
degrees of freedom. The resulting estimator β̂Î , with
Î = Îq̂ , satisfies a nonasymptotic risk bound similar to
(22) for all K > 1. The choice K = 1.1 is suggested
for the practice.

Slope heuristic. Lebarbier [50] implements the slope
heuristic introduced by Birgé and Massart [19] for han-
dling the unknown variance σ 2. The method consists
in calibrating the penalty directly, without estimating
σ̂ 2. It is based on the following principle. First, there
exists a so-called minimal penalty penmin(q) such that
choosing pen(q) = K penmin(q) in (21) with K < 1
can lead to a strong overfit, whereas for K > 1, the
bound (22) is met. Second, it can be shown that there
exists a dimension jump around the minimal penalty,
allowing one to estimate penmin(q) from the data. The
slope heuristic then proposes to select q by minimiz-
ing the criterion Crit(q) = ‖Y − β̂Îq

‖2
2 + 2 p̂enmin(q).

Arlot and Massart [7] provide a nonasymptotic risk
bound for this procedure. Their results are proved in a
general regression model with heteroscedatic and non-
Gaussian errors, but with a constraint on the number of
models per dimension which is not met for the family
of models (SI )I⊂{1,...,n−1}. Nevertheless, the authors
indicate how to generalize their results for the problem
of signal segmentation.

Finally, for practical issues, different procedures for
estimating the minimal penalty are compared and im-
plemented in Baudry et al. [15].

6.2 CV Procedure

In a recent paper, Arlot and Célisse [6] consider the
problem of signal segmentation using cross-validation.
Their results apply in the heteroscedastic case. They
consider several CV-methods, the leave-one-out, leave-
p-out and V -fold CV for estimating the quadratic loss.
They propose two cross-validation schemes. The first
one, denoted Procedure 5, aims to estimate directly
E[‖β0 − βÎq

‖2
2], while the second one, denoted Proce-

dure 6, relies on two steps, where the cross-validation
is used first for choosing the best partition of dimension
q , then the best dimension q . They show that the leave-
p-out CV method can be implemented with a complex-
ity of order n2, and they give a control of the expected
CV risk. The use of CV leads to some restrictions on the
subsets I that compete for estimating β0. This problem
is discussed in [6], Section 3 of the supplementary ma-
terial.

6.3 Alternative for Very High-Dimensional Settings

When n is very large, the dynamic programming op-
timization can become computationally too intensive.
An attractive alternative is based on the fused lasso pro-
posed by Tibshirani et al. [73]. The estimator β̂T V

λ is
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defined by minimizing the convex criterion

‖Y − β‖2
2 + λ

n−1∑
j=1

|βj+1 − βj |,

where the total-variation norm
∑

j |βj+1 − βj | pro-
motes solutions which are variation-sparse. The family
(β̂T V

λ )λ≥0 can be computed very efficiently with the
Lars-algorithm; see Vert and Bleakley [75]. A sensible
choice of the parameter λ must be proportional to σ .
When the variance σ 2 is unknown, the parameter λ can
be selected either by V -fold CV or by LinSelect (see
Section 5.1 in [13] for details).

7. EXTENSIONS

7.1 Gaussian Design and Graphical Models

Assume that the design X is now random and that the
n rows X(i) are independent observations of a Gaus-
sian vector with mean 0p and unknown covariance ma-
trix �. This setting is mainly motivated by applications
in compressed sensing [29] and in Gaussian graphical
modeling. Indeed, Meinshausen and Bühlmann [56]
have proved that it is possible to estimate the graph of
a Gaussian graphical model by studying linear regres-
sion with Gaussian design and unknown variance. If
we work conditionally on the observed X design, then
all the results and methodologies described in this sur-
vey still apply. Nevertheless, these prediction results
do not really take into account the fact that the design
is random. In this setting, it is more natural to con-
sider the integrated prediction risk E[‖�1/2(β̂ −β0)‖2

2]
rather than the risk (3). Some procedures [35, 76] have
been proved to achieve optimal risk bounds with re-
spect to this risk, but they are computationally in-
tractable in a high-dimensional setting. In the con-
text of Gaussian graphical modeling, the procedure
GGMselect [39] is designed to select among any col-
lection of graph estimators, and it is proved to achieve
near optimal risk bounds in terms of the integrated pre-
diction risk.

7.2 Non-Gaussian Noise

A few results do not require that the noise ε follows a
Gaussian distribution. The lasso-type procedures, such
as the square-root lasso [16, 71], do not require the nor-
mality of the noise and extend to other distributions. In
practice, it seems that cross-validation procedures still
work well for other distributions of the noise.

