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Summary

 

Total planar area can be estimated based on sampling by a
lattice of  figures (e.g. point patterns, line segments, quadrats).
General formulae are provided for the approximation of  mean
squared errors. The approximation formulae are products of
the boundary length and of  a parameter that depends only on
the sampling scheme. An R package is provided by the authors
for the numerical computation of  the mean squared error
formulae. The speed of  convergence of  the mean squared error
approximation is assessed on the basis of  several simulations.
Several sampling schemes are compared in view of  the approxi-
mated mean squared errors.
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1. Introduction

 

The total area of  a planar structure can be estimated from
partial observations using standard tools of  sampling theory.
Common sampling probes are finite sets of  points, lines,
quadrats, etc. Measurements to be performed are counts,
length or area measurements. In most cases, the sampling
probes or units are systematically distributed on the plane.
The whole sampling device is a lattice of  figures. In microscopy,
a figure corresponds to a sampling probe as seen in a single
field of  vision. The whole lattice of  figures is obtained by
systematic displacements of  the field of  vision.

Under the standard assumption that the lattice of  figures
is uniformly randomly translated, the total area estimator is
unbiased. However, the precision of  the area estimator
depends both on the sampling scheme and on the spatial
distribution of  the structure of  interest.

An approximation formula has been proposed by Kendall
(1948) for the mean squared error (MSE) of  the area estimator
based on sampling by a lattice of  points. Kendall’s formula

converges when the lattice density tends to infinity and it
depends only on the curvature along the structure boundary.
Kendall’s formula has been refined by Matheron (1971):
the MSE approximation can be decomposed into the so-
called extension term and the oscillating term. Furthermore,
under an isotropy assumption, the extension term depends
only on the boundary length. For further discussion of  the
Kendall–Matheron formula, see, for example, Gundersen &
Jensen (1987) and Matérn (1989). Recently, it has been
proved that under some regularity conditions, the oscillating
term of  the MSE is of  higher order than the extension term
if  the structure is random (Kiêu & Mora, 2004). Note that
the randomness condition makes sense in most biological
applications.

In this article, the Kendall–Matheron formula for sampling
based on lattices of  points is extended to other lattices of
figures. This extension is obtained by using grading and
regularization as defined by Matheron (1971). Unbiased area
estimation based on sampling by lattices of  figures is intro-
duced in section 2. The Kendall–Matheron formula for point
lattice sampling is given in section 3. The new formulae for
general lattices of  figures are provided in section 4. The
performance of  the MSE approximations is discussed in view
of  some simulations in section 5. Section 6 is devoted to the
comparison of  various sampling schemes.

 

2. Lattice of  figures and area prediction

 

The structure of  interest is a random compact set 

 

X

 

 in the
two-dimensional plane 

 

�

 

2

 

. The parameter to be approximated
is the area of  

 

X

 

. Since here the area of  

 

X

 

 is supposed to be
random, below we refer to area prediction instead of  area
estimation.

In order to predict the area 

 

A

 

 of  

 

X

 

, the random compact set

 

X

 

  is sampled by means of  a lattice of  figures (planar subsets).
Examples of  lattices of  figures are provided in Fig. 1. In a lattice
of  figures, the figures differ only by translations, and the set of
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such translations is a vector lattice. Any lattice of  figures can
be represented as

 

Λ

 

 + 

 

F

 

2

 

,

where 

 

Λ

 

 is a vector lattice and 

 

F

 

2

 

 is a planar subset. In the
examples of  Fig. 1(a–d), the vector lattice is two-dimensional
and the figure 

 

F

 

2

 

 is compact. For the lattice of  lines and
the lattice of  strips shown in Fig. 1(e–f), the vector lattice is
one-dimensional and the figure 

 

F

 

2

 

 may be decomposed as

 

F

 

2

 

 = 

 

L

 

 + 

 

F

 

1

 

,

where 

 

L

 

 is the line orthogonal to 

 

Λ

 

, and 

 

F

 

1

 

 is a compact subset
of  the line supporting 

 

