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Abstract

A proteomic experiment on Lactococcus lactis with both biological and

technical replications was carried out. The data of each type of replication

were analysed separately by analysis of variance. The results show that many

false positives may be detected in the absence of biological replication and

suggest that analysis of variance is a useful method to analyse proteomic

data.

Levels of replication in 2-DE based proteomic experiments may be grouped in two
types: (a) biological replication is the replication of biological samples, (b) technical
replication is the replication of gels for a given biological sample. Several papers
recommend to use biological replications in differential expression experiments (see
e.g. [1, 2]). This recommendation is consistent with the results of several studies,
which found that biological variance was larger than technical variance in proteomic
experiments on plants, animals, E. coli (see e.g. [3, 4, 5]). The first objective of
this paper is to quantify the effect of level of replication on the results of proteomic
experiments on the bacterium Lactococcus lactis. Analysis of variance (ANOVA)
has been proposed to analyse the data of differential expression experiments and has
been implemented in several ways, such as gene-by-gene ANOVA or global ANOVA
(see e.g. [6, 7, 8, 9, 10, 11, 12]). In a standard ANOVA, observations are assumed to
follow independent normal distributions with the same variance. These assumptions
may not be fully satisfied in proteomic experiments, even if a transformation of the
data has been used [10]. The second objective of this paper is to study if ANOVA
is a reliable method to analyse the data of proteomic experiments on L. lactis. The
rest of this paper presents the experiment we carried out and the analyses of the
data.

To compare biological and technical replications, an experiment with both types
of replication was carried out. Four precultures of the same strain of L. lactis

were used to inoculate four cultures. These cultures were carried out in four flasks,
with the same medium, on the same day. One protein extract was prepared from
each culture. Then, six 2-DE gels were made: Gels 1 and 2 were made from the
protein extract of Culture 1, Gels 3 and 4 from the protein extract of Culture 2,
Gel 5 from the protein extract of Culture 3, and Gel 6 from the protein extract of
Culture 4 (Fig. 1). The experiment was performed by the same experimenter with a
standard protocole. Precultures were considered as biological replications and gels
made from the same protein extract were considered as technical replications. The
spot volumes of 254 proteins were measured on each gel, and ranged from 106 to
237600 with a median value of 5414. 14% of volumes was missing in the initial
data file, presumably because these volumes were too small to be detected. Missing
observations were replaced by a small value, namely 100, which was the order of
magnitude of the smallest observable volume. This experiment is similar to the
uniformity trials which have been used in agriculture and in other contexts [13].
In such experiments, dummy treatments are superimposed to data obtained under
uniform conditions, in order to compare design and analysis methods.

The false positive rate is the expected proportion of false positives among proteins
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which are not differentially expressed [14]. A false positive rate of 5% means that on
average 5% of proteins which are not differentially expressed are declared positive.
To assess the false positive rate for biological and technical replications, the data
from both types of replication were analysed separately, with two dummy treatments
applied to precultures (Fig. 1). As the experiment involved one treatment condition
only, proteins declared differentially expressed were false positives.

To quantify the false positive rate for technical replications, the data of Gels 1,
2, which were made with Culture 1, and the data of Gels 3, 4, which were made with
Culture 2, were analysed assuming these gels had received two treatments, denoted
by 1 and 2, in the order 1, 1, 2, 2. The data were analysed using a global ANOVA
(see e.g. [15]). Three factors were considered for the analysis: protein, treatment,
gel. The protein factor was crossed with the other factors, and the gel factor was
nested within treatment. The response yptg for protein p, treatment t, gel g was
then modelled as:

yptg = PTpt + TGtg + εptg, (1)

where PTpt was the mean response of protein p when the treatment was t and TGtg

was the effect of gel g within treatment t. The random errors εptg’s were assumed
to follow independent normal distributions with mean zero and variance σ2. The
response variable y was protein volume to the power λ, where λ was a parameter
to estimate [16]. This transformation was used to help justify the assumptions of
the model (constant variance, normality, additivity of the terms PT and TG). An
alternative would have been to use a shifted logarithmic transformation [10]. The
parameter λ was estimated using the function boxcox of the package MASS of R
[17, 18]. The estimate of λ was equal to 0.45. Note that we did not divide the
volumes of a gel by the sum of the volumes of the gel, since gels effects (TG) were
naturally included in the model. To compare the relative expressions of protein p
with both treatments, the parameter δp = (PTp2 − PT•2)− (PTp1 − PT•1) (where •

denotes averaging over a subscript) was considered rather than the difference PTp2−

