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Abstract

We propose optimal statistical designs for the accurate determination
of the parameters of a growth rate model, function of the temperature,
for Listeria monocytogenes (LM). This model is generally called a �max
model in the predictive microbiology �eld. It is called a secondary
model because �max is a parameter of a primary model for describing
the growth as a function of time. There are many models for �max
(functions of temperature, pH, water activity, ...) but the behaviour
of LM when temperature is low needs a particular �max model. In
this paper, beyond the determination of useful optimal designs, we
want to emphasize on the advantage of an experimental methodology
based on such statistical tools. Indeed, we observed that this kind of
e¢ cient experimental approach is not su¢ ciently known and put into
practice in the predictive microbiology �eld, whereas it is well known
in other scienti�c �elds as applied chemical research for instance.
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1 Introduction

This paper is devoted to a proposition of an experimental methodology based
on the use of optimal statistical designs in a view to reach a very accurate
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estimation of the parameters of a growth rate model where temperature is the
explanatory variable. It is called a �max secondary model in the predictive
microbiology area, and applied here to Listeria monocytogenes (LM) data.
Typically, �max is the slope of the primary growth models. Notably the
accurate estimation of the parameter corresponding to the minimal growth
temperature of LM is of major interest. The statistical theoretical aspects on
the optimal designs we propose are not developped here (however numerous
and useful references are indicated in a pedagogical point of view), but only
evocated. The practical point of view, with the goal to be useful to the
scientists of the predictive microbiology area, is emphasized.
For about thirty years many analytic models have been proposed for the
modelling of a bacterian population growth, as a function of time, by means
of said primary models, see, e.g., Baranyi and Roberts (1994, 1995), Rosso
(1995), Rosso and Flandrois (1995). Also, was proposed the modelling of the
parameters of these primary models, that lead to the secondary models when
these parameters appear themselves as functions of environmental factors
(temperature, pH, water activity, ...), see, e.g., Ratkovsky et al. (1982), Rosso
et al. (1993), Augustin and Carlier (2000), Le Marc et al. (2002), Bajard
et al. (1996), Charles-Bajard et al. (2003). For instance this is the case for
the parameter �max when it is considered as a function of the temperature.
A very well known model of �max is the pioneer model called the Ratkovsky
square model (Ratkovsky et al. 1982). Then, other models were exhibited
over these last years, see, e.g., the Rosso�s cardinal model (Rosso et al., 1993),
and also the Charles-Bajard-Flandrois-Tomassone model (Charles-Bajard et
al., 2003), referred as the CFT model further in this paper. This CFT model
is particularly relevant to show the anomaly of LM (Bajard et al., 1996).
The CFT model contains two parameters and seems to be really e¢ cient to
model �max as a function of the temperature, that has been clearly shown by
the authors. It is completely de�ned in Section 3. Our main objective is to
show, via the CFT model, the advantage of the following approach when a
large accuracy is needed. When an information is previously available due to
a �rst experimental step (generally non optimal) and simultaneously a �rst
model is assumed, then optimal designs can be advantageously undertaken
in a second experimental step to reach an e¢ cient estimation of the model
parameters. This second step is particularly advantageous if the �rst step
showed that the experimental variance (error variance) is heterogenous over
the experimental domain as it was the case in the CFT problem. From an
additionnal point of view, there is a need for such an accuracy if we want to
manage a risk assessment in the food industry.
In this paper, beyond the determination of real practical optimal designs for
a real model, we want to emphasize on the usefulness of an experimental
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methodology based on such statistical tools whatever the postulated model.
Indeed, we observed last years that this kind of e¢ cient experimental ap-
proach is not su¢ ciently known and put into practice in the predictive mi-
crobiology �eld. However, notice that some good papers were published with
a similar approach but based on another optimality criteria and a rather
di¤erent point of view (Versyk et al., 1999; Bernaerts et al., 2000).
This paper is divided in seven sections. After this �rst introductive sec-
tion, Section 2 introduces to the statistical context and notations, Section 3
presents the CFT model, Section 4 describes the optimal designs proposed
(de�nition and computation), Section 5 shows a montecarlo simulation com-
parison of the optimal designs with naive (non optimal) designs. Section 6
gives some major principles for helping to construct an e¢ cient experimental
methodology that can be applied in a general way, and also underlining that
another criteria exist for the more di¢ cult cases. Section 7 is a conclusion
to close the paper.

2 The statistical context

We consider simultaneously the classical parametric nonlinear regression model

yik = �� (xi; �
�) + "ik ; i = 1; : : : ; NS ; k = 1; : : : ; ri (1)

and the design

�N;NS ;frg =

8<:
x1 : : : xi : : : xNS
w (x1) : : : w (xi) : : : w (xNS)
r1 : : : ri : : : rNS

9=; (2)

where

� yik is the kth observation collected on the ith support point xi de�ned
hereafter,

� xi is a m�dimensional support point (m�vector) whom each compo-
nent xil is a controlled level of the explanatory variableXl, l = 1; : : : ;m;
we have xi 2 � � Rm, i = 1; : : : ; NS, � being the experimental design,
compact subset of Rm,

� �� is the p�dimensional vector of p unknown parameters to be esti-
mated, they will be considered as certain or random parameters de-
pending on the optimal design chosen as it will be shown further; we
have �� 2 � � Rp, � being the parametric domain, a Borelian subset
of Rp,
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� �� (:) is a continuous scalar function de�ned on � � �, valued in R,
doubly di¤erentiable relatively to the parameters and the explanatory
variables,

� N is the total number of observations yik collected on the NS sup-
port points with the replication pattern frg = r1; : : : rNS , ri � 1; 8i;PNS

i=1 ri = N ,

� "ik is the error attached to yik; in this paper we will assume that it is
normally distributed as N (0; �2i ), with mean equals to zero and vari-
ance �2i ; the errors are assumed independent,

� w (xi) = 1=�2i is the weight of each observation yik, 8k, this weight
dependent on xi, because we assume a heterogenous variance over the
experimental domain �.