Λ

 

. When 

 

F

 

1

 

 is a single point, 

 

F

 

2

 

 

 

= L + F

 

1

 

is the line parallel to 

 

L

 

 through 

 

F

 

1

 

. When 

 

F

 

1

 

 is a segment,

 

F

 

2

 

 

 

= L + F

 

1

 

 is a strip. The density of  the lattice 

 

Λ

 

 is defined as
the inverse of  the area (or length) |

 

Λ

 

| of  a fundamental tile of

 

Λ

 

. A unit lattice is a lattice with density equal to 1. The approxi-
mation formulae provided below involve dual vector lattices.
Two vector lattices are dual if  the scalar products of  their vectors
are integers. For more details about lattice theory, see Conway
& Sloane (1999). The unit square lattice is self-dual. The dual

of  a hexagonal lattice is also hexagonal. The dual of  a lattice
with a rectangular tile of  side lengths 

 

l

 

1

 

 and 

 

l

 

2

 

 is the lattice with
a rectangular tile of  side lengths 1

 

/ l

 

1

 

 and 1/

 

l

 

2

 

. More generally,
dual lattices have inverse densities. The dual of  a lattice 

 

Λ

 

 is
denoted 

 

Λ

 

*.
Consider a randomly translated lattice of  figures

ΛΛΛΛ

 

 + 

 

F

 

2

 

 = 

 

Λ

 

 + 

 

U

 

 + 

 

F

 

2

 

where 

 

U

 

 is a random translation vector uniformly distributed
in a fundamental tile of  

 

Λ

 

. The random lattice of  figures
samples the plane uniformly, and the sampling density of
ΛΛΛΛ

 

 

 

+ F

 

2

 

 is given by

where |

 

F

 

i

 

| denotes the ‘content’ of  

 

F

 

i

 

 (number of  points,
length or area, depending on the dimension of  

 

F

 

i

 

).
The area predictor

(1)

Fig. 1. Examples of  lattices of  figures used for area prediction. A lattice of  figures is superimposed on a planar structure (shown in grey). The total area of
the planar structure is predicted from point counts, length measurements or area measurements. (a) Hexagonal lattice of  points. (b) Lattice of  point
patterns. (c) Lattice of  quadrats. (d) Lattice of  segments. (e) Lattice of  (infinite) lines. (f ) Lattice of  (infinite) strips.

| |
| |

,      , ,
F

ii

Λ
= 1 2

Å  | |
|    |

| |
=

∩ +
∈
∑Λ

X x

x

 2F

FiΛΛ



 

P R E C I S I O N  O F  S T E R E O L O G I CA L  P L A NA R  A R E A  P R E D I C TO R S

 

203

 

© 2006 The Authors
Journal compilation © 2006 The Royal Microscopical Society, 

 

Journal of  Microscopy

 

, 

 

222

 

, 201–211

 

is unbiased (conditionally on 

 

X

 

). The precision of  

 

Å

 

 can be
quantified through the MSE defined as

(2)

 

3. Lattice of  points

 

Consider the special case where 

 

F

 

2

 

 consists of  a single point,
i.e. ΛΛΛΛ

 

 + F

 

2

 

 is a simple lattice of  points. Following Kendall
(1948), the MSE can be expressed as

(3)

where the prime symbol to the right of  the summation denotes
that the origin is excluded from the summation, and the power
spectral density PSD

 

X

 

 of  

 

X

 

 is defined as the Fourier transform
of  the geometric covariogram of  

 

X

 

. Following Matheron
(1971), the geometric covariogram is the function

 

h

 

 

 

→

 

 E[|

 

X

 

 

 

∩

 

 

 

X

 

 

 

+

 

 

 

h

 

|],    

 

h

 

 

 

∈
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2

 

. (4)

It can also be expressed as the mean convolution product
of  the indicator function of  

 

X

 

 and its reflexion with respect to
the origin.

