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Abstract. We propose a method based on a penalised likelihood crite-
rion, for estimating the number of non-zero components of the mean
of a Gaussian vector. Following the work of Birgé and Massart in
Gaussian model selection, we choose the penalty function such that the
resulting estimator minimises the Kullback risk. A simulation study
compares the proposed method to others based on penalised likelihood
criterion and on thresholding. Two applications are shown: the first
one concerns the differential analysis of macro-array data, and the sec-
ond one the analysis of un-replicated factorial designs.

Résumé. Un critère de choix de modèle basé sur la vraisemblance
pénalisée est proposé afin d’estimer le nombre de composantes non
nulles de l’espérance d’un vecteur gaussien. Comme proposé par Birgé
et Massart pour le problème de sélection de variables dans le modèle
gaussien, la fonction de pénalité est calculée afin de minimiser le risque
Kullback de l’estimateur. La méthode est comparée, à l’aide de simula-
tions, aux méthodes basées sur des critères de vraisemblance pénalisée
ainsi qu’aux méthodes de seuillage. La méthode est comparée, à l’aide
de simulations, aux méthodes basées sur des critères de vraisemblance
pénalisée ainsi qu’aux méthodes de seuillage. Elle est appliquée à
l’analyse différentielle des gènes et à l’estimation dans un plan factoriel.

Subjclass. 62G05, 62G09

Keywords. Kullback risk, Model selection, Penalised likelihood criteria,
differential analysis, macro-array, factorial designs

Introduction

The following regression model is considered:

XXX = mmm + τεεε, εεε ∼ Nn(0, In),

where XXX = (X1, . . .Xn)T is the vector of observations. The expecta-
tion of XXX, say mmm = (m1, . . . , mn)T , and the variance τ 2 are unknown.
Assuming that some of the components of mmm are equal to zero, our
objective is to estimate the number of zero components as well as their
positions.

We denote by J a subset of Jn = {1, 2, . . . , n} with dimension kJ

and by Jc its complement in Jn. We consider the collection J of all
subsets of Jn with dimension less than kn for some kn less than n:

J = {J ⊂ Jn, kJ ≤ kn} .

Let xxx = (x1, . . . , xn)T , then for each subset J ∈ J we denote by xxxJ the
vector in R

n whose component i equals xi if i belongs to J and 0 if not.
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For each subset J in the collection J , assuming that mmm = mmmJ , the
maximum likelihood estimators of the parameters (mmm, τ 2) are (XXXJ , σ̂2

J),
where

σ̂2
J =

1

n

∑

i∈Jc

X2
j ,

and the maximum of the log-likelihood equals −(n/2) log (σ̂2
J). The

problem is to choose an estimator of (mmm, τ 2) by choosing the best J

in J , say Ĵ , and taking (m̂mm, τ̂ 2) = (XXX bJ , σ̂2
bJ
). We associate to each

estimator in the collection a risk defined as

(1) R(J) = E
{
K(mmm,τ2)

(
XXXJ , σ̂2

J

)}
,

where for all ggg ∈ R
n and σ positive, K(mmm,τ2)(ggg, σ2) denotes the Kullback-

Leibler divergence:

K(mmm,τ2)

(
ggg, σ2

)
=

n

2

{
log

(
σ2

τ 2

)
− 1 +

τ 2 +
∑n

i=1(mi − gi)
2/n

σ2

}
.

The ideal subset J∗, defined as the minimiser of the risk over all the
subsets in the collection,

R(J∗) = inf
J∈J

R(J),

is estimated by a model selection procedure. Namely, J ∗ is estimated

by Ĵ that minimises a penalised likelihood criterion defined as follows:

(2) crit(J, pen) =
n

2
log

(
σ̂2

J

)
+ pen(kJ),

where pen is a penalty function that depends on kJ .
Several criteria have been proposed in the literature, the most famous

ones being the Akaike and the Schwarz criteria.
The Akaike criterion [1] with

(3) penAIC(k) = k

is based on an asymptotic expansion of the Kullback-Leibler divergence
calculated in the maximum likelihood estimator of (mmm, τ 2) on one sub-
set J with dimension k. It can be shown that crit(J, penAIC) is an

asymptotically unbiased estimator of E
[
K(m,τ2)(X̂XXJ , σ̂2

J)
]

(up to some

terms that do not depend on k).
The SIC criterion,

(4) penSIC(k) =
1

2
k log(n),

was proposed by Schwartz [19] and Akaike [2]. Schwartz derived its
penalty function from Bayesian arguments and asymptotic expansions.
It is shown by Nishii [14] that if the penalty function is written as
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pen(k) = cnk such that cn → ∞ and cn/n → 0, then Ĵcn
= Ĵ(pen)

converges to J0 in probability, where J0 is the set of indices on which
the components of mmm are non zero.