Moreover let the (N � 1) vector y of the N observations, we have also:

V ar (y) = �� = diag

8<:
r1z }| {

�21 : : : �
2
1 : : : : : :

rNSz }| {
�2NS : : : �

2
NS

9=; (3)

W� = ��1� = diag

8<:
r1z }| {

w(x1) : : : w(x1) : : : : : :

rNSz }| {
w(xNS) : : : w(xNS)

9=; (4)

Note that generally the �2i are unknown. For the determination of the optimal
designs proposed here it is necessary to have some estimates of these �2i .
These estimates, referred as �̂2i ; must have been computed from anterior
available data. For instance there are sometimes calculated by means of a
parametric model as it is the case for the CFT model (see equation (7)).
Because the errors are assumed independent and gaussian we can de�ne the
Fisher information matrix (see for instance Atkinson and Doneev (1992) for
useful details on this well known matrix) as the (p� p) matrix

M (�; ��) = J (�; ��)T W�J (�; �
�) (5)

where J (�; ��) is the (N � p) jacobian matrix, whom the general term isn
@�(xik;�

�)
@�j

o
; i = 1; : : : ; NS; k = r1; : : : ; rNS ; j = 1; : : : ; p. We assume that

these �rst derivatives exist and they are continuous over � � �, and they
are continously di¤erentiable relatively to the explanatory variables and the
parameters. Finally, for estimating �� from the data we will use the weigthted
least squares estimate, referred as �̂WLS, but more simply referred as �̂ in this
paper.
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3 The CFT model

The CFT model contains two parameters and seems to be really e¢ cient to
model �max as a function of the temperature, that has been clearly shown by
the authors (Charles-Bajard et al., 2003).
The analytical function of this model is

�� (�) = �0 (�) [�1 (�) + �2 (�) �3 (�) �4 (�)]
2 (6)

with �0 (�) = k1�1 + k2�2; �1 (�) = (T � �1) =�2; �2 (�) = �1= (�2 (�1 � �2));
�3 (�) = 1+exp (�1 � �2); �4 (�) = ln ((1 + exp(�2 � T )) = (1 + exp(�2 � �1))),
where �1 and �2 are the parameters to be estimated, and T is the explana-
tory factor that is the temperature expressed in Celsius degrees; k1 and
k2 are two constants given in Charles-Bajard et al. (2003): k1 = 0:004;
k2 = 0:0149. For this model we have m = 1, p = 2, � = [�7 ;�3]� [8 ; 13],
and � = [�5�C ; +30�C] :
It has been proved by the authors that the model (6), notably under its square
root form, takes very well into account the break in the curve, typical anomaly
of the Listeria behaviour shown by Bajard et al (1996). However, in this
paper we want to deal with the heterogeneity of the error variance, and then
it is not recommended to take the square root of (6). This transformation is
not always optimal for stabilizing the error variance and moreover it destroys
the true nature of the error variance. In Charles-Bajard et al. (2003) it is
given twenty pairs of data (xi; yi) and also the corresponding twenty values
of the �max variance, that are reliable enough because each of these twenty
values are based on six repeated experiments. These values clearly show that
the variance is not homogenous. To take into account this heterogeneity we
established the model :

var (�max) = exp(�12:80 + 0:27T ) (7)

with these data. We obtained also the estimates �̂1 = �5:33 and �̂2 =
11:27 by means of the weighted nonlinear regression (NLIN procedure) of
the SAS/STAT software (version 8.1). The weights are de�ned in section 2.
We computed the 95% marginal asymptotic con�dence intervals for �1 and
�2:

�1 : [�5:86 ; � 4:82] ; �2 : [10:80 ; 11:85] (8)

from the 95% con�dence ellipsoïd (see Fig.1), that is here only an approxi-
mate con�dence region, generally called asymptotic con�dence region in clas-
sical textbooks (see for instance Bates and Watts, (1988)).
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Figure 1: Plot of parametric con�dence ellipsoids, at three levels, for the
CFT model, in the conditions and the data of the paper of Charles-Bajard
et al. (2003).
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The volume of this ellipsoïd equals to 0:95. We recall some useful details
about this ellipsoid in Appendix A. On the Fig. 2 appears an exact � exact
means here that its covering probabilty of �� is exactly 95% � con�dence
region, called in the following the X con�dence region. Its volume equals to
8:47 and the X (exact) marginal con�dence intervals obtained from it are for
�1 and �2:

�1 : [�6:78 ; � 3] ; �2 : [9:75 ; 13] (9)

Figure 2: Plot of the X (exact) parametric con�dence regions, at three levels,
for the CFT model, in the conditions and the data of the paper of Charles-
Bajard et al. (2003).