Since the densities of  

 

Λ

 

 and its dual 

 

Λ

 

* are inverse, the
asymptotic behaviour of  the MSE when the sampling spacing
tends to 0 depends only on the behaviour of  the spectral
density far from the origin. Using an asymptotic approxi-
mation of  the spectral density and assuming that the boundary
of  

 

X

 

 is isotropically distributed, the Kendall–Matheron formula
states that

(5)

where 

 

B

 

 is the mean boundary length of  

 

X

 

,  is a
unit version of  

 

Λ

 

*, and 

 

Z

 

 denotes the Epstein zeta function.
The Epstein zeta function is a multidimensional extension

of  the Riemann zeta function defined by

(6)

When the phase 

 

h

 

 = 0, the notation 

 

Z

 

Λ

 

(

 

s

 

) = 

 

Z

 

Λ

 

(

 

s

 

, 0) is used.
Note that in Eq. (5),  (3) is scale-invariant: it depends only
on the lattice shape.

As shown by several authors (Kendall, 1948; Kendall &
Rankin, 1953; Matheron, 1971; Matérn, 1985; Kellerer,
1989), the MSE is the sum of  the term given in Eq. (5) and an
oscillating term which is also of  the order of  |

 

Λ

 

|

 

3/2

 

. In Kiêu &
Mora (2004), where the structure of  interest is considered as
random, it is shown that under mild regularity conditions the
oscillating term is of  higher order and can be neglected.

The isotropy assumption is quite restrictive. However,
Eq. (5) holds even in the anisotropic case, provided that the

sampling grid is isotropically randomly rotated. For a square
lattice, Eq. (5) yields

Note that in Matheron (1971) and Gundersen & Jensen
(1987), the multiplicative constant is given as 0.0724. This is
because Matheron used a numerical approximation based on
the Chowla–Selberg expansion of  the Epstein zeta function
(Chowla & Selberg, 1949). The multiplicative constant
provided in Matérn (1985) is the same as in Eq. (5). Values
of  the Epstein zeta function must be computed numerically.
Direct computations based on Eq. (6) are not efficient, because
the summand converges very slowly towards 0. Alternatives
are algorithms based on the Chowla–Selberg expansion or
on the incomplete gamma function expansion; see Crandall
(1998) for the latter approach.

The convergence rate of  the spectral density of  

 

X

 

 is related to
the smoothness of  its geometric covariogram near the origin.
Derivations of  MSE formulae as given in Gundersen & Jensen
(1987) and in Cruz-Orive (1989) are based on local models for
the covariogram near the origin. For the general case where

 

F

 

2

 

 does not reduce to a single point, the measurements involved
in the area predictor (1) can be considered as convolution
products, which are simpler to handle in the Fourier space.
This simplification is used in the next section, where MSE
formulae are extended to general lattices of  figures.

 

4. Lattice of  figures

 

4.1. General MSE formulae

 

As noted in Matheron (1971), when 

 

F

 

2

 

 is compact, the area
predictor based on a lattice of  figures can be considered as a
regularization of  the area predictor based on a lattice of  points.
Point-wise measurements at the lattice points are replaced
by local spatial averages on the figures. The computation of
the spectral density of  the regularized measurements is
straightforward. Equation (5) extends to

(7)
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) is the scale-invariant function defined by
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can be interpreted as the distribution of  the difference between
two points picked up at random in F2,0. Note that Eq. (7) is very
similar to Eq. (5): the Epstein zeta function from Eq. (5) is
replaced by a weighted average in Eq. (7), where the weights
are given by the geometric covariogram of  the figure.

When F2 is not compact and F2 can be decomposed as L + F1

(e.g. F2 is a line or a strip), Eq. (7) does not hold any more.
Point-wise measurements are replaced by integration along
infinite lines. This operation is called grading by Matheron
(1971), where a general formula for the spectral density of
graded measurement is provided. Using both grading and regu-
larization, the following extension holds for lattices of  lines or
strips:

(9)

where M(Λ, F1) is defined as in Eq. (8) with F1,0 = |Λ|−1F1.
Details on the derivation of  Eqs (7) and (9) are given in the
Appendix.