7.3 Multivariate Regression

Multivariate regression deals with T simultaneous
linear regression models yk = Xβk + εk , k = 1, . . . , T .
Stacking the yk’s in a n × T matrix Y , we obtain the
model Y = XB0 +E, where B0 is a p × T matrix with
columns given by βk and E is a n×T matrix with i.i.d.
entries. The classical structural assumptions on B0 are
either that most rows of B0 are identically zero, or the
rank of B0 is small. The first case is a simple case of
group sparsity and can be handled by the group-lasso as
in Section 5. The second case, first considered by An-
derson [2] and Izenman [46], is much more nonlinear.
Writing ‖ · ‖F for the Frobenius (or Hilbert–Schmidt)
norm, the problem of selecting among the estimators

B̂r = argmin
B:rank(B)≤r

‖Y − XB‖2
F ,

r ∈ {1, . . . ,min(T , rank(X))}
has been investigated recently from a nonasymptotic
point of view by Bunea et al. [20] and Giraud [36].
The prediction risk of B̂r is of order of

E[‖XB̂r − XB0‖2
F ] � ∑

k≥r

s2
k (XB0)

+ r
(
n + rank(X)

)
σ 2,

where sk(M) denotes the kth largest singular value of
the matrix M . Therefore, a sensible choice of r de-
pends on σ 2. The first selection criterion introduced
by Bunea et al. [20] requires the knowledge of the
variance σ 2. To handle the case of unknown variance,
Bunea et al. [20] propose to plug an estimate of the
variance in their selection criterion [which works when
rank(X) < n], whereas Giraud [36] introduces a penal-
ized log-likelihood criterion independent of the vari-
ance. Both papers provide oracle risk bounds for the
resulting estimators showing rate-minimax adaptation.

Several recent papers [9, 20, 49, 58, 63] have inves-
tigated another strategy for the low-rank setting. For a
positive λ, the matrix B0 is estimated by

B̂λ ∈ argmin
B∈Rp×T

{
‖Y − XB‖2

F + λ
∑
k

sk(B)

}
.

Translating the work on trace regression of Koltchin-
skii et al. [49] into the setting of multivariate regres-
sion provides (under some conditions on X) an ora-
cle bound on the risk of B̂λ∗ with λ∗ = 3s1(X)(

√
T +√

rank(X))σ . We also refer to Giraud [37] for a slight
variation of this result requiring no condition on the
design X. Again, the value of λ∗ is proportional to σ .
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To handle the case of unknown variance, Klopp [48]
adapts the concept of the square-root lasso [16] to this
setting and provides an oracle risk bound for the result-
ing procedure.

7.4 Nonparametric Regression

In the nonparametric regression model (2), classical
estimation procedures include local-polynomial esti-
mators, kernel estimators, basis-projection estimators,
k-nearest neighbors, etc. All these procedures depend
on one (or several) tuning parameter(s), whose opti-
mal value(s) scales with the variance σ 2. V -fold CV is
widely used in practice for choosing these parameters,
but little is known on its theoretical performance.

The class of linear estimators (including spline
smoothing, Nadaraya estimators, k-nearest neighbors,
low-pass filters, kernel ridge regression, etc.) has at-
tracted some attention in the last years. Some papers
have investigated the tuning of some specific family of
estimators. For example, Cao and Golubev [23] pro-
vides a tuning procedure for spline smoothing while
Zhang [82] provides a sharp analysis of kernel ridge
regression. Recently, two papers have focused on the
tuning of arbitrary linear estimators when the variance
σ 2 is unknown. Arlot and Bach [4] generalize the slope
heuristic to symmetric linear estimators with spectrum
in [0,1] and prove an oracle bound for the resulting es-
timator. Baraud et al. [13], in Section 4, shows that Lin-
Select can be used for selecting among a (almost) com-
pletely arbitrary collection of linear estimators (possi-
bly nonsymmetric and/or singular). An oracle bound
for the selected estimator is given by Corollary 2 in
[13].

APPENDIX A: A NOTE ON BIC TYPE CRITERIA

The BIC criterion has been initially introduced [64]
to select an estimator among a collection of constrained
maximum likelihood estimators. Nevertheless, modi-
fied versions of this criterion are often used for tun-
ing more general estimation procedures. The purpose
of this appendix is to illustrate why we advise against
this approach in a high-dimensional setting.

DEFINITION A.1 (A modified BIC criterion). Sup-
pose we are given a collection (β̂λ)λ∈� of estimators
depending on a tuning parameter λ ∈ �. For any λ ∈ �,
we consider σ̂ 2

λ = ‖Y − Xβ̂λ‖2
2/n, and define the mod-

ified BIC

λ̂ ∈ argmin
λ∈�̂

{−2Ln(β̂λ, σ̂λ) + log(n)‖β̂λ‖0},(A.1)

where Ln is the log-likelihood and �̂ = {λ ∈ � :
‖β̂λ‖0 ≤ n/2}.