The X con�dence region belongs to the Halperin family (Halperin, 1963)
and has been completely de�ned by Hamilton and Watts (1985) and Vila
(1985, 1986). We give a brief de�nition of this region in Appendix B. Com-
paring Fig. 1 and 2 it is clear here that the ellipsoïd seems to be a very bad
approximation (too �aterring and false) of an exact region, and we show in
the next section that the main reason is due to the nonoptimal design used
in the paper of Charles-Bajard et al. (2003).
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4 The optimal designs

The optimal design methodology is only a subset included in the huge �eld
of the statistical and rational designing of experiments. Of course it is not
our purpose to give here a review on this matter. We want just to say that
numerous criteria exist to build optimal designs and several books are devoted
on this matter, see, e.g., Atkinson and Doneev (1992) for a useful introduction
on this matter, Pázman (1986) and Pukelsheim (1993) for advanced readers
involved in the linear models, and Pázman (1993) and Gallant (1987) for
advanced readers involved in the nonlinear models. Some criteria deal with
linear models, others are specialized to nonlinear models. In this paper we
show how three di¤erent optimal designs coming fron this litterature can
solve our microbiological question, even if those criteria are not very recent.
In this section we recall the de�nition of the criteria used, and why they
are chosen, and we give the results i.e. the optimal designs determined with
these criteria.

4.1 The local D�optimal design
4.1.1 De�nition

If we consider that all the parameters of the postulated model are parame-
ters of interest, then their estimates must be obtained with an equivalent
precision, and we must choose a design wich enables to reach this aim. It is
the aim of the D�optimality criterion. Indeed this criterion leads to mini-
mize the volume (the square root in fact) of the usual parametric con�dence
ellipsoïd (see Appendix A). So the D�optimal design is de�ned (with the
notations of section 2) as:

�DN;NS=p;frg = Arg

�
max
�2�

det (M (�; �0))

�
(10)

Three important remarks must be made now: i) Note that this design de-
pends on a prior value �0 of �

�, so it is in fact a local D�optimal design, and
for the designs shown in this section �0 will be set to the estimate �̂ given
in section 3, ii) Minimize the ellipsoïd volume is mathematically equivalent
to maximize the determinant of the Fisher matrix information, iii) We want
here a design based on only p support points, and it is explained why below:

4.1.2 Computation

First of all the model (7) leads to the predictions of the local variances �̂2i ,
and then to the weights ŵ (xi) = 1=�̂

2
i . These predictions will be the diagonal
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Figure 3: Evolution of the normalized determinant (see text, section 4.1.2)
versus the design size.

terms of the W� matrix. Now a minimal discrete (local) D�optimal design
(N = NS = p) can be easily obtained by the very well-known Fedorov double
exchange algorithm (Fedorov, 1972), implemented in the OPTEX procedure
of the SAS/QC software. We obtained:

�D2;2;f1;1g =

8<:
T1 = �1:12�C T2 = +15:40

�C
ŵ (T1) = 490117 ŵ (T2) = 5665
r1 = 1 r2 = 1

9=; (11)

If we want replications the same algorithm leads to the graph on Fig. 3.

The replicated designs correspond to the peaks at the two-multiples on Fig.
3. That means that the replicated designs are made of balanced replications
of the same minimal (NS = 2)�design. The best designs are those that
are equireplicated on the two NS support points de�ned by (11). Now, let
� = det (M (�; �0)) and �n = �=N

p the normalized determinant. We found
the maximum normalized determinant ��

n = max (�n) = 2:70: The Gen-
eral Equivalence Theorem (Kiefer and Wolfowitz, 1960, Pukelsheim, 1993)
enables us to con�rm this value is a global maximum on the experimental do-
main �, and then this minimal D�optimal design is said 100% D�e¢ cient.
Moreover, the Vila condition of the replication in D�optimality (Vila, 1991)
is checked here and then indicates that the best designs are those that are
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equireplicated on the support (11). This concusion can be visualized in Table
1.

Balanced replications � �n Unbalanced replications � �n

1 ; 1 10:81 2:70 1 ; 1 10:81 2:70
2 ; 2 43:24 2:70 1 ; 2 or 2 ; 1 21:62 2:40
3 ; 3 97:30 2:70 1 ; 3 or 3 ; 1 32:43 2:03
4 ; 4 172:97 2:70 1 ; 4 or 4 ; 1 43:24 1:73
5 ; 5 270:27 2:70 1 ; 5 or 5 ; 1 54:05 1:50
10 ; 10 1080 2:70 1 ; 10 or 10 ; 1 108 0:89

Table 1 : D�optimality criterion: evolution of the determinant and the
normalized determinant versus the number of balanced and unbalanced repli-
cations, always on the same support points given in (9).
To close this subsection we can say that a practical and useful (local)D�optimal
design that can be put into practice at the laboratory is the design

�D6;2;f3;3g =

8<:
T1 = �1:12�C T2 = +15:40

�C
ŵ (T1) = 490117 ŵ (T2) = 5665
r1 = 3 r2 = 3

9=; (12)

4.1.3 Comment

In fact, if the postulated model is linear relatively to the parameters, and
also if we are sure that is the right model to analyze the data, then it is
well know that a D�optimal design is an adequate design to estimate the
parameters of the model with the best joint precision (small variance) as
possible. However, if the postulated model is nonlinear relatively to the pa-
rameters, and even if the model is absolutely true, then it is known also that
the D�optimality criterion is only an approximate criterion (Atkinson and
Doneev, 1992). Indeed, in the nonlinear case the D�optimality criterion is
based on the �rst-order approximation of the model � (:). However, in certain
cases the nonlinearity of the model is small, i.e. its intrinsic and parametric
components (see Bates and Watts (1988, chapter 6) for a good introduction
on this matter, and also our discussion in 6.1.3) are small. In such cases we
can accept this approximation. Several methods enable us to quantify this
nonlinearity, but two among them are easy to apply, before to collect the
observations yik , i.e. in our experimental design situation. The �rst method
consists in the computation of the curvature measures proposed by Bates
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and Watts (1980, 1988, chapter 6). The second method is the comparison
(relatively to the shape and the volume) of the con�dence ellipsoïd with an
exact region, for instance the X con�dence region (see Appendix B) that has
been intensively studied by Vila (1985, 1986), Gauchi (1999), and Gauchi
and Vila (2004). Here, for the design (12) we obtain a quadratic mean of the
parametric nonlinearity equals to 0:44, that is a signi�cant value because it
overtakes the threshold of 0:38, and otherwise the intrinsic linearity is zero
because NS = p . This latter consequence is particularly interesting as we
will explain in 6.1.3; one can �nd a full and elegant geometrical proof of this
phenomenon in Pázman (1993). We show in Fig. 4 and 5 the con�dence
ellipsoïd and the (expected) X con�dence region for the design (12), and in
Table 2 the 95% marginal con�dence intervals are given.