4.2. Examples of  M functions

In this section, the lattices of  figures shown in Fig. 1 are
considered and the forms of  M functions are given. For the
lattices of  point patterns, segments and quadrats, the MSE
is given by Eq. (7).

For a lattice of  point patterns (Fig. 1a–b), the geometric
covariogram is a discrete measure and

(10)

where f (h) is the proportion of  pair differences in F2,0 equal to
the vector h.

For a lattice of  segments (Fig. 1d), the geometric covariogram
of  the rescaled segment F2,0 is a one-dimensional measure.
Let l0 be the length of  F2,0 and ω a unit vector parallel to F2,0.
Then

(11)

For a lattice of  quadrats, the geometric covariogram of  the
rescaled quadrat F2,0 is a two-dimensional measure. Let l1,0

and l2,0 be the side lengths of  the rescaled quadrat F2,0. The
integral involved in Eq. (8) can be written as

(12)

For lattices of  lines or strips, the MSE is given by Eq. (9).
For a lattice of  lines, F1 reduces to a single point, and the

geometric covariogram is just the Dirac measure at the
origin:

(13)

where ζ is the Riemann zeta function.
For a lattice of  strips, F1 is a segment. Let l0 be the length of

the rescaled segment F1,0 and let ω be a unit vector per-
pendicular to the strips. The geometric covariogram is a
one-dimensional measure and

(14)

Using integration by parts, the integral can be simplified to

(15)

The one-dimensional Epstein zeta function values involved
in the above formula can also be expressed as values of  the
Riemann zeta function and of  a polylogarithm function.

Note that MSE formulae for lattices of  strips have been
previously derived in Gual Arnau & Cruz-Orive (1998).
However, Eq. (15) differs from Gual Arnau & Cruz-Orive
(1998), Proposition 5.2, because the covariogram model used
in Gual Arnau & Cruz-Orive (1998), Formula (5.12), is not
consistent with the asymptotic approximation (20) of  the
spectral density given in the Appendix.

4.3. Practical use of  the formulae

Equations (7) and (9) are asymptotic: the approximations tend
to the true MSEs as the sampling spacing tends to 0; see Kiêu &
Mora (2004) for details about regularity conditions. Hence
the approximation formulae may perform poorly for too
sparse sampling. Section 5 provides some hints on sampling
densities for which the approximations hold.

Like the Kendall–Matheron formula for point lattices, the
formulae hold under the assumption that either the boundary
or the lattice of  figures is isotropically orientated.

The formulae can be used in order to assess the precision of
area predictions, provided that information about the mean
boundary length is available. If  area is predicted from a lattice
of  points or a lattice of  point patterns, an additional lattice
of  lines or line segments can be used in order to estimate the
mean boundary length. If  area is predicted from lattices of
figures such as those in Fig. 1(c–f), the mean boundary length
can be estimated from measurements collected for area
prediction.

A practical problem is the numerical computation of  the
Epstein zeta function involved in Eqs (7) and (9). The com-
putation of  the Epstein zeta function is not a feature of
common scientific software. MSE computations based on
Eqs (7) and (9) can been performed using the R package
pgs (precision of  geometric sampling) available at http://
www.inra.fr/miaj/article.php3?id article=439.

The approximations have a very simple structure: they are
products of  the mean boundary length and a term depending
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only on the sampling scheme. Hence ratios of  MSE approxi-
mations do not depend any more on mean boundary length.
Sampling schemes can be compared independently of  the
structure under investigation; see section 6.

The formulae can be used for the practical design of  a
sampling scheme. Without loss of  generality, let us focus on
the case where the figure F2 is compact: the area predictor
MSE is given by Eq. (7). The lattice Λ can be written as

Λ = uΛ0,

where Λ0 is a unit lattice and u is a scaling parameter to be
determined. The sampling scheme (i.e. u) must be designed
such that

MSE [Å] = γ 2A2,

where A is the mean area of  X, and γ is the aimed coefficient of
error (e.g. γ = 5%). In view of  Eq. (7), the scaling parameter
must be the solution of  the following equation:

(16)

The ratio  is a standard shape parameter and can be
assessed visually (at low magnification) from nomograms pro-
vided, for example, in Gundersen & Jensen (1987). The mean
area A is likely to be unknown, but it can be replaced by a
rough estimation. Hence Eq. (16) reduces to an equation with
the only unknown parameter u and can be solved numerically
with standard algorithms. The numerical computation of  the
scaling parameter u can be performed using the pgs package.