Sometimes, the log(n) term is replaced by log(p).
Replacing � by �̂ allows us to avoid trivial estimators.
First, we would like to emphasize that there is no the-
oretical warranty that the selected estimator does not
overfit in a high-dimensional setting. In practice, using
this criterion often leads to overfitting. Let us illustrate
this with a simple experiment.

Setting
We consider the model

Yi = β0,i + εi, i = 1, . . . , n,(A.2)

with ε ∼ N (0, σ 2In) so that p = n and X = In. Here,
we fix n = 10,000, σ = 1 and β0 = 0n.

Methods
We apply the modified BIC criterion to tune the lasso

[72], SCAD [31] and the hard thresholding estimator.
The hard thresholding estimator β̂HT

λ is defined for any
λ > 0 by [β̂HT

λ ]i = Yi1|Yi |≥λ. Given λ > 0 and a > 2,
the SCAD estimator β̂SCAD

λ,a is defined as the minimizer
of the penalized criterion ‖Y − Xβ‖2

2 + ∑n
i=1 pλ(|βi |),

where for x > 0,

p′
λ(x) = λ1x≤λ + (aλ − x)+1x>λ/(a − 1).

For the sake of simplicity we fix a = 3. We note β̂L;BIC,
β̂SCAD;BIC

a , and β̂HT ;BIC for the lasso, hard threshold-
ing, and SCAD estimators selected by the modified BIC
criterion.

Results
We have realized N = 200 experiments. For each of

these experiments, the estimator β̂L;BIC, β̂SCAD,BIC
a and

β̂HT ;BIC are computed. The mean number of nonzero
components and the estimated risk R[β̂∗;BIC;0n] are
reported in Table 4.

Obviously, the SCAD and hard thresholding meth-
ods select too many irrelevant variables when they are
tuned with BIC. Moreover, their risks are quite high.
Intuitively, this is due to the fact that the log(n) [or
log(p)] term in the BIC penalty is too small in this
high-dimensional setting (n = p).

For the lasso estimator, a very specific phenomenon
occurs due to the soft thresholding effect. In the dis-
cussion of [30], Loubes and Massart advocate that

TABLE 4
Estimated risk and Estimated number of nonzero components for

β̂L;BIC, β̂SCAD;BIC and β̂HT ;BIC

Lasso SCAD Hard thres.

R̂[β̂∗;BIC;0p] 4.6×10−2 1.6×101 3.0×102

Mean of ‖β̂∗;BIC‖0 0.025 86.9 28.2
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soft thresholding estimators penalized by Mallows’ Cp

[55] penalties should yield good results, while hard
thresholding estimators penalized by Mallows’s Cp are
known to highly overfit. This strange behavior is due
to the bias of the soft thresholding estimator. Neverthe-
less, Loubes and Massart’s arguments have been de-
veloped for an orthogonal design. In fact, there is no
nonasymptotic justification that the lasso tuned by BIC
or AIC performs well for general designs X.

Conclusion
The use of the modified BIC criterion to tune esti-

mation procedures in a high-dimensional setting is not
supported by theoretical results. It is proved to over-
fit in the case of thresholding estimators [12], Sec-
tion 3.2.2. Empirically, BIC seems to overfit except for
the lasso. We advise the practitioner to avoid BIC (and
AIC) when p is at least of the same order as n. For in-
stance, LinSelect is supported by nonasymptotic argu-
ments and by empirical results [13] in contrast to BIC.

APPENDIX B: COMPLEMENTS ON LINSELECT

B.1 More Details on the Selection Procedure

The penalty pen(S) involved in the LinSelect crite-
rion (11) is defined by pen(S) = 1.1 pen�(S) where
pen�(S) is the unique solution of

E

[(
U − pen�(S)

n − dim(S)
V

)
+

]
= e−�(S),

where U and V are two independent chi-square ran-
dom variables with dim(S) + 1 and n − dim(S) − 1
degrees of freedom respectively. It is also the solution
in x of

e−�(S) = (D + 1)P

(
FD+3,N−1 ≥ x

N − 1

N(D + 3)

)

− x
N − 1

N
P

(
FD+1,N+1 ≥ x

N + 1

N(D + 1)

)
,

where D = dim(S), N = n − dim(S) and Fd,r is a
Fisher random variable with d and r degrees of free-
dom.

Proposition 4 in [12] ensures the following upper-
bound on pen�(S). For any 0 < κ < 1, there exists a
constant Cκ > 1 such that for any S ∈ S fulfilling 1 ≤
dim(S) ∨ �(S) ≤ κn we have

pen�(S) ≤ Cκ

(
dim(S) ∨ �(S)

)
.

Conversely, Lemma 2.3 in the supplement [38] ensures
that pen�(S) ≥ 2�(S)+dim(S)−C for some constant
C ≥ 0.

B.2 A General Risk Bound for LinSelect

We set

� = σ 2
∑
S∈S

e−�(S).(B.1)

The following proposition gives a risk bound when se-
lecting λ̂ by minimizing (11).