Figure 4: Plot of parametric con�dence ellipsoids, at three levels, for the
local D�optimal described in (12).

These regions and intervals look like, respectively, on the contrary of those
shown in Fig.1 and 2. This likeness heavily con�rms the usefulness of the
optimal design approach.
In addition, in Table 2 we put the 95% marginal asymptotic con�dence in-
tervals and X (exact) con�dence intervals for a D�optimal design with same
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Figure 5: Plot of X (exact) parametric con�dence regions, at three levels,
for the local D�optimal described in (12).
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support points but with the replication pattern fr1 = 10 ; r2 = 10g in a view
to compare these intervals with those of section 3. We observe that even with
twenty experiments and even if the volumes are almost the same, the asymp-
totic marginals intervals are always rather wrong.
In conclusion of this paragraph we can say that this local D�optimal design
de�ned by (12) is not the best one but it can be a fairly acceptable design,
notably because the ellipsoidal con�dence region is very close to the exact X
con�dence region. We have to add now that it exist other very well adapted
optimality criteria for the nonlinear case, they are evocated in section 6.2 of
this paper.

4.2 The local DS�optimal design
4.2.1 De�nition

Now we suppose that we are more particularly interested in estimating �1
corresponding to the growth minimal temperature, i.e. the second parameter
�2 is considered here as a nuisance parameter. Then we can choose an optimal
design that takes into account this constraint. The (local) DS�optimal,
referred as �DS(�1)N;NS=p;frg, enables us to reach this goal, and it is de�ned here
(see, e.g., Silvey (1980) for a general presentation) as:

�
DS(�1)
N;NS=p;frg = Arg

�
max
�2�

det
�
M [1;1]

��
(13)

where
M [1;1] =M [1;1] �M [1;2]

�
M [2;2]

��1
M [1;2]T (14)

with M [i;j] the (i; j)�element of (5).

4.2.2 Computation

If we compute and plot the determinant of (14) at each node of a two-
dimensional grid over � we can determine easily the maximum and the
corresponding T values. These are T1 = �1:15�C and T2 = 11:97�C. A
DS�optimal design (100% DS�e¢ cient) could be then made of balanced
repetitions on these T values that are the support points. We refer a practi-
cal DS�optimal design as:

�
DS(�1)
6;2;f3;3g =

8<:
T1 = �1:15�C T2 = +11:97

�C
ŵ (T1) = 495746 ŵ (T2) = 13396
r1 = 3 r2 = 3

9=; (15)
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4.2.3 Comment

First of all note that the second support point is closer to the �rst sup-
port point with this design (compare with (12)). The ellipsoid and exact
con�dence regions look like each other and also look like to those of the
D�optimal. We give only the 95% marginal intervals in Table 2.

4.3 The ELD�optimal design
4.3.1 De�nition

Now both parameters are of interest but we want to be more robust rela-
tively to a misspeci�cation of the prior value �0: Then instead of a single
value �0 we propose a prior distribution for the unknown parameter (that is
now considered as a random parameter), for instance a gaussian distribution
p (�0) = N (�0;��0). This distribution is then introduced in the optimality
criterion. The ELD�optimal design (Chaloner and Verdinelli, 1995) is based
on this approach. It is de�ned as:

�ELDN;NS=p;frg = Arg

�
max
�2�

E [log det (M(�; �0))]

�
(16)

= Arg

�
max
�2�

�Z
�

log det(M(�; �0))p (�0) d�0

��
4.3.2 Computation

Firtsly, we determine

��0 =

�
0:03567 0:006843
0:006843 0:0522

�
(17)

with the Charles-Bajard paper data. Secondly, with the same graphical way
as for the preceeding design, we obtain now the maximum of (16) at the T
values: T1 = �0:92�C and T2 = 16:58�C. A practical ELD�optimal design
could be then:

�ELD6;2;f3;3g =

8<:
T1 = �0:92�C T2 = +16:58

�C
ŵ (T1) = 464353 ŵ (T2) = 4119
r1 = 3 r2 = 3

9=; (18)

4.3.3 Comment

This design is particularly well adapted here in a sequential approach because
we have available data to compute (17), see section 6.1.1 for a discussion.
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Otherwise we observe that the second support point is farther than to the
�rst support point (compare with (12)). The ellipsoid and exact con�dence
regions look like each other and also look like to those of the D�optimal.
We give only the 95% marginal intervals in Table 2.