The AMDL (for approximate minimum description length) criterion
proposed by Rissanen [17]

(5) penAMDL(k) =
3

2
k log(n)

was studied by Antoniadis et al. [3] for determining the number of
nonzero coefficients in the vector of wavelet coefficients.

The calculation of the penalty function of the criterion we propose
is based on the following equality:

(6) R(J) = K(mmm,τ2) (mmmJ , VJ(XXX)) + E
{
K(mmmJ ,VJ(XXX))

(
XXXJ , σ̂2

J

)}
,

where VJ(XXX) is defined as follows:

VJ(XXX) =
1

n
E

{
n∑

i=1

(Xi − mi1Ii∈J)2

}
=

k

n
τ 2 +

1

n

∑

i∈Jc

m2
i .

The quantity K(mmm,τ2) (mmmJ , VJ(XXX)) is analogous to a bias term: it rep-
resents the distance between the expectation and the variance of XXX
under the model J and the parameters (mmm, τ 2). It is equal, up to some
terms that do not depend on J , to (n/2) log(VJ(XXX)). If VJ(XXX) is esti-
mated by σ̂2

J , the second term on the right hand side of Equation (6)
is analogous to a variance term. The penalty function is calculated so
that it compensates both this variance term and the bias due to the
estimation of log(VJ(XXX)) by log(σ̂2

J).
In [13] it is shown that if the penalty function is written as follows:

(7) pen(k) = n
{
c1 log

(n

k

)
+ c2

} k

n − k

for some constants c1, c2, then

E
[
K(mmm,τ2)

(
m̂mm, τ̂ 2

)
1IΩ

]
≤ C1

(
inf
J∈J

{
K(mmm,τ2) (mmmJ , VJ(XXX)) + pen(kJ)

})
+C2

where C1 and C2 are some constants and Ω is a set of probability greater
than 1 − κ/n.

In this paper, we calculate the constant (c1, c2) in the penalty func-
tion by a simulation study. We compare our procedure to procedures
based on generalisations of the AIC criterion, and to procedures based
on the penalisation of the residual sum of squares : the method pro-
posed by Birgé and Massart [6] and the threshold methods. We present
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an extensive simulation study to evaluate the behaviour of the meth-
ods in different situations, considering the cases where the number of
non-zero components in mmm equals 0, is small and large.

The method is applied to the differential analysis of macro-array
data where the purpose is to determine significant variation of gene ex-
pression under different treatments and to the analysis of un-replicated
factorial and fractional factorial designs such as those in screening ex-
periments.

1. The method

Let Ĵ(pen) be the subset in J that minimises crit(J, pen) defined in
Equation (2),

(8) Ĵ(pen) = arg min
J∈J

crit(J, pen).

The components of mmm that are not estimated by 0, correspond to the
greatest absolute values of the components of XXX. Let {`1, . . . , `n} be
the order statistics, such that the X2

`i
are sortered in the descending

order: X2
`1

≥ . . . ≥ X2
`n

, and let Jk be the subset of J corresponding
to the k first order statistics, Jk = {`1, . . . , `k}. Then for all subset J
in J with dimension kJ = k, we have

n

2
log

(
σ̂2

Jk

)
+ pen(k) ≤

n

2
log

(
σ̂2

J

)
+ pen(kJ),

and the problem reduces to choose k, less than n, that minimises

crit(Jk, pen), say k̂, and to take Ĵ = Jbk.

2. Comparison with other criteria.

2.1. The penalised residual sum of squared approach. Birgé and
Massart [6] provided a general approach to model selection via penali-
sation for Gaussian regression with known variance. For each J ∈ J ,
the Kullback risk for the maximum likelihood estimator of mmm when
mmm = mmmJ is the quadratic risk defined as follows:

(9) Q(J) =
1

2
E

{
n∑

i=1

(Xi1Ii∈J − mi)
2

}

and the likelihood penalised estimator is defined by Ĵ(pen) = arg minJ∈J crit(J, pen),
where

(10) crit(J, pen) =
n

2
σ̂2

J + pen(kJ).

We call this estimator a RSS-penalised estimator and we denote the
penalty function by pen to highlight that the residual sum-of-squares
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is penalised, not its logarithm. They propose to choose the penalty
function as follows:

pen(k) = τ 2
{
c1 log

(n

k

)
+ c2

}
,

for some constants c1, c2. For practical issues τ 2 has to be estimated
and the penalty function calibrated. This last point is discussed in
section 3.