PROPOSITION B.1. Assume that 1 ≤ dim(S) ≤
n/2 − 1 and �(S) ≤ 2n/3 for all S ∈ S. Then, there
exists a constant C > 1 such that for any minimizer λ̂

of criterion (11), we have

C−1R[β̂λ̂;β0]
≤ E

[
inf
λ∈�

{
‖Xβ̂λ − Xβ0‖2

2

+ inf
S∈Ŝ

{‖Xβ̂λ − 
SXβ̂λ‖2
2(B.2)

+ [�(S) ∨ dim(S)]σ 2}
}]

+ �.

Furthermore, with probability larger than 1 − e−C0n −
C1

∑
S∈S e−C2[�(S)∧n]e−�(S), we have for some C > 1

C−1‖Xβ0 − Xβ̂λ̂‖2
2

≤ inf
λ∈�

{
‖Xβ̂λ − Xβ0‖2

2

+ inf
S∈Ŝ

{‖Xβ̂λ − 
SXβ̂λ‖2
2

+ [�(S) ∨ dim(S)]σ 2}
}
.

The first part of Proposition B.1 is a slight variation
of Theorem 1 in [13]. We refer to the supplementary
material [38] for a proof of these two results.

SUPPLEMENTARY MATERIAL

Supplement to “High-dimensional regression
with unknown variance” (DOI: 10.1214/12-
STS398SUPP; .pdf). This supplement contains a de-
scription of estimation procedures that are minimax
adaptive to the sparsity for all designs X. It also con-
tains the proofs of the risk bounds for LinSelect and
lasso-LinSelect.

REFERENCES

[1] AKAIKE, H. (1973). Information theory and an extension of
the maximum likelihood principle. In Second International
Symposium on Information Theory (Tsahkadsor, 1971) 267–
281. Akadémiai Kiadó, Budapest. MR0483125

http://dx.doi.org/10.1214/12-STS398SUPP
http://www.ams.org/mathscinet-getitem?mr=0483125
http://dx.doi.org/10.1214/12-STS398SUPP


516 C. GIRAUD, S. HUET AND N. VERZELEN

[2] ANDERSON, T. W. (1951). Estimating linear restrictions on
regression coefficients for multivariate normal distributions.
Ann. Math. Statistics 22 327–351. MR0042664

[3] ANTONIADIS, A. (2010). Comments on: �1-penalization for
mixture regression models. TEST 19 257–258. MR2677723

[4] ARLOT, S. and BACH, F. (2009). Data-driven calibration of
linear estimators with minimal penalties. In Advances in Neu-
ral Information Processing Systems 22 (Y. Bengio, D. Schu-
urmans, J. Lafferty, C. K. I. Williams and A. Culotta, eds.)
46–54. Curran Associates, New York.

[5] ARLOT, S. and CELISSE, A. (2010). A survey of cross-
validation procedures for model selection. Stat. Surv. 4 40–79.
MR2602303

[6] ARLOT, S. and CELISSE, A. (2011). Segmentation of the
mean of heteroscedastic data via cross-validation. Stat. Com-
put. 21 613–632. MR2826696

[7] ARLOT, S. and MASSART, P. (2010). Data-driven calibration
of penalties for least-squares regression. J. Mach. Learn. Res.
10 245–279.

[8] BACH, F. R. (2008). Consistency of the group lasso and
multiple kernel learning. J. Mach. Learn. Res. 9 1179–1225.
MR2417268

[9] BACH, F. R. (2008). Consistency of trace norm minimization.
J. Mach. Learn. Res. 9 1019–1048. MR2417263

[10] BARANIUK, R., DAVENPORT, M., DEVORE, R. and
WAKIN, M. (2008). A simple proof of the restricted isometry
property for random matrices. Constr. Approx. 28 253–263.
MR2453366

[11] BARAUD, Y. (2011). Estimator selection with respect to
Hellinger-type risks. Probab. Theory Related Fields 151 353–
401. MR2834722

[12] BARAUD, Y., GIRAUD, C. and HUET, S. (2009). Gaussian
model selection with an unknown variance. Ann. Statist. 37
630–672. MR2502646

[13] BARAUD, Y., GIRAUD, C. and HUET, S. (2010). Es-
timator selection in the Gaussian setting. Available at
arXiv:1007.2096v2.

[14] BARRON, A., BIRGÉ, L. and MASSART, P. (1999). Risk
bounds for model selection via penalization. Probab. Theory
Related Fields 113 301–413. MR1679028

[15] BAUDRY, J.-P., MAUGIS, C. and MICHEL, B. (2012). Slope
heuristics: Overview and implementation. Statist. Comput. 22
455–470.