In many cases, the parameter to be estimated is the mean
area A. An unbiased estimation is provided by the average of
independent realizations of  the area predictor. The global MSE
admits the standard decomposition

(17)

Note that the left-hand side can be estimated by the empirical
variance of  the Åi’s.

Hence, assessing the MSE of  Å using Eqs (7) or (9) enables
the evaluation of  the variance of  A.

5. Simulations

The MSE approximations provided in section 4.1 converge
when the fundamental tile of  the sampling lattice tends to a
single point. At the moment, there is no theoretical result con-
cerning the speed of  convergence of  the approximations. In
this section, this problem is investigated using simulations. We
consider three different random sets. The first random set X1

has a simple shape. The two others, X2 and X3, have more com-
plex shapes, due to small-scale spatial variation. The latter is

more regular than X2 because of  stronger spatial autocor-
relations. Two sampling schemes are considered: sampling by
hexagonal lattices of  points or point patterns.

The random sets are obtained by thresholding nonstationary
random fields. The geometry of  a random set is controlled both
by the mean and by the covariance function of  the random
field. The mean µ is taken as a sum of  three Gaussian densities
(Fig. 2a). The random set X1 is obtained by thresholding at a
level t > 0 the nonstationary random field

µ + Z1, (18)

where Z1 is a centred Gaussian random field with a Gneiting
covariance function (Fig. 2b,d).

The random set X2 is obtained by thresholding at level t a
random field of  the following type:

µ + min(Z1, t) + Z2, (19)

where Z2 is a centred Gaussian random field with a Gneiting
covariance function. The covariance parameters are chosen
such that the spatial variation of  Z2 is small-scale compared to
Z1 (Fig. 2c,e). A similar construction is used for the random
set X3, except that the covariance of  the random field with
small-scale variation is a Bessel function. The parameters of
the Bessel function are chosen such that the mean areas and
the mean perimeters of  X2 and X3 are close. However, X3 tends
to be much more regular than X2, due to stronger short-range
autocorrelations (Fig. 2e,f ).

Note that the simulated random sets are not isotropic, since
the deterministic function µ is anisotropic. Statistics on the
area and the perimeter of  X1, X2 and X3 computed from 3000
replications are provided in Table 1.

The simulations of  the random fields have been carried out
using the R package randomfields (Schlather, 2001).

Two types of  sampling scheme are applied to the random
sets: sampling by lattices of  points and sampling by lattices of
point patterns. The lattice Λ is a hexagonal lattice. The pattern
contains five points (see Fig. 4a), and it spans a square of  side
length 0.2. The spacing between the figures (point or pattern
of  five points) varies from 0.90 to 0.23. For X1, when sampled
by a lattice of  points, the mean total point count increases
from 20 to 300.
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Table 1. Statistics for the area and the perimeter of  X1, X2 and X3.

Random set

Area Perimeter

Mean Variance Mean Variance

X1 17.95 5.85 18.02 2.72
X2 8.92 2.18 53.67 51.45
X3 9.07 1.63 52.60 42.94
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For each random set Xj and each sampling scheme, the true
MSE has been estimated from 3000 independent realizations
of  (Å, A). The obtained empirical MSEs are compared to the
asymptotic approximations in Fig. 3. Note that the estimated
MSEs for a given Xj are not independent, since they are based
on the same set of  3000 realizations of  Xj.

In view of  the results shown in Fig. 3, the MSE approxi-
mation performs similarly for the two types of  lattices of  figures.