2.2. Threshold estimators. Another important class of estimators is
the class of threshold estimators. The estimator of mmm equals XXX bJ where

Ĵ is defined as the set of indices i in {1, . . . , n} such that the absolute
value of Xi is greater than a threshold t. The method consists in
choosing a decreasing sequence t(k) of positive numbers and comparing
the order statistics X2

`1
, . . . , X2

`n
to t2(1), . . . , t2(n). Then define

(11)
k̂ = 0 if X2

`k
< t2(k) ∀k ≥ 1

k̂ = maxk

{
X2

`k
≥ t2(k)

}
if not

}
,

and choose t̂ = t(k̂). The link between threshold and penalised es-

timators is done as follows: k̂ is the location of the right most local
minimum of the quantity crit(Jk, pen) defined at Equation (10) by tak-
ing the following penalty function:

pen(0) = 0

pen(k) =
1

2

k∑

l=1

t2(l), if k ≥ 1.

The link between the threshold estimator and a logRSS-penalised is
done in the same way: the threshold estimator defined a logRSS-
penalised estimator by setting

pen(0) = 0

pen(k) =
n

2

k∑

l=1

log

(
1 +

t2(l)

nσ̂2
Jl

)
, if k ≥ 1

in crit(Jk, pen) defined at Equation (2).
For analysing un-replicated factorial and fractional factorial designs,

several authors proposed threshold estimators. See for example Box
and Meyer [11], Lenth [18], and Haaland and O’Connell [15]. The idea
is to choose a threshold that should provide a powerful testing proce-
dure for identifying non-null effects. Lenth [18] proposed a threshold
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estimator based on constant t(k)’s. He proposed to estimate τ as fol-
lows:

(12) τ̂ = 1.5 × median{|Xi| for |Xi| < 2.5s0},

and he defined a simultaneous margin of error with approximately 95%
confidence by taking

(13) tSME = τ̂ T−1
(
γn,

n

3

)
,

where γn = (1 + 0.951/n)/2 and T−1(γ, d) denotes the γ-quantile of a
student variable with d degrees of freedom. The choice d = n/3 comes
from the comparison of the empirical distribution of τ̂ 2 to chi-squared
distribution.

For the problem of testing simultaneously several hypotheses, Ben-
jamini and Hochberg [5] proposed a procedure that controls the false
discovery rate. Precisely, the procedure seeks to ensure that at most a
fraction q of the rejected null hypotheses corresponds to false rejections.
It corresponds to a threshold estimator with

(14) t(k) = τ̂Φ−1

(
1 −

qk

2n

)
and tFDR = t(k̂),

where k̂ is defined by Equation (11). It can be shown that the penalty
function pen

FDR
(k) is of order k log(n/k).

Foster and Stine [12] compared the performances of adaptive variable
selection to that obtained by Bayes expert and proposed an approxi-
mate empirical Bayes estimator defined as a threshold estimator with

(15) t(k) = τ̂

√
2 log

(n

k

)
and tFS = t(k̂),

where k̂ is defined by Equation (11).

3. Choice of the constants in the penalty function

3.1. The minimum Kullback risk estimator. From a practical
point of view, we want to have in hand a penalty function such that
the risk associated with the corresponding estimator is as close as pos-
sible to R(J∗), the minimum of the risks associated with the sets J in
the collection J , denoted in the following R∗

n(mmm, τ 2). The penalised
estimator defined by Equations (2) and (8) is slightly modified to take
into account the cases where the function crit(Jk, pen) is not a convex

function of k. In these cases k̂ is the location of the right most local
minimum of crit(Jk, pen).
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Let us denote by Rn(mmm, τ 2, pen) the risk associated with Ĵ(pen),
namely

Rn(mmm, τ 2, pen) = E
{
K(mmm,τ2)

(
XXX bJ(pen), σ̂

2
bJ(pen)

)}
.

We are looking for a penalty function that minimises, uniformly for all
(mmm, τ 2), the risk ratio:

rn(pen) = sup
mmm

Rn(mmm, τ 2, pen)

R∗
n(mmm, τ 2)

.

Note that τ 2 has been removed from the supremum because E
{
K(mmm,τ2) (XXXJ , σ̂2

J)
}

depends on the pair (mmm, τ 2) only through the ratio mmm/τ .
We are looking for (c1, c2) such that the penalty function defined by

Equation (7) minimises the risk ratio rn(pen), denoted in the following
by rn(c1, c2).