D�optimal design with fr1 = 3; r2 = 3g
Anticipated (asymptotic) con�dence intervals ; vol (E) = 2:26
�1 : [�6:02 ; �4:63] =) L = 1:40
�2 : [+10:22 ; +12:31] =) L = 2:09
Expected X (exact) con�dence intervals ; vol(X) = 2:29

�1 : [�6:03 ; �4:63] =) L = 1:41
�2 : [+10:29 ; +12:40] =) L = 2:11

D�optimal design with fr1 = 10; r2 = 10g
Anticipated (asymptotic) con�dence intervals (vol (E) = 0:68)
�1 : [�5:71 ; �4:95] =) L = 0:77
�2 : [+10:70 ; +11:84] =) L = 1:14
Expected X (exact) con�dence intervals (vol X = 0:68)

�1 : [�5:71 ; �4:94] =) L = 0:77
�2 : [10:72 ; 11:86] =) L = 1:15

DS�optimal design
Anticipated (asymptotic) con�dence intervals ; vol(E) = 2:89
�1 : [�6:02 ; �4:63 ] =) L = 1:40
�2 : [+9:95 ; +12:59] =) L = 2:64
Expected X (exact) con�dence intervals ; vol(X) = 3:08

�1 : [�6:03 ; �4:62] =) L = 1:40
�2 : [+10:13 ; +13:00] =) L = 2:85

ELD�optimal design
Anticipated (asymptotic) con�dence intervals ; vol(E) = 2:29
�1 : [�6:03 ; �4:63 ] =) L = 1:40
�2 : [+10:22 ; +12:32] =) L = 2:10
Expected X (exact) con�dence intervals ; vol(X) = 2:31

�1 : [�6:04 ; �4:63] =) L = 1:41
�2 : [+10:28 ; +12:40] =) L = 2:12

Table 2 : Anticipated (asymptotic) con�dence intervals and expected X
(exact) con�dence intervals for the optimal designs given in section 4. L
is the length of the interval, and vol(E) and vol(X) mean volume of the
ellipsoid and the X region, respectively. All the intervals are given at the
95% level.
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5 Comparison of designs

The objective of this section is to compare the three optimal designs we gave
in the preceeding section, between each other but also with naive designs,
designs that we de�ne hereafter.

5.1 Naive designs

We de�ne now a naive (nonoptimal) design whom the goal is to simulate the
usual way to design experiments in predictive microbiology. We propose such
a design after attending numerous meetings of microbiologists, these latter
years. Of course this only a personnal point of view. Firstly, if there are only
two parameters in the model the number NS of support points chosen by the
experimenter is never be only two, but let us say a number between 5 and 10.
We chose here NS = 6. Morever, almost instinctively, these support points
are equidistantly set on the experimental design. Secondly, the repetition
of experiments seems not always very relevant, because that means more
work, and also the link between the quality of the parameter estimation
and the number of repetitions is not easily understood. So, we consider a
naive design without repetitions and other two with two repetitions at each
of the six support points. Finally, the heterogeneity of the error variance
is not taken into account when designing experiments, the model is rather
transformed for instance by taking square root of the response. Here in a
view to compare with the optimal designs we will consider the two situations:
taking into account or not this heterogeneity with the model (7). Then, the
naive designs we consider are de�ned as:

�naive16;6;f1;:::;1g =

8<:
T1 = �5�C; Tk+1 = Tk + 7
ŵ (Tk) = 1
rk = 1

9=; ; k = 1; : : : ; 5 (19)

�naive212;6;f2;:::;2g =

8<:
T1 = �5�C; Tk+1 = Tk + 7
ŵ (Tk) = 1
rk = 2

9=; ; k = 1; : : : ; 5 (20)

�naive312;6;f2;:::;2g =

8<:
T1 = �5�C; Tk+1 = Tk + 7
ŵ (Tk) = 1=var (�max)k
rk = 2

9=; ; k = 1; : : : ; 5 (21)

So, the simulation of the observation sets for the naive designs (19) and
(20) is performed with a uniform var (�max)S = 0:0008612 on � (obtained
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by averaging the twenty values of var (�max) given in the Charles-Bajard
paper); and consequently ŵ (Tk) = 1;8k: For the naive design (21) we use the
model (7). At last we consider aD�optimal design, referred as �D06;2f3;3g;where
var (�max) is assumed homogenous (then equals to 0:0008612). This design
was obtained with the same computing means as for (11), it will be very
useful for the comparison study as we will see in section 5.3. It is de�ned by

�D06;2;f3;3g =

8<:
T1 = +1:76

�C T2 = +30
�C

ŵ (T1) = 1 ŵ (T2) = 1
r1 = 3 r2 = 3

9=; (22)

5.2 Montecarlo simulation and computed statistics

To compare the relative e¢ ciency of the optimal and naive designs we must
compare the quality of parameter estimates obtained with each design. To
reach this goal two steps are necessary:

� In a �rst step, we simulate by a classical montecarlo method a large
number G (typically G equals to 5000) of observation sets yik, i =
1; : : : ; NS ; k = 1; : : : ; ri. For this simulation we use the CFT model
assuming that �̂j, j = 1; 2, given in section 3, are the true value, and
with an homogenous or heterogenous error distribution according to
the design studied. For each observation set u (u = 1; : : : ; G) the

parameter estimates �̂
(u)

j are computed by nonlinear regresssion.

� In a second step, with these G estimates we compute simulation esti-
mates �̂

S

j ; and some relevant statistics relative to these �̂
S

j .