[16] BELLONI, A., CHERNOZHUKOV, V. and WANG, L. (2011).
Square-root lasso: Pivotal recovery of sparse signals via conic
programming. Biometrika 98 791–806. MR2860324

[17] BICKEL, P. J., RITOV, Y. and TSYBAKOV, A. B. (2009).
Simultaneous analysis of lasso and Dantzig selector. Ann.
Statist. 37 1705–1732. MR2533469

[18] BIRGÉ, L. and MASSART, P. (2001). Gaussian model selec-
tion. J. Eur. Math. Soc. (JEMS) 3 203–268. MR1848946

[19] BIRGÉ, L. and MASSART, P. (2007). Minimal penalties for
Gaussian model selection. Probab. Theory Related Fields 138
33–73. MR2288064

[20] BUNEA, F., SHE, Y. and WEGKAMP, M. H. (2011). Opti-
mal selection of reduced rank estimators of high-dimensional
matrices. Ann. Statist. 39 1282–1309. MR2816355

[21] BUNEA, F., TSYBAKOV, A. B. and WEGKAMP, M. H.
(2007). Aggregation for Gaussian regression. Ann. Statist. 35
1674–1697. MR2351101

[22] CANDES, E. and TAO, T. (2007). The Dantzig selector: Sta-
tistical estimation when p is much larger than n. Ann. Statist.
35 2313–2351. MR2382644

[23] CAO, Y. and GOLUBEV, Y. (2006). On oracle inequalities
related to smoothing splines. Math. Methods Statist. 15 398–
414. MR2301659

[24] CHEN, S. S., DONOHO, D. L. and SAUNDERS, M. A.
(1998). Atomic decomposition by basis pursuit. SIAM J. Sci.
Comput. 20 33–61. MR1639094

[25] COMTE, F. and ROZENHOLC, Y. (2004). A new algorithm
for fixed design regression and denoising. Ann. Inst. Statist.
Math. 56 449–473. MR2095013

[26] DALALYAN, A. and TSYBAKOV, A. (2008). Aggregation by
exponential weighting, sharp oracle inequalities and sparsity.
Machine Learning 72 39–61.

[27] DEVROYE, L. P. and WAGNER, T. J. (1979). The L1 conver-
gence of kernel density estimates. Ann. Statist. 7 1136–1139.
MR0536515

[28] DONOHO, D. and TANNER, J. (2009). Observed universal-
ity of phase transitions in high-dimensional geometry, with
implications for modern data analysis and signal processing.
Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 367
4273–4293. MR2546388

[29] DONOHO, D. L. (2006). Compressed sensing. IEEE Trans.
Inform. Theory 52 1289–1306. MR2241189

[30] EFRON, B., HASTIE, T., JOHNSTONE, I. and TIBSHI-
RANI, R. (2004). Least angle regression. Ann. Statist. 32 407–
499. MR2060166

[31] FAN, J. and LI, R. (2001). Variable selection via nonconcave
penalized likelihood and its oracle properties. J. Amer. Statist.
Assoc. 96 1348–1360. MR1946581

[32] GEISSER, S. (1975). The predictive sample reuse method
with applications. J. Amer. Statist. Assoc. 70 320–328.

[33] GERCHINOVITZ, S. (2011). Sparsity regret bounds for indi-
vidual sequences in online linear regression. In Proceedings
of COLT 2011. Microtome Publishing, Brookline, MA.

[34] GIRAUD, C. (2008). Mixing least-squares estimators
when the variance is unknown. Bernoulli 14 1089–1107.
MR2543587

[35] GIRAUD, C. (2008). Estimation of Gaussian graphs by model
selection. Electron. J. Stat. 2 542–563. MR2417393

[36] GIRAUD, C. (2011). Low rank multivariate regression. Elec-
tron. J. Stat. 5 775–799. MR2824816

[37] GIRAUD, C. (2011). A pseudo-RIP for multivariate regres-
sion. Available at arXiv:1106.5599v1.

[38] GIRAUD, C., HUET, S. and VERZELEN, N. (2012). Supple-
ment to “High-dimensional regression with unknown vari-
ance.” DOI:10.1214/12-STS398SUPP.

[39] GIRAUD, C., HUET, S. and VERZELEN, N. (2012). Graph
selection with GGMselect. Stat. Appl. Genet. Mol. Biol. 11
1–50.