The risk ratio is estimated by simulations. We consider several values
of n, say n = 2j for j equals 4 to 10. For each value of n, we take
kn = n/2, and we consider several values of k0, namely k0 ∈ {0} ∪ K
where K is a subset of integers greater than 1 and smaller than n/3.
For each n and each k0 ∈ K, we consider six vectors mmm`(k0), for ` =
1, . . . , 6 as follows: for i = 1, . . . , k0, m1

i (k0) = 5, m2
i (k0) = 5i−0.25,

m3
i (k0) = 5i−0.5, m4

i (k0) = 5i−1, m5
i (k0) = 10i−0.5, m6

i (k0) = 10i−0.25;
for i > k0, m`

i(k0) = 0.
Taking τ = 1, for each n and each mmm`(k0) we estimate R∗

n(mmm`(k0), τ
2)

as the empirical mean of values obtained on 500 simulations. Then, for
several values of (c1, c2), we estimate the quantities Rn(mmm`(k0), τ

2, pen(c1, c2))
on the basis of 500 simulations. Finally we calculate the supremum over
` and k0 of the ratios of these two estimators to get an estimation of
rn(c1, c2). The variations of rn(c1, c2) are shown in Figure 1. When
c2 = 0, it appears that the value of c1 that minimises the risk ratio de-
creases with n. When c2 increases, the minimum value of the risk ratio
decreases. When c2 = 4, and n large enough, the minimum value is
close to 2 and is attained for a value of c1 close to 2. When n = 16 and
n = 32, the minimum value of the risk ratio is larger than 2 (around
6) and the minimum is attained for c1 around 4 when n = 32 and
around 8 when n = 16. This suggests that for small values of n, the
penalty function should be modified. For example, adding a term in√

log(n/k) in the penalty function, might improve the behaviour of
the risk ratio. We chose not to pursue in this way and to define the
minimum Kullback risk estimator with the following penalty function:

(16) penMKR(k) = n
{

log
(n

k

)
+ 2

} k

n − k
.
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Figure 1. For each value of n, variations of r(c1, c2)
as a function of c1, for different values of c2.

The simulation study reported in section 4 evaluates its performances
both for small and large values of n.

3.2. The estimator proposed by Birgé and Massart. The ap-
proach is similar to the preceding one. We are looking for a penalty
function such that the associated quadratic risk is as close as possible
to R∗

n(mmm, τ 2) = infJ∈J {Q(J)} where Q(J) is the quadratic risk de-
fined at Equation (9). We are thus looking for a penalty function that
minimises, uniformly for all (mmm, τ 2) the risk ratio defined as follows:

rn(pen) = sup
mmm∈Rn,∗

Rn(mmm, τ 2, pen)

R∗
n(mmm, τ 2)

,
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where Rn(mmm, τ 2, pen) is the risk associated with Ĵ(pen) defined by
Equation (10), and R

n,∗ denotes the set of R
n vectors whose compo-

nents are not all equal to zero. Taking τ 2 = 1, we are looking for
the best constants c1, c2 in the penalty function. For each n and each
m`(k0), k0 ∈ K defined previously, we calculate R∗

n(mmm`(k0), τ
2). Then

for several values of (c1, c2) we estimate the quantities Rn(mmm`(k0), τ
2, pen(c1, c2))

on the basis of 500 simulations. The value of (c1, c2) that minimises
the estimated risk ratio are found to be c1 = 1 and c2 = 2. Therefore
the estimator of Birgé and Massart will be defined with the following
penalty function:

(17) pen
BM

(k) = τ̂ 2
{

log
(n

k

)
+ 2

}
k,

where τ̂ 2 is a suitable variance estimate. For the sake of comparison
with the FS threshold estimators, let us note that (1/k)

∑k
l=1 log(k/l)

is smaller than 1. Therefore we get the following inequality

pen
BM

(k) ≥ pen
FS

(k) + τ̂ 2k.

It shows that the large values of k are less likely to be found using the
BM criteria than the FS criteria.

4. Comparison with other criteria via simulation

In this section we compare the performances of our criterion with
others. We consider the following criteria :

• Criteria based on penalised logarithm of the residual sum of
squares

– The SIC criterion defined at Equation (4).
– The AMDL criterion defined at Equation (5)
– The MKR criterion, that aims at minimising the Kullback

risk, defined at Equation (16).
• Threshold estimators or criteria based on penalised residual

sum of squares. For these estimators we need to choose a vari-
ance estimator. Following the results given by Haaland and
O’Connell [15] we chose the estimator given by Lenth [18], see
Equation (12), that should generally perform well for moderate
to large numbers of non-null effects.