The MSE approximation yields fairly good results for the
simple shape random set X1, even for rather small sample
sizes. The worst relative error is about 7%. For X2, the MSE
approximation does not perform as well as for X1, but the
worst relative error is about 25%. When the sampling spacing
is less than 0.45, the relative error is less than 6%. The true
MSE curve for the random set X3 is not monotone: there is a
peak for small sampling densities. This peak is not captured
by the asymptotic approximation. However, for larger
sampling densities, the MSE approximation turns out to be
rather close to the empirically estimated MSE. As for X2, when

the sampling spacing is less than 0.45, the relative error is
less than 6%.

6. Comparisons of  sampling schemes

As noted in section 4.3, sampling scheme performances can
be compared independently of  the random set X. Numerical
comparisons are obtained from the MSE approximation for-
mulae. Without loss of  generality, the mean boundary length
B is set to 1 and we focus only on unit lattices Λ.

Below, we compare different types of  lattices of  point
patterns. We first consider three particular point patterns, as
illustrated in Fig. 4. The point patterns are rescaled in order
to fill square windows, respectively, of  side length 0.1, 0.3,
and 0.5.

The comparison is made for four types of  two-dimensional
unit lattices: hexagonal, square, rectangular 1 (2 × 0.5) and
rectangular 2 (4 × 0.25). All values of  the approximate MSE
are given in Table 2.

Fig. 2. Simulation of  random sets. Nonstationary random fields are thresholded at level t = 5. (a) The mean µ of  the random fields is a sum of  three
Gaussian densities. (b) A realization of  the random field given by Eq. 18. The boundary of  X1 is defined as the contour line (shown in grey) of  the random
field at level t. (c) A realization of  the random field given in Eq. 19. The boundary of  X2 is defined as the contour line of  the random field at level t. (d–f)
Realizations of  X1, X2 and X3. Further examples are provided in Fig. 1.
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The first line of  Table 2 shows the approximate MSE values
for the four simple point unit lattices. These values are given
in Matérn (1989), where these four systematic sampling
schemes are compared. The minimum value is obtained
for the hexagonal lattice. This illustrates the general opti-
mality result given in Rankin (1953), in which the author
demonstrates that for all s ≥ 1.035, the hexagonal lattice
minimizes the Epstein zeta function ZΛ(s). Hence, the

hexagonal lattice is optimal among all point lattices with a
given density.

Also note that for window sizes 0.1 and 0.3, the MSEs are
quite close for patterns of  5, 8 and 9 points. For such small
figure sizes, increasing the number of  points per pattern is not
an efficient way to improve the precision of  the area predictor.

For the different point patterns considered, the approximate
MSE values obtained for the hexagonal and square lattice are

Fig. 3. Empirical MSE estimations based on simulations and MSE asymptotic approximations. Triangles: MSE estimations for the lattices of  point patterns.
Circles: MSE estimations for the lattices of  points. Dashed line: asymptotic approximations for the lattices of  point patterns. Solid line: asymptotic
approximations for the lattices of  points. (a) MSE for X1. (b) MSE for X2. (c) MSE for X3.

Fig. 4. Three point patterns filling a square: (a) five
points, (b) eight points, (c) nine points.

Table 2. Approximate values of  MSE for four unit point lattices, three point patterns and three window side lengths.

Window 
side length

Number 
of  points

Approximate values of  MSE for four lattices

Hexagonal Square Rectangular 1 Rectangular 2

– 1 0.071701 0.072837 0.181599 1.253845
0.1 5 0.049602 0.050722 0.158423 1.179515

8 0.050988 0.052112 0.160432 1.174895
9 0.050648 0.051772 0.159657 1.185250

0.3 5 0.020014 0.020822 0.118961 1.100436
8 0.021602 0.022525 0.126178 1.114878
9 0.020769 0.021715 0.121904 1.115659

0.5 5 0.008077 0.007887 0.087608 0.983413
8 0.007113 0.007263 0.097979 1.024359
9 0.005952 0.006282 0.089554 1.014918
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quite similar. Compared to these two lattices, the performance
of  the rectangular lattices is quite poor.