These statistics enable us to compare e¢ ciently the designs. These are, for
j = 1,2, the following:

� �̂Sj , the simulation estimate, computed as

�̂
S

j =
1

G

GX
u=1

�̂
(u)

j (23)

� �̂(�̂Sj ), the estimated standard error of the simulation estimate �̂
S

j , com-
puted as

�̂(�̂
S

j ) =

"
1

G

GX
u=1

�
�̂
(u)

j � �̂Sj
�2#1=2

(24)
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� b̂%(�̂
S

j ), the estimated bias pourcentage of �̂
S

j , computed as

b̂%(�̂
S

i ) = 100�
\
E
�
�̂
S

j

�
� �̂j

�̂
S

j

(25)

where
\
E
�
�̂
S

j

�
= �̂

S

j , and where �̂i is assumed to be the true value of
the unknown parameter during the simulation,

� �b%, the average of the two b̂%(�̂
S

j ),

� dCV % ��̂Sj �, the estimated variation coe¢ cient, computed as
dCV % ��̂Sj � = 100� �̂(�̂Sj )����̂Sj ��� (26)

� \EQM j , the estimated mean quadratic error of the estimate �̂
S

j , com-
puted as

\EQM j =
h
b̂%(�̂

S

j )=100
i2
+ �̂2(�̂

S

j ) (27)

� EQM , the average of the two \EQM j.

5.3 Results of the comparison

In Table 3 are given these results. Important comments are necessary about
this Table 3.
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Simulation Designs
Statistics �D6;2f3;3g �DS6;2f3;3g �ELD6;2f3;3g �D06;2f3;3g �naive16;6f1;:::;1g �naive212;6f2;:::;2g �naive312;6f2;:::;2g

hetero hetero hetero homo homo homo hetero

�̂
S

1 �5:3296 �5:3314 �5:3301 �5:1662 �7 �3:3089 �5:3308
�̂
S

2 11:2683 11:2925 11:2679 11:5354 10:76 12:0982 11:2654

�̂(�̂
S

1 ) 0:2682 0:2682 0:2687 1:7324 NC 0:4430 0:4097

�̂(�̂
S

2 ) 0:3982 0:5159 0:4010 0:9326 NC 1:0147 0:3561

b̂%(�̂
S

1 ) 0:042 0:074 0:052 3:12 NC 61 0:063

b̂%(�̂
S

2 ) 0:022 0:236 0:018 2:34 NC 7 0:004
�b% 0:032 0:15 0:035 2:73 NC 34 0:034dCV % ��̂S1� 5:03 5:03 5:04 33 NC 13:39 7:68dCV % ��̂S2� 3:53 4:57 3:56 8 NC 8:39 3:16

\EQM1 0:07 0:07 0:07 3 NC 0:57 0:17
\EQM2 0:16 0:27 0:16 0:9 NC 1:03 0:13

EQM 0:11 0:17 0:12 1:94 NC 0:80 0:15
�int 0 0 0 0 7:45(0:38) 5:27(0:49) 5:27(0:49)

Table 3 : Simulated statistics for comparing the designs: the three D�,
DS�, ELD�, optimal designs (see section 4 for details), the D0�optimal de-
sign (homogeneous error variance), and the three naive designs (see section
5.1 for details). Hetero means heterogenous variance, homo means homoge-
nous variance. NC means non computable.
First of all, we can see on the last line of Table 3 the quadratic mean of
the intrinsic curvature, called �int: This measure, and others, was proposed
by Bates and Watts (1980) and they are particularly well explained in their
book (Bates and Watts (1988, chapter 6)). We refer the reader to this latter
one, and here we just recall how using �int: This measure can be zero or
positive. If it is zero that means that the expectation surface S� is a plane,
it is the case if NS = p. Otherwise, if �int is not zero, this surface S� is not
a plane, it can be a very complicated surface for some models especially if
�int is greater than a certain threshold (this one is given between parenthesis
in Table 3). This surface S�, included in the observation space RNS , is the
p�dimensionnal surface described by �� (x; �) when � takes all its possible
values in �. In nonlinear regression we are very concerned by S� because
the orthogonal (or the W��orthogonal) projection of the observation vector
is performed on it. If it is a plane the projection is unic and the solution, i.e.
the estimate �̂, is unic: notice that this is always the case in linear regression.
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If S� is not a plane the projection can be not unic, and consequently it can
appear more than one estimate solution. This phenomenon can be increased
if the heterogeneity of the error variance is not taken into account: it occurs
here with the naive design number 1, and we can see in Table 3 that even
the very e¢ cient classical algorithm (Levenberg-Marquardt algorithm) can-
not avoid to lead to a nonsense solution for �̂ with this naive design number
1. In comparison we observe that, even if (22) does not take into account
the heterogeneity of the error variance, the estimate obtained is reasonably
correct. The reason is based on the fact that NS = p: Of course the estimated
standard errors are unacceptable, they should lead to very in�ated paramet-
ric con�dence intervals, because the heterogeneity of the error variance is
forgotten.
With the naive design number 2, N is now twice, and it is well known that
�int decreased when N increases. Then with this design the estimate is not
very good, but it is better than for the preceeding naive design.
At last the naive design number 3 takes into account the heterogeneity of the
error variance, and we can see that the estimates and their standard errors
are quiet good. However, twelve experiments were necessary to reach this
goal instead of only six with the three optimal designs. Moreover, its rather
large intrinsic nonlinearity could cause large imprecision in the estimates if a
mistaken prior �0 would be chosen, in a further analysis: indeed, it is known
that the robustness of the estimates relatively to the prior �0 is greater if,
notably, the intrinsic nonlinearity is large.
Now, if we compare the three optimal designs we can see that they are close
each other relatively to the simulated statistics shown in Table 3. That is
often observed when the parametric nonlinearity is reasonable that is the
case here: we recall that these three optimal designs are all based on the
�rst-order approximation of the analytic form of the CFT model.