– The SME estimator defined at Equation (13).
– The FDR estimator defined at Equation (14) with q = 0.05.
– The FS estimator defined at Equation (15).
– The estimator proposed by Birgé and Massart using the

penalty function defined at Equation (17).
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We carry out a simulation study considering several models defined
as follows: we choose

• 3 values of n, n = 20, 100, 5000,
• for each value of n = 20 and n = 100, we consider 3 values for

k0, k0 = 0, n/20, n/4, For n = 5000 we consider k0 = 0, 10, 1250.
• when k0 is non null, we set for i = 1, . . . , k0, mi = µ with µ = 5.

Proceeding as in Section 3, taking τ = 1, we calculate R∗
n(k0) and

for each J ∈ J we estimate R(J) as the empirical mean based on 1000
simulations. The calculation of R∗

n(k0) = infJ∈J {R(J)} follows. More-

over, for each k̂ defined above and each simulation, we calculate the
quadratic and the Kullback distances respectively denoted by Kn(k0)

and Kn(k0), and the false discovery ratio defined when k̂ is positive as

ρn(k0) = 0 if k̂ = 0

ρn(k0) =

∑
i∈Jbk

1Ii>k0

k̂
if k̂ > 0.

On the basis of 1000 simulations, we compare the methods by compar-
ing the following quantities:

(1) the empirical means and the medians of the quadratic and Kull-
back distances denoted respectively Kmean

n (k0, µ, `), Kmedian
n (k0, µ, `),

Kmean
n (k0, µ, `), Kmedian

n (k0, µ, `).
(2) the empirical means of the false discovery ratios

(3) the distributions of k̂

Results for the case k0 = 0. The results given at Tables 1, 2 and 3
suggest the following comments:

• The Kullback risk is very sensitive to overestimation. Let us
note that the difference between the mean and the median of the
Kullback risk ratios is very large. This is a consequence of the
convergence of the Kullback-Leibler divergence K(mmm,τ2)(ggg, σ2)
towards infinity when σ2 tends to zero. Because σ̂2

Jk
decreases

when k increases, the risk ratio explodes when the criterion
leads to over-fitting.

• The best methods are SME, MKR, FDR and BM whatever the
value of n, and AMDL when n = 100 or n = 5000.

• When n = 20, all the methods, except SME, tend to overesti-
mate k0, see Table 3. When n = 100, MKR and AMDL give
the same results than SME. When n = 5000, the BM method

corrects this tendency while the probability for k̂ to be strictly
positive is estimated by 14.3% for the FS method.
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Table (a)
n SIC AMDL MKR SME FDR FS BM R∗

n(0)
20 389 80 15 1.4 8.9 48 13 0.657

100 2000 1.2 1.8 1.4 2.8 17 3.3 0.590
5000 246 1.1 1.2 1.4 1.5 6.6 1.3 0.468

Table (b)
n SIC AMDL MKR SME FDR FS BM

20 318 0.66 0.46 0.40 0.56 0.97 0.55
100 1930 0.37 0.39 0.39 0.47 1.10 0.44

5000 245 0.46 0.47 0.48 0.48 0.73 0.47
Table 1. Kullback risk ratios when k0 = 0: Table (a)
gives the ratios Kmean

n (0)/R∗
n(0); the last column gives

the values of the minimum Kullback risk. Table (b) gives
the ratios Kmedian

n (0)/R∗
n(0).

n SIC AMDL MKR SME FDR FS BM
20 9.3 1.6 0.55 0.13 0.86 2.02 0.91

100 46 0.17 0.36 0.26 0.83 4.03 0.91
5000 107 0 0.08 0.17 0.19 2.57 0.14

Table 2. Quadratic risks when k0 = 0: Kmean
n (0). The

median of the quadratic risks equal 0 for all methods
except SIC.

n SIC AMDL MKR SME FDR FS BM
20 100% 19.7% 8.5% 3% 15.5% 29.9% 14.8%

100 100% 2.2% 4% 3.8% 10.3% 32.5% 8.6%
5000 100% 0% 0.7% 1.6% 1.7% 14.3% 0.9%
Table 3. Results when k0 = 0: estimated probabilities

for k̂ to be positive.

• The SIC method does not penalised enough the high dimen-
sions: when n = 20 the SIC criteria decreases from 0 to kn. As
a consequence, k0 is estimated by kn = 10. When n = 100, k0

is estimated by kn = 50 in 997 cases (over 1000 simulations).