[40] GUTHERY, S. B. (1974). A transformation theorem for one-
dimensional F -expansions. J. Number Theory 6 201–210.
MR0342484

[41] HALL, P., KAY, J. W. and TITTERINGTON, D. M. (1990).
Asymptotically optimal difference-based estimation of vari-
ance in nonparametric regression. Biometrika 77 521–528.
MR1087842

[42] HASTIE, T., TIBSHIRANI, R. and FRIEDMAN, J. (2009). The
Elements of Statistical Learning. Data Mining, Inference, and
Prediction, 2nd ed. Springer, New York. MR2722294

http://www.ams.org/mathscinet-getitem?mr=0042664
http://www.ams.org/mathscinet-getitem?mr=2677723
http://www.ams.org/mathscinet-getitem?mr=2602303
http://www.ams.org/mathscinet-getitem?mr=2826696
http://www.ams.org/mathscinet-getitem?mr=2417268
http://www.ams.org/mathscinet-getitem?mr=2417263
http://www.ams.org/mathscinet-getitem?mr=2453366
http://www.ams.org/mathscinet-getitem?mr=2834722
http://www.ams.org/mathscinet-getitem?mr=2502646
http://arxiv.org/abs/1007.2096v2
http://www.ams.org/mathscinet-getitem?mr=1679028
http://www.ams.org/mathscinet-getitem?mr=2860324
http://www.ams.org/mathscinet-getitem?mr=2533469
http://www.ams.org/mathscinet-getitem?mr=1848946
http://www.ams.org/mathscinet-getitem?mr=2288064
http://www.ams.org/mathscinet-getitem?mr=2816355
http://www.ams.org/mathscinet-getitem?mr=2351101
http://www.ams.org/mathscinet-getitem?mr=2382644
http://www.ams.org/mathscinet-getitem?mr=2301659
http://www.ams.org/mathscinet-getitem?mr=1639094
http://www.ams.org/mathscinet-getitem?mr=2095013
http://www.ams.org/mathscinet-getitem?mr=0536515
http://www.ams.org/mathscinet-getitem?mr=2546388
http://www.ams.org/mathscinet-getitem?mr=2241189
http://www.ams.org/mathscinet-getitem?mr=2060166
http://www.ams.org/mathscinet-getitem?mr=1946581
http://www.ams.org/mathscinet-getitem?mr=2543587
http://www.ams.org/mathscinet-getitem?mr=2417393
http://www.ams.org/mathscinet-getitem?mr=2824816
http://arxiv.org/abs/1106.5599v1
http://dx.doi.org/10.1214/12-STS398SUPP
http://www.ams.org/mathscinet-getitem?mr=0342484
http://www.ams.org/mathscinet-getitem?mr=1087842
http://www.ams.org/mathscinet-getitem?mr=2722294


UNKNOWN VARIANCE 517

[43] HUANG, J., MA, S. and ZHANG, C.-H. (2008). Adaptive
Lasso for sparse high-dimensional regression models. Statist.
Sinica 18 1603–1618. MR2469326

[44] HUANG, J. and ZHANG, T. (2010). The benefit of group spar-
sity. Ann. Statist. 38 1978–2004. MR2676881

[45] HUBER, P. J. (1981). Robust Statistics. Wiley, New York.
MR0606374

[46] IZENMAN, A. J. (1975). Reduced-rank regression for the
multivariate linear model. J. Multivariate Anal. 5 248–264.
MR0373179

[47] JI, P. and JIN, J. (2010). UPS delivers optimal phase di-
agram in high dimensional variable selection. Available at
http://arxiv.org/abs/1010.5028.

[48] KLOPP, O. (2011). High dimensional matrix estima-
tion with unknown variance of the noise. Available at
arXiv:1112.3055v1.

[49] KOLTCHINSKII, V., LOUNICI, K. and TSYBAKOV, A. B.
(2011). Nuclear-norm penalization and optimal rates for noisy
low-rank matrix completion. Ann. Statist. 39 2302–2329.
MR2906869

[50] LEBARBIER, E. (2005). Detecting multiple change-points in
the mean of Gaussian process by model selection. Signal Pro-
cessing 85 717–736.

[51] LENG, C., LIN, Y. and WAHBA, G. (2006). A note on the
lasso and related procedures in model selection. Statist. Sinica
16 1273–1284. MR2327490

[52] LEUNG, G. and BARRON, A. R. (2006). Information theory
and mixing least-squares regressions. IEEE Trans. Inform.
Theory 52 3396–3410. MR2242356

[53] LI, K.-C. (1987). Asymptotic optimality for Cp , CL, cross-
validation and generalized cross-validation: Discrete index
set. Ann. Statist. 15 958–975. MR0902239

[54] LOUNICI, K., PONTIL, M., VAN DE GEER, S. and TSY-
BAKOV, A. B. (2011). Oracle inequalities and optimal in-
ference under group sparsity. Ann. Statist. 39 2164–2204.
MR2893865

[55] MALLOWS, C. L. (1973). Some comments on Cp . Techno-
metrics 15 661–675.

[56] MEINSHAUSEN, N. and BÜHLMANN, P. (2006). High-
dimensional graphs and variable selection with the lasso. Ann.
Statist. 34 1436–1462. MR2278363

[57] MOSTELLER, F. and TUKEY, J. W. (1968). Data analysis,
including statistics. In Handbook of Social Psychology, Vol. 2
(G. Lindsey and E. Aronson, eds.). Addison-Wesley, Reading,
MA.