6 Discussion

Now, we want to present and discuss four major principles that are the basis
of an e¢ cient experimental approach using optimal designs in the nonlinear
situation. These principles have been applied above in the context of the
CFT model, they are: the sequential approach, the D�optimality family,
designs with NS = p and N > NS, and taking into account the nature of the
error variance.
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6.1 Four major principles

6.1.1 Sequential approach

First of all, even if it seems obvious, we want to underline that it is a non-
sense attitude to try to determine an optimal design at the beginning of
a new experimental problem, is to say when none practical information is
available. Typically in this case, the experimenter has no idea at all about
the feasible range of the explanatory variables, the borders of the parametric
domain, the eventual positiveness of the parameters, the experimental repro-
ducibility, and so on. To undertake a �rst optimal design it is necessary to
have some information, especially on the aspects just above evocated. Then,
we recommend a sequential approach, at least based on two steps: the �rst
experimental step cannot be optimal, but it provides (in general) some useful
information because the experimenter has a scienti�c knowledge on his prob-
lem, and in a second step this information helps to determine a �rst optimal
design that can be experimentally achieved. These two steps were applied
here to the CFT model. The optimal design can be based on an approximate
criterion or an exact criterion depending on several aspects such as the level
on the nonlinearities of the postulated model (see the following subsections).
If very accurate results are necessary further sequential optimal designs can
be achieved.

6.1.2 D�optimality family

By the D�optimality family we mean the family of all the criteria based
on the minimization of a scalar function of the determinant of an approxi-
mation of the Fisher information matrix. We know that this matrix tends
to be the true variance matrix of the parameter estimate when N increases
to in�nity. In this sense the criteria used above, the local D�optimality,
the DS�optimality, and the ELD�optimality belong to this family. Other
criteria exist in this family: they were proposed by Pronzato (1986), Pron-
zato and Walter (1988), and they common goal is to be robust relatively to a
missspeci�cation of �0. This design family is based on an approximate criteria
for the nonlinear case, but we can check if it is an acceptable approximation
for instance by plotting and comparing an X (exact) parametric con�dence
region (de�ned in Appendix B) to the classical ellipsoid. If p is too large the
plotting is not possible but we can compare the volume of the anticipated
ellipsoid (see Appendix A) and the expected volume of the X region by com-
puting it with a classical montecarlo method. If this comparison shows a too
large di¤erence then speci�c optimal designs must be preferred, even if they
are much complicated to compute. Note that a design of this D�optimality
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family is often a good initial design, from a computational point of view,
for the algorithms used for determining those speci�c designs. See the
subsection 6.2 for a brief information on these spei�c designs.

6.1.3 Designs with NS = p and N > NS

A major principle is to determine optimal designs with NS = p, and with
repetitions of experiments on these p support points, i.e. N > NS. Let
us explain the deep reasons of this principle, some aspects already being
indicated in 5.3. First of all in this case the intrinsic nonlinearity, i.e. the
curvature of S� is zero, and consequently the projection ŷ is always unic and
also the minimum of the residual sum of squares is unic and global. This
situation, especially if the error variance is heterogenous, is then a strong
advantage, particularly from a computing point of view. We encountered a
big di¢ culty with the naive designs (19) and (20) where NS 6= p. Of course,
it depends also on the analytic form of the postulated model, and the case
NS 6= p does not always lead to multiple minima. Secondly, if we want to
�nd a local D�optimal design, it exists a necessary and su¢ cient condition
(NSC) proved by Vila (1991) that indicates that, if this NSC is true, the
D�optimal design with N experiments is the repetition of the minimum
D�optimal design with Ns = p. So, more experiments on another support
points are not necessary. Notice that this condition does not exist for all
the criteria. However, we can always add a few additionnal experiments in a
view to check the predictive ability of the model in a second time. Of course,
these additionnal experiments must not be used for the computation of the
estimates, but only for the prediction. In fact these additionnal experiments
should be set in spots where the predictive ability is clearly shown, is to
say, in spots that could enable the validity of an alternative model. This
is an open problem: where these additionnal experiments must be set in �
to discriminate two (or more) alternative models ? Atkinson (1972, 1975),
Atkinson and Cox (1974), Atkinson and Fedorov (1975), Mathieu (1981),
gave the solution if the models are linear and nested, but there is not yet
a solution if the models are nonlinear and not nested. Otherwise, we want
just to underline the very important aspect of performing true repetitions
(N > NS = p), because this the only one way to obtain a pure error. This
latter enables to compute an unbiased estimation of the true error variance
on one hand and to check its eventual heterogeneity on the other hand.
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6.1.4 The nature of the error variance

About the nature of the error variance we want to underline that the best
way is to take into account the eventual heterogeneity of the error variance
by means of an approximate parametric model of this latter, and then using
this model for the construction of the criterion and the optimal design. We
showed how it is possible to do that with the CFT problem in section 2.
Typically we can see in Charles-Bajard et al. (2003) that two minima occured
when the error variance was assumed homogenous, whereas a single minimum
occurs when this heterogeneity is not forgotten and modellized as we shown
before. Otherwise, we recommend strongly this approach instead of trying
to transform the response as with the square root transformation very often
encountered. Indeed, this transformation is generally not optimal notably
relatively to the predictive ability of the model, and moreover destroys the
nature of the error variance and then can lead to very erroneous (generally
in�ated) parametric con�dence intervals.