When n = 5000, the range of values for k̂ equals [5, 43].
• The AMDL method improves the SIC method, especially when

n = 100 and n = 5000. When n = 20, the probability for k̂ to

be positive equals 19.7% and the number of k̂ equal to 10 is 62
(over 1000 simulations).
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SIC AMDL MKR SME FDR FS BM

k̂ = 0 0 5.1 9.4 45.5 6.6 2.2 7.9

k̂ = 1 0 71.9 73.4 52.5 72.4 46.8 68.1

k̂ > 1 100 23 17 20 21 51 24
rmean 171 37 15 3.8 10 35 12

rmedian 134 0.8 0.7 3.5 0.8 4 0.9
rmean 18 5.5 5.1 12 4.5 7.5 5.3

rmedian 18 0.8 0.7 3.7 0.9 5.1 1.0
ρ 90 17 11 1.2 13 36 15

Table 4. Case n = 20, k0 = 1, µ = 5, ` = 0. The
three first lines give the percentage of simulations for

which k̂ = 0, k̂ = 1 and k̂ > 1. The four following lines
give respectively rmean = Kmean

n (k0, µ, `)/R∗
n(k0, µ, `),

rmedian = Kmedian
n (k0, µ, `)/R∗

n(k0, µ, `), rmean =
Kmean

n (k0, µ, `)/R∗
n(k0, µ, `), and rmedian =

Kmedian
n (k0, µ, `)/R∗

n(k0, µ, `). The last line ρ gives
the mean of the false discovery ratios.

Results when k0 is positive and small. Let us discuss the results when
n = 20 and k0 = 1 given at Table 4, n = 100 and k0 = 5 given at
Table 5, and n = 5000 and k0 = 10 given at Table 6. In all cases the
values of k that minimise the quadratic and the Kullback risk ratios
equal k0.

• The best methods are MKR, FDR and BM. They tend to over
estimate k0 when n = 20 and n = 100 and to underestimate k0

when n = 5000 and k0 = 10.
• The behaviour of the AMDL method depends strongly on n.

When n = 20 it tends to overestimate k0, while when n = 100
and n = 5000, k0 is underestimated. When n = 5000, the
method is the worse (after SIC) both from the point of view of
the Kullback and quadratic risks.

• The SME method always underestimates k0, while the FS meth-
ods always overestimates k0.

• The SIC method fails to work: the range of the values of k̂ is
[8, 10] when n = 20 and k0 = 1, [39, 50] when n = 100 and
k0 = 5 and [18, 51] when n = 5000 and k0 = 10.

Results when k0 is large. The results are given for n = 20, 100, 5000,
k0 = n/4 and µ = 5 at Tables 7, 8 and 9. In any case the value of k
that minimises the quadratic risk ratio equal k0. On the other hand,
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SIC AMDL MKR SME FDR FS BM

k̂ < 4 0 16.5 0.9 19.9 2.2 1 1.4

k̂ ∈ [4, 6] 0 83.4 87.8 79.7 87.8 56.6 80.5

k̂ > 6 100 0.1 11.3 0.4 10 42.4 18.1
rmean 220 2.1 1.75 2.3 1.9 6.2 2.2

rmedian 212 1.2 1. 2.4 1.1 3.1 1.4
rmean 18 4.2 2.4 4.5 2.7 4.8 2.8

rmedian 18 1.4 1.4 4 1.4 3.9 1.9
ρ 90 0.6 4.2 0.6 7.3 30.2 10.8

Table 5. Case n = 100, k0 = 5, µ = 5,
` = 0. The three first lines give the percent-

age of simulations for which k̂ < 4, k̂ ∈ [4, 6]

and k̂ > 6. The four following lines give re-
spectively rmean = Kmean

n (k0, µ, `)/R∗
n(k0, µ, `),

rmedian = Kmedian
n (k0, µ, `)/R∗

n(k0, µ, `), rmean =
Kmean

n (k0, µ, `)/R∗
n(k0, µ, `), and rmedian =

Kmedian
n (k0, µ, `)/R∗

n(k0, µ, `). The last line ρ gives
the mean of the false discovery ratios.

SIC AMDL MKR SME FDR FS BM

k̂ < 8 0 96.2 11 55.1 14.4 1.4 9.9

k̂ ∈ [8, 12] 0 3.8 84.7 44.9 83.5 55.2 85

k̂ > 12 100 0 4.3 0 2.1 43.4 5.1
rmean 5.6 3.1 1.1 1.7 1.1 1.6 1.1
rmean 23 14 4.9 7.5 4.9 6.8 4.9

ρ 68.3 0 6.7 0.2 4.4 23 7.2
Table 6. Case n = 5000, k0 = 10, µ = 5,
` = 0. The three first lines give the percent-

age of simulations for which k̂ < 8, k̂ ∈ [8, 12]

and k̂ > 12. The two following lines give respec-
tively rmean = Kmean

n (k0, µ, `)/R∗
n(k0, µ, `) and rmean =

Kmean
n (k0, µ, `)/R∗

n(k0, µ, `). The values of rmedian and
rmedian are not given because they are closed to rmean

and rmean. The last line ρ gives the mean of the false
discovery ratios.

k∗, that minimises the Kullback risk ratio, equals k0 when n = 20 and
n = 100. For n = 5000, k∗ is smaller than k0 = 1250 and varies around
1245.