[58] NEGAHBAN, S. and WAINWRIGHT, M. J. (2011). Estimation
of (near) low-rank matrices with noise and high-dimensional
scaling. Ann. Statist. 39 1069–1097. MR2816348

[59] NISHII, R. (1984). Asymptotic properties of criteria for se-
lection of variables in multiple regression. Ann. Statist. 12
758–765. MR0740928

[60] PARK, T. and CASELLA, G. (2008). The Bayesian lasso.
J. Amer. Statist. Assoc. 103 681–686. MR2524001

[61] RASKUTTI, G., WAINWRIGHT, M. J. and YU, B. (2011).
Minimax rates of estimation for high-dimensional linear re-
gression over �q -balls. IEEE Trans. Inform. Theory 57 6976–
6994. MR2882274

[62] RIGOLLET, P. and TSYBAKOV, A. (2011). Exponential
screening and optimal rates of sparse estimation. Ann. Statist.
39 731–771. MR2816337

[63] ROHDE, A. and TSYBAKOV, A. B. (2011). Estimation of
high-dimensional low-rank matrices. Ann. Statist. 39 887–
930. MR2816342

[64] SCHWARZ, G. (1978). Estimating the dimension of a model.
Ann. Statist. 6 461–464. MR0468014

[65] SHAO, J. (1993). Linear model selection by cross-validation.
J. Amer. Statist. Assoc. 88 486–494. MR1224373

[66] SHAO, J. (1997). An asymptotic theory for linear model se-
lection. Statist. Sinica 7 221–264. With comments and a re-
joinder by the author. MR1466682

[67] SHIBATA, R. (1981). An optimal selection of regression vari-
ables. Biometrika 68 45–54. MR0614940

[68] STÄDLER, N., BÜHLMANN, P. and VAN DE GEER, S.
(2010). �1-penalization for mixture regression models. TEST
19 209–256. MR2677722

[69] STONE, M. (1974). Cross-validatory choice and assessment
of statistical predictions. J. Roy. Statist. Soc. Ser. B 36 111–
147. MR0356377

[70] SUN, T. and ZHANG, C.-H. (2010). Comments on: �1-
penalization for mixture regression models. TEST 19 270–
275. MR2677726

[71] SUN, T. and ZHANG, C. H. (2011). Scaled sparse linear re-
gression. Available at arXiv:1104.4595.

[72] TIBSHIRANI, R. (1996). Regression shrinkage and selec-
tion via the lasso. J. Roy. Statist. Soc. Ser. B 58 267–288.
MR1379242

[73] TIBSHIRANI, R., SAUNDERS, M., ROSSET, S., ZHU, J. and
KNIGHT, K. (2005). Sparsity and smoothness via the fused
lasso. J. R. Stat. Soc. Ser. B Stat. Methodol. 67 91–108.
MR2136641

[74] VAN DE GEER, S. A. and BÜHLMANN, P. (2009). On the
conditions used to prove oracle results for the Lasso. Electron.
J. Stat. 3 1360–1392. MR2576316

[75] VERT, J. P. and BLEAKLEY, K. (2010). Fast detection of
multiple change-points shared by many signals using group
LARS. In Advances in Neural Information Processing Sys-
tems 23 (J. Lafferty, C. K. I. Williams, J. Shawe-Taylor,
R. S. Zemel and A. Culotta, eds.) 2343–2351. Curran Asso-
ciates, New York.

[76] VERZELEN, N. (2010). High-dimensional Gaussian model
selection on a Gaussian design. Ann. Inst. H. Poincaré
Probab. Stat. 46 480–524. MR2667707

[77] VERZELEN, N. (2012). Minimax risks for sparse regressions:
Ultra-high-dimensional phenomenons. Electron. J. Stat. 6
38–90.

[78] WAINWRIGHT, M. J. (2009). Information-theoretic limits on
sparsity recovery in the high-dimensional and noisy setting.
IEEE Trans. Inform. Theory 55 5728–5741. MR2597190

[79] YE, F. and ZHANG, C.-H. (2010). Rate minimaxity of the
Lasso and Dantzig selector for the �q loss in �r balls. J. Mach.
Learn. Res. 11 3519–3540. MR2756192

[80] YUAN, M. and LIN, Y. (2006). Model selection and estima-
tion in regression with grouped variables. J. R. Stat. Soc. Ser.
B Stat. Methodol. 68 49–67. MR2212574

[81] ZHANG, C.-H. (2010). Nearly unbiased variable selection
under minimax concave penalty. Ann. Statist. 38 894–942.
MR2604701