PTp1; the difference between treatment means was considered as an experimental

artefact to be adjusted for. As the data were balanced, it was estimated by δ̂p =

(yp2•− y•2•)− (yp1• − y•1•) (where hat denotes estimate). The p-value of δ̂p was also
calculated. It is equal to twice the probability that a random variable which follows
a Student distribution with 506 degrees of freedom is larger than the absolute value

of δ̂p/
√

v̂ar(δ̂p), where v̂ar(δ̂p) is the estimate of the variance of δ̂p. If expression
differences with a p-value lower than 5% are called significant, the expected number
of false positives may be large, as it may be equal to 5% times the number of
proteins which are not differentially expressed. To take this multiple hypothesis
testing problem into account, one possibility is to select expression differences with
a q-value, rather than a p-value, smaller 5% [14]. The q-value is a measure of
significance which controls the false discovery rate, i.e. the expected proportion of
false positives among proteins declared positive. A false discovery rate of 5% means
that on average 5% of proteins considered positive are false positives. q-values take
into account the fact that many hypotheses are simultaneously tested and have been
used in microarray experiments. The q-values of the δ̂p’s were calculated from the p-
values using the package qvalue of R [17, 14]. As the experiment was uniform, most
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q-values were expected to be large. Fig. 2 shows a histogram of the 254 q-values;
25% of proteins had a q-value smaller than 5%. So the false positive rate was poorly
controlled with technical replications.

To quantify the false positive rate for biological replications, the data of one gel
of Preculture 1, one gel of Preculture 2, Gel 5 and Gel 6 were analysed assuming
these gels had received two treatments, denoted by 1 and 2, either in the order 1,
1, 2, 2, or in the order 1, 2, 1, 2, or in the order 1, 2, 2, 1. As there were 4 ways
of choosing one gel of Preculture 1 and one gel of Preculture 2, 12 analyses were
carried out in total. Each analysis was carried out with Model (1). The estimates of
λ were equal to 0.25 or to 0.30. Fig. 2 shows a plot of standardized residual versus
fitted value for one of the analyses. The fitted value for observation yptg is equal to

ŷptg = P̂ T pt+ T̂Gtg, and the standardized residual is equal to (yptg− ŷptg)/σ̂. Thanks
to the data transformation, there was not a strong relation between variance and
mean. The line of points which appears in the bottom left corner of the plot is due to
the fact that many spot volumes were equal to 100. Fig. 2 shows a normal quantile
plot of standardized residuals from the same analysis; the residual distribution had
heavier tails than a normal distribution. Fig. 2 shows a histogram of the 254 q-values
from this analysis; most proteins had a q-value close to 1. For the twelve analyses
carried out, the percentage of proteins with a q-value smaller than 5% ranged from
0% to 2%, with a median value of 0.4%. So except the case when the false positive
rate was equal to 2%, the false positive rate was well controlled with biological
replications.

Level of replication had a large effect on the results of our experiment. Thus,
we recommend to choose levels of replication carefully in proteomic experiments on
bacteria. In our study, ANOVA usually detected few false positives with biological
replications, and was powerful enough to declare significant a number of differences
of expression between precultures with technical replications. So this statistical
method, although perfectible, seems to be useful for proteomic experiments.
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Figure 1. Schematic representation of the design of the experiment (top) and one
of the six 2-DE gels of the experiment (bottom). C: culture, E: protein extract, G:
gel, P: preculture, T: dummy treatment.
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Figure 2. Density histogram of the 254 q-values for technical replications (a); density
histogram of the 254 q-values (b), plot of standardized residual versus fitted value
(c), normal quantile plot of standardized residuals (d), for one of the twelve analyses
of biological replications.
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