14

SIC AMDL MKR SME FDR FS BM

k̂ < 4 0 3.5 4.3 69.5 10.2 1.4 6.1

k̂ ∈ [4, 6] 0 69.2 89.4 40.2 80.4 55.2 79.1

k̂ > 6 100 27.3 6.3 0.3 9.4 43.4 14.8
rmean 21 7.5 2.8 2.6 3.2 11.1 4.2

rmedian 16 1.9 1.2 2.8 1.6 4.5 1.8
rmean 3.4 4.3 2.4 4.5 2.7 4.8 2.8

rmedian 73.3 1.6 1.1 11 1.5 2.3 1.6
ρ 50 13.3 4.2 0.3 5.6 24.3 8.8

Table 7. Case n = 20, k0 = 5, µ = 5, ` = 0. The three
first lines give the percentage of simulations for which

k̂ < 4, k̂ ∈ [4, 6] and k̂ > 6. The four following lines give
respectively rmean = Kmean

n (k0, µ, `)/R∗
n(k0, µ, `),

rmedian = Kmedian
n (k0, µ, `)/R∗

n(k0, µ, `), rmean =
Kmean

n (k0, µ, `)/R∗
n(k0, µ, `), and rmedian =

Kmedian
n (k0, µ, `)/R∗

n(k0, µ, `). The last line ρ gives
the mean of the false discovery ratios.

• The best methods are MKR, FDR and BM.
• The BM method tends to overestimate k0 but its results are

close to the MKR and FDR methods.
• The FS method overestimates k0 while the SME method un-

derestimates k0.
• The behaviour of the AMDL method depends on n. When

n = 20, k0 is overestimated, while when n = 100, k0 is underes-
timated: 35.8% are smaller than 21 and 34.7% are equal to 0.
When n = 5000 the AMDL method fails to work: the penalty

function increases from 0 to kn and k̂ is thus estimated by 0 in
all simulations.

• When n = 20 and n = 100, the SIC method fails to work: k̂ is
estimated by kn = n/2 in all simulations. When n = 5000 the
SIC method is one of the best.

Summary. The behaviour of AMDL and SIC methods depends on k0,
and is very bad in some cases. The FS method gives good results only
when k0 = 0 and overestimates k0 in other cases. This was already
noticed by several authors, see for example [15]. The MKR, FDR and
BM methods give similar results. We note that the BM method tends
to overestimate k0. When n = 20 or n = 100 and k0 is small, the FDR
method tends to overestimate k0.
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SIC AMDL MKR SME FDR FS BM

k̂ < 21 0 35.8 0.1 56.2 2.5 0 0.5

k̂ ∈ [22, 28] 0 64.1 96.8 43.8 95.2 21.7 85.2

k̂ > 28 100 0.1 3.1 0 2.3 78.3 14.3
rmean 20 2.1 1.3 2.0 1.4 6.7 1.8

rmedian 20 1.5 1.1 1.9 1.2 4.7 1.5
rmean 3.4 9.6 1.5 6.1 1.7 2.4 1.7

rmedian 3.4 2.0 1.3 4.7 1.4 2.4 1.6
ρ 50 0.3 3.2 0.1 3.5 26.5 7.4

Table 8. Case n = 100, k0 = 25, µ = 5,
` = 0. The three first lines give the percent-

age of simulations for which k̂ < 21, k̂ ∈ [22, 28]

and k̂ > 28. The four following lines give re-
spectively rmean = Kmean

n (k0, µ, `)/R∗
n(k0, µ, `),

rmedian = Kmedian
n (k0, µ, `)/R∗

n(k0, µ, `), rmean =
Kmean

n (k0, µ, `)/R∗
n(k0, µ, `), and rmedian =

Kmedian
n (k0, µ, `)/R∗

n(k0, µ, `). The last line ρ gives
the mean of the false discovery ratios.