6.2 Speci�c designs for the nonlinear models

If the intrinsic and parametric nonlinearities of the model are large, and si-
multaneously the number N is small, especially if the error variance is large
also, it can be a very bad approach to use designs from theD�optimality fam-
ily. Also other families speci�c to the linear models, such as theE�optimality
family (see for example Atkinson and Doneev (1992) for an introduction), is
not a better approximation if those constraints yet exist.
As speci�c designs for nonlinear models we mean designs based on criteria
that manage in some way the intrinsic and parametric nonlinearities of the
model. In other words the key point is that a �rst-order approximation
of the analytic form of the model is not achieved. There is not a lot of
such speci�c criteria for constructing these speci�c designs. In this paper
we want to point to two important approaches. The �rst speci�c approach
is based on the exact parametric con�dence regions, for instance kinds of
regions de�ned in Appendix B. Then the criterion consists to minimize the
expected volume of such regions. This approach was �rstly proposed by Vila
(1985, 1986) and also intensively analyzed by Gauchi (1999) and Gauchi
and Vila (2004). The second speci�c approach is very di¤erent: it takes
into account the exact probability density function (thus for N given) of the
nonlinear least squares estimate �̂ (Pázman, 1993). It was �rstly proposed
by Pázman and Pronzato (1992), and was extended and improved by Gauchi
and Pázman (2003, 2004). The criteria involved in this second approach are
based on scalar functions of the mean square error matrix of the nonlinear
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least squares estimate �̂, simultaneously with its exact density. Of course,
this approach is highly technic and di¢ cult to comput, but now the available
computer power enables us to determine e¢ cient designs as shown in Gauchi
and Pázman (2003, 2004), especially if a stochastic minimization procedure
is used.
A few words now on the computation of optimal designs. Of course, in the
linear case, for many years we have been using speci�c algorithms (as the well-
known double-exchange algorithm (Fedorov, 1972) that we used in section
4.1), or the classical deterministic optimization procedures for computing the
optimal designs. However for the speci�c optimal designs for the nonlinear
case we recommend, notably if p is large (let us say > 4), to use stochastic
minimization procedures, see, e.g., Ermoliev (1990), Kushner and Yin (1997).
Indeed, these procedures present a strong advantage because it is not neces-
sary to express the analytic forms of the �rst and second order derivatives of
the objective function (the criterion). This latter task is obligatory for in-
stance when using deterministic quasi newton methods of optimization,that
is almost untractable if p is large and the model is quiet sophisticated. In
Gauchi and Pázman (2003, 2004) we give details of a very e¢ cient method
of stochastic optimization (MSO) improved from Vila (1990).

7 Conclusion

The results given in this paper show the advantages of optimal designs. These
advantages more increase when the models contain a lot of parameters, see,
e.g., the cardinal model with 10 parameters (Augustin, 1999). In this pa-
per our intention was to be essentially pedagogical. However, the optimal
designs proposed are good designs for the CFT model, designs we recom-
mend to use at the laboratory. Our intention was also to underline major
principles detailed in the discussion section. These principles can contribute
to build an e¢ cient and optimal experimental methodology in the future of
the predictive microbiology. We plan in a further paper to show application
to sophisticated predictive microbiology models (with large p), computation
achieved by means of our MSO.

8 Appendix A: The con�dence ellipsoïd and
its volume

We recall that the con�dence ellipsoïd of �� for a regression model is de�ned
by:
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RE =

�
� 2 � :

�
� � �̂

�T
M�1

�
x; �̂
��
� � �̂

�
� ps2�F (�; p; �)

�
(28)

where s2� is an independant estimation of the unknown true error variance
�2, based on � degrees of freedom (in this paper we took � = 18, value
coming from the Charles-Bajard paper), and F (�; p; �) is the ��quantile of
a Fisher distribution at p and � degrees of freedom. It is an approximate (only
asymptotically exact) con�dence region if the model is nonlinear relatively
to its parameters, as it is the case for the CFT model.
The volume of this ellipsoïd, determined with N data, is given by the formula
(Gallant, 1976):

VE =
2� (N=2) [2��2F (�; p;N � p) =(N � p)]p=2

� (p=2) � ((N � p) =2) �
���M �

x; �̂
�����1=2 (29)

where � is the eulerian gamma function. Notice that i) In the design situation
where �̂ is unknown we have to replace �̂ by a prior �0 in these two formulas.
This volume becomes an anticipated volume, it is the approach we used in
this paper for the �gures shown. ii) In the CFT problem �2 is equals to one
because it is taken into account by means of the model (7) leading to the
diagonal weights of the matrix W�:

9 Appendix B: The exact X con�dence re-
gion

In the classical statistical context an exact con�dence region for a (vectorial)
parameter (or a function of it) is a region whom its recovering probability of
the true (unknown) �� parameter is exactly 1��, where � is the risk level of
the associated test connected to the region, see Lehman (1986) for a full and
rigorous theory on this aspect. Halperin (1963) proposed an elegant region
family based on the decomposition of the error vector in the observation
space (sampling space). Later, Hamilton and Watts (1985) improved the
test power connected to this family by introducing a new exact region. This
region has been intensively analyzed by Vila (1985, 1986). We call this region
as the X region and it is de�ned with our notations, at a (1� �)%�level,
by:

RX =
�
� 2 � : RX � ps2�F (�; p; �)

	
(30)

where

RX =
�
y � �� (x; �)

�T
J (x; �0)M

�1 (x; �0) J
T (x; �0)W�

�
y � �� (x; �)

�
(31)
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The plots of Fig. 2 and 5 are based on the equation (??). The volume of this
region and its marginal con�dence intervals have been obtained by a usual
montecarlo method.
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