[82] ZHANG, T. (2005). Learning bounds for kernel regression us-
ing effective data dimensionality. Neural Comput. 17 2077–
2098. MR2175849

http://www.ams.org/mathscinet-getitem?mr=2469326
http://www.ams.org/mathscinet-getitem?mr=2676881
http://www.ams.org/mathscinet-getitem?mr=0606374
http://www.ams.org/mathscinet-getitem?mr=0373179
http://arxiv.org/abs/1010.5028
http://arxiv.org/abs/1112.3055v1
http://www.ams.org/mathscinet-getitem?mr=2906869
http://www.ams.org/mathscinet-getitem?mr=2327490
http://www.ams.org/mathscinet-getitem?mr=2242356
http://www.ams.org/mathscinet-getitem?mr=0902239
http://www.ams.org/mathscinet-getitem?mr=2893865
http://www.ams.org/mathscinet-getitem?mr=2278363
http://www.ams.org/mathscinet-getitem?mr=2816348
http://www.ams.org/mathscinet-getitem?mr=0740928
http://www.ams.org/mathscinet-getitem?mr=2524001
http://www.ams.org/mathscinet-getitem?mr=2882274
http://www.ams.org/mathscinet-getitem?mr=2816337
http://www.ams.org/mathscinet-getitem?mr=2816342
http://www.ams.org/mathscinet-getitem?mr=0468014
http://www.ams.org/mathscinet-getitem?mr=1224373
http://www.ams.org/mathscinet-getitem?mr=1466682
http://www.ams.org/mathscinet-getitem?mr=0614940
http://www.ams.org/mathscinet-getitem?mr=2677722
http://www.ams.org/mathscinet-getitem?mr=0356377
http://www.ams.org/mathscinet-getitem?mr=2677726
http://arxiv.org/abs/1104.4595
http://www.ams.org/mathscinet-getitem?mr=1379242
http://www.ams.org/mathscinet-getitem?mr=2136641
http://www.ams.org/mathscinet-getitem?mr=2576316
http://www.ams.org/mathscinet-getitem?mr=2667707
http://www.ams.org/mathscinet-getitem?mr=2597190
http://www.ams.org/mathscinet-getitem?mr=2756192
http://www.ams.org/mathscinet-getitem?mr=2212574
http://www.ams.org/mathscinet-getitem?mr=2604701
http://www.ams.org/mathscinet-getitem?mr=2175849


518 C. GIRAUD, S. HUET AND N. VERZELEN

[83] ZHANG, T. (2011). Adaptive forward–backward greedy algo-
rithm for learning sparse representations. IEEE Trans. Inform.
Theory 57 4689–4708. MR2840485

[84] ZOU, H. (2006). The adaptive lasso and its oracle properties.
J. Amer. Statist. Assoc. 101 1418–1429. MR2279469

[85] ZOU, H. and HASTIE, T. (2005). Regularization and vari-
able selection via the elastic net. J. R. Stat. Soc. Ser. B Stat.
Methodol. 67 301–320. MR2137327

http://www.ams.org/mathscinet-getitem?mr=2840485
http://www.ams.org/mathscinet-getitem?mr=2279469
http://www.ams.org/mathscinet-getitem?mr=2137327

	Introduction
	Sparsity Assumptions
	Statistical Objectives
	Approaches
	Why Care about Nonasymptotic Analyses?
	Organization of the Paper

	Theoretical Limits
	Minimax Adaptation
	Minimax Risks under Known Sparsity and Known Variance
	Dependency of R[k,X] on the design X

	Adaptation to the Sparsity and to the Variance
	Adaptation to the sparsity when the variance is known
	Simultaneous adaptation to the sparsity and the variance

	What Should We Expect from a Good Estimation Procedure?
	Other Statistical Problems in an Ultra-High-Dimensional Setting

	Some Generic Selection Schemes
	Cross-Validation Procedures
	Penalized Empirical Loss
	Penalized log-likelihood
	Plug-in criteria

	Approximation Versus Complexity Penalization: LinSelect

	Coordinate-Sparsity
	Automatic Tuning Methods
	Cross-validation
	LinSelect

	Lasso-Type Estimation under Unknown Variance
	l1-Penalized log-likelihood
	Square-root lasso and scaled lasso
	Bayesian lasso

	Risk Bounds for Square-Root Lasso and Lasso-LinSelect
	Support Estimation and Inverse Problem
	Inverse problem
	Support estimation

	Numerical Experiments
	Simulation design
	Experiment 1: Tuning the lasso for prediction
	Experiment 2: Variable selection with Gauss-lasso and square-root lasso
	Computation time


	Group-Sparsity
	Tuning the Group-Lasso with LinSelect

	Variation-Sparsity
	Penalized Empirical Loss
	Plug-in estimator
	Estimating the variance by the residual least- squares
	Slope heuristic

	CV Procedure
	Alternative for Very High-Dimensional Settings

	Extensions
	Gaussian Design and Graphical Models
	Non-Gaussian Noise
	Multivariate Regression
	Nonparametric Regression

	Appendix A: A Note on BIC Type Criteria
	Appendix B: Complements on LinSelect
	More Details on the Selection Procedure
	A General Risk Bound for LinSelect

	Supplementary Material
	References