SIC AMDL MKR SME FDR FS BM

min{k̂} 1279 0 1249 627 1238 1589 1291

q(k̂, 5%) 1293 0 1274 719 1258 1651 1313

q(k̂, 50%) 1314 0 1280 808 1275 1727 1338

q(k̂, 95%) 1336 0 1286 886 1292 1810 1367

max{k̂} 1364 0 1264 946 1312 1859 1391
rmean 1.3 3.7 1.1 2.5 1.1 4.6 1.4
rmean 1.5 25 1.4 9.4 1.4 2.5 1.5

ρ 5.3 0 3.1 510−4 2.7 27.7 6.9
Table 9. Case n = 5000, k0 = 1250, µ = 5, ` = 0.
The five first lines give the minimum , the 0.05, 0.5
and 0.95 quantiles, and the maximum of the distribu-

tion of the k̂’s. The two following lines give respec-
tively rmean = Kmean

n (k0, µ, `)/R∗
n(k0, µ, `), and rmean =

Kmean
n (k0, µ, `)/R∗

n(k0, µ, `). The values of rmedian and
rmedian are not given because they are closed to rmean

and rmean. The last line ρ gives the mean of the false
discovery ratios.
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5. Applications

5.1. Application to the differential analysis of macro-array data.

Statistical methods for the identification of differentially expressed genes
in array experiments have been extensively studied these last years (see
for example Dudoit et al. [9], Efron et al. [10], Baldy and Long [4], Del-
mar et al. [8], Reiner et al. [16]). Our purpose is to illustrate how the
methods presented in this paper apply to such data. Clearly they ap-
ply only when the variance of the observation is the same for all genes.
Because this assumption may be satisfied in some data set, possibly af-
ter some suitable transformation of the data, it is worthwhile applying
these methods to such data. The difference in gene expression when
Bacillus subtilis is grown either on methionine or on methylthioribose
as sulfur source [20] is observed in a DNA array experiment. Daudin et
al. [7] presented a comparison of two statistical methods for analysing
these data: the first one is based on the use of mixture models with
three populations (negative, non-reactive and positive), the second one
is based on the use of standard analysis of variance for detecting the
negative or positive expressed genes. The estimated number of differ-
entially expressed genes was 25 using the anova method and 35 using
the mixture models approach. The data are composed of 4107 genes
for which we observed a quantitative response Z linked to the gene
expression. Usually the logarithmic transformation is used for nor-
malising and stabilising the variance of the observations and we are
interested in the variable

X = log10(Zmet) − log10(Zmtr)

where Zmet (respectively Zmtr), is the observed response when the bac-
teria is grown on methionine (respectively methylthioribose). Following
the preliminary analyses of Daudin et al. [7] we suppressed 52 highly
variables genes that gave incoherent results. The criteria for calculat-

ing k̂ using the MKR, FDR and BM methods are given at Figure 2.
The observed differences X and the estimated mmm are given at Figure 3.

5.2. Analysis of un-replicated factorials and fractional factorial

designs. In industrial applications, fractionated and un-replicated fac-
torial designs are used to identify important effects (or contrasts) among
a large number of factors. These designs allow no degree of freedom
for the error estimation. The literature on that subject is significant,
see for example a recent paper by Wang and Voss [21] who proposed
to construct confidence intervals for the effects, Box and Meyer [11]
who proposed to calculate the posterior probability that each contrast
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Figure 2. The first graph presents the variations of
crit(k, penMKR) as a function of k. The minimum of
crit(k, penMKR) is attained for k = 42. The second one
presents the absolute values of X in the decreasing order
and the increasing threshold values. The maximum of k
for which the absolute values of X are greater than the
threshold is k = 47. The third graph presents the varia-
tions of crit(k, penBM ) as a function of k. The minimum
of crit(k, penBM ) is attained for k = 64.

is active assuming that the prior distribution is a mixture of Gauss-
ian variables, Lenth [18] who proposed the SME method, Haaland and
O’Connell [15] who compared the performances of several methods that
generalise the procedure proposed by Lenth. They noticed that all the
methods are essentially the same when they are few active contrasts.
Let us see what happens for 16-run experiments with all factors at two
levels, when the number of positive contrasts k0 equals 5 among n = 15
contrasts. The procedures are applied with kn = 14. The results are
given at Table 10. The AMDL method fails to work because it does
not penalise enough large values of k: the criteria decreases from 0 to

kn and in all simulations k̂ equal kn. The FS method leads to overes-

timate k0: k̂ = kn in 7.4% of the simulations. The MKR, FDR and
BM methods are nearly equivalent. We remark that in more than 10%
of the simulations these methods are unable to detect the non zero
means. If we compare the median of the risk ratios, the MKR method
performs better than the others.
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Figure 3. Observed values of Xi, i = 1, . . . , n. The
differentially expressed genes using the MKR method
are identified by +; the additional ones using the FDR
method are identified by x; the additional ones using the
BM method are identified by *.
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