Next, for a given lattice of  points Λ, a square window W of
given side length l and a given number of  points n, an optimal
pattern of  n points included in W can be computed by optimiz-
ing the MSE approximation. The results shown in Fig. 5 are
obtained using the L-BFGS-B optimization method, which
allows box constraints (Byrd et al., 1995). Since this method

uses a quasi-Newton algorithm, it yields only a local mini-
mum that depends on the provided initial pattern. For each
optimal pattern search, 20 L-BFGS-B optimizations were
carried out, starting from randomly chosen initial patterns.

When the side length of  the window is small compared to
the tile of  the lattice, the optimization procedure gives optimal
patterns with points located at the corners of  the window
W. For n > 4, this yields several points at the same corner. This

Fig. 5. Optimal patterns for the hexagonal unit lattice. A fundamental tile of  the lattice is represented in each plot. The side length l varies from 0.1 to 0.5,
and the number of  points n varies from 5 to 7. The symbol ● indicates two points at the same location.
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is the case for l = 0.1, as seen in Fig. 5. To give a more complete
picture of  the case l = 0.1, the optimal patterns and associated
approximate MSE values obtained for n = 2, ... ,5 are shown in
Fig. 6.

From these results, one can see that for n varying from 1 to 7,
the optimal pattern is obtained for n = 4. Adding a fifth point
increases the MSE value.

Sometimes, lower-dimensional probes are more efficient
than higher-dimensional probes. Jensen & Gundersen (1981)
considered the example of  a disc X sampled by an isotropic uni-
form random (IUR) unit square and by the pattern consisting
of  the four corners of  the IUR square. It turns out that for suffi-
ciently large values of  the disc radius, the point pattern probe
performs better than the square probe. This situation, where
point counting is more efficient than area measurement, has
been investigated and exemplified in Baddeley & Cruz-Orive
(1995) for stationary random sets. The authors related this
paradox to Smit’s paradox appearing in the theory of  random
fields.

Below, we compare sampling by lattices of  quadrats and
sampling by lattices of  square four-point patterns. The com-
mon side length of  the quadrats and of  the four-point patterns
varies from 0.1 to 0.9. The resulting MSE values are plotted in
Fig. 7. These results give a new illustration of  Smit’s paradox:

point counting performs better than area measurement for
sufficiently small windows.

Finally, let us consider sampling schemes based on seg-
ments. The approximation in Eq. (7) can be used in order to
compute the optimal segment orientation. As expected, the
optimal orientation is given by the diagonal of  the sampling
point lattice tile. The worst orientation corresponds to a seg-
ment parallel to one of  the sides of  the lattice tile. Table 3
shows the maximal and minimal approximate MSE values
for various segment lengths, for both the square and the
hexagonal unit lattices.

7. Discussion

In this article, we provide approximation formulae for the MSE
of  several stereological area predictors. These approximations
converge when the sampling density tends to infinity. Simula-
tions show that the convergence is faster for special structures
with a simple shape. The MSE approximations depend only on
the boundary length. As shown in the example in section 5,
the MSE approximation may perform poorly when the struc-
ture presents strong spatial autocorrelations. In such a case,
one may try to derive the MSE from a continuous geometric
covariogram model. However, it is still an open problem

Fig. 6. Optimal patterns for l = 0.1 and n = 2, ... , 5. The symbol ● indicates two points at the same location. (a) Hexagonal lattice. (b) Square lattice.

Fig. 7. Comparison of  approximate MSEs for four-point square patterns and quadrats with common side length l varying from 0.1 to 0.9. Crosses: MSEs
for the point patterns. Circles: MSEs for the quadrats.
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how to characterize the family of  geometric covariograms
(Matheron, 1993).

The general MSE approximation in Eq. (7) holds when the
boundary of  the spatial structure is isotropically orientated.
The simulations show that the approximation performs well
when the anisotropy is not too pronounced and the lattice of
figures is hexagonal. In the case of  strong anisotropy, the
lattice of  figures should be randomly orientated. Also note that
Eq. (9) extends to the anisotropic case. The extended formula
involves the rose of  normal directions to the boundary; see
Kiêu & Mora (2004) for the asymptotic approximation of  the
spectral density in the anisotropic case.

The MSE approximation formulae can be used to assess the
precision of  stereological area predictions, provided that the
mean boundary length is available. In practice, both area and
boundary length can be predicted by combining point and line
segment sampling; see, for example, Gundersen & Jensen
(1987).

Owing to their simple structure, the MSE formulae can be
used in sampling design. In particular, sampling parameters
such as the spacing between figures or the number of  points
per point pattern can be computed such that the sampling
scheme achieves an expected coefficient of  error.

Furthermore, it is possible to compare sampling schemes
independently of  the structure under investigation. As shown
in section 6, when the window (field of  vision) is small
compared to the lattice tile, the pattern of  the four corner
points performs better than other probes. Using more points or
measuring the area inside the window does not improve the
precision of  area prediction.

The extension to volume prediction may seem straightfor-
ward. The general convergence result for the spectral density
of  a random compact set given in Kiêu & Mora (2004) holds in
spaces with arbitrary dimensions. A set of  simple MSE formulae
for volume predictors is available in Kiêu & Mora (2005).
However, in practice, sampling of  three-dimensional structures
involves complex nested sampling schemes. In general, top-
level stages involve physical sectioning, and physical slabs or
blocks are sampled independently. Hence, the whole sampling
scheme combines stratified and systematic sampling. MSE
formulae for this type of  sampling scheme are not yet available,
but they can be derived from existing mathematical tools.
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Appendix

The approximation formulae in section 4.1 are based on a
convergence result for the spectral density of  X. This conver-
gence result holds under the regularity conditions given in
Kiêu & Mora (2004). When the normal directions to the
boundary of  X are isotropically distributed, the asymptotic
behaviour of  the spectral density is given by

(20)

when � y� tends to infinity. The result in Eq. (20) can be
extended to the anisotropic case by multiplying the right-hand
side by r(ω), ω = � y �−1y, where r is the rose of  unoriented
normal directions to the boundary of  X (r ≡ 1/π for isotropically
distributed normals).

A similar result has been obtained in the case where X is a
deterministic convex body (Kendall, 1948). However, in this
case an oscillating term of  the order of  �y�−3 must be added in
the approximation of  the spectral density.

Furthermore, the convergence of  the spectral density is closely
connected to a result due to Matheron (1971) concerning the
behaviour of  the geometric covariogram of  X near the origin.
For the sake of  simplicity, we assume that the random compact
set X is isotropic. Following Matheron (1971), p. 36, the
geometric covariogram near the origin can be approximated by

(21)

The approximation (21) is proved in Matheron (1975) for
deterministic convex bodies. The extension to random bodies
is straightforward. Note that in view of  Formula (21), the
covariogram is not differentiable at the origin. Now let us assume
that the geometric covariogram is continuously differentiable
outside the origin. Then it is easy to prove by standard Fourier
calculus that the convergence result in Eq. (20) holds for the
spectral density.

Let us consider the case of  a compact figure F2. By regulari-
zation, the spectral density of  the measurement function

can be written as

Hence Eq. (3) extends to

In the formula above, the ratio is scale invariant with respect
to F2, and the spectral density of  F2 is equal to the Fourier
transform  of  its geometric covariogram. Hence the
prediction MSE can be written as

Finally, the convergence result in Eq. (20) yields the approxi-
mation formula

Next consider the case of  sampling by a lattice of  lines. The
spectral density of  the graded measurement function

x → |X ∩ L + x|

is equal to the restriction of  the spectral density PSDX to L⊥.
For a general figure F1, the spectral density of  the regularized

and graded measurement function can be expressed as

with y ∈ L⊥. MSE[Å] is equal to the sum of  the spectral den-
sity of  the measurement function over the dual lattice Λ*.
Using the convergence result in Eq. (20), we get the approxi-
mation formula in Eq. (9).
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