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Abstract

New approximation formulae for the mean square error of stereological volume predictors
are derived. The body under investigation is assumed to be an isotropic random compact
set. Three simple systematic sampling probes are considered: lattice of points, serial
sections, clustered sections. The derived formulae depend only on the mean body surface
area and sampling parameters. The key argument is a refined result on the convergence
of the spectral density of compact sets.
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1 Introduction

Stereology is the inference of spatial structures from partial observations performed on
lower-dimensional probes, typically thin of thick sections. Stereological methods are com-
monly used in order to determine geometric characteristics of bodies such as volume or
surface area.

Standard stereological estimators are sums of measurements performed on sampling
probes, e.g. areas measured on sections. These estimators are unbiased for a wide class
of spatial structures provided that the probes sample uniformly the containing space.
Assessing mean square error is not a trivial task because of likely correlations between
measurements on neighbour probes.

Kendall [9] considered a very simple stereological method (planar area estimation based
on counts on a point grid) and derived an expression of the mean square error based on
the power spectral density of the planar body under investigation. The power spectral
density (PSD) of a body is defined as the squared modulus of its indicator function. Using
the method of the stationary phase, Kendall obtained an asymptotic approximation of
the PSD in terms of features of the body boundary. A mean square error approximation
based on the PSD approximation was proposed. This approximation can be decomposed
into two terms of the same order: a central term and an oscillating term.

Kendall’s approach has been generalised by Matheron [12], [13], [14] for spatial struc-
tures in spaces with arbitrary dimensions to the estimation of other geometric parameters
and to other sampling schemes. Furthermore Matheron proposed to ignore the oscillating
term of the mean square error. This term is difficult to estimate from available data. Also
empirical studies tend to show that the oscillating term is small compared to the central
term (named extension term by Matheron).

Matheron’s methods also called transitive methods are used to assess the precision of
commonly used stereological estimators, see e.g. [6, 4].

In a recent paper [11], we have considered a stochastic approach where the body under
investigation is assumed to be random. In such a framework asymptotics for the PSD are
easier to derive. Moreover the MSE approximations derived from the PSD asymptotics
only involve the extension term: in this stochastic framework the oscillating term turns
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out to be of higher-order compared the extension term. This stochastic framework is
quite natural in many biological studies where the body under investigation is subject to
biological variability.

Note that since the body under investigation is assumed to be random, its volume
is now a random variable. Therefore the stereological procedures used to evaluate the
volume may be considered as predictors rather than estimators.

The aim of this paper is to derive MSE formulae for stereological predictors based
on other sampling probes than point grids. The key point is a very simple relationship
derived by Matheron between the PSD of point-wise measurements (i.e. hits) and the PSD
of higher-dimensional measurements (e.g. areas measured on sections).

We focus on volume prediction and three particular common sampling schemes: lattice
of points, series of sections and series of clustered sections. For sake of simplicity, the
random body is assumed to be isotropic.

Section 2 is devoted to the general framework of the present paper. The random body
is set up as a random compact shape subjected to the action of a particular group of
geometrical transformations. Within this framework, we state the regularity conditions
under which the asymptotic approximation formula of the spectral density is obtained.
Sections 3 and 4 are concerned with the three stereological sampling schemes: lattice of
points, series of sections and series of clustered sections. In each case, we introduce the
sampling scheme and the related stereological volume predictor. The mean square error is
expressed in terms of the spectral density of the random body and an asymptotic formula
is given. These formulae involve the mean surface area of the random body. In Section 5
we compare the precision of the different sampling designs. Concluding remarks are given
in Section 6.

2 General framework

2.1 Spectral density of a random body

Let K denote the space of bodies (compacts sets) in R3 endowed with the hitting topology
(see e.g. [15]).

Let us consider a random body X in R3, see Figure 1. We shall denote by V and V
the volume and mean volume of X and by S and S the boundary area and mean boundary
area of X respectively.

The spectral density PSDX of a random body X is defined as the mean squared
modulus of the Fourier transform of the indicator function IX of the random body, i.e.

PSDX (y) = E

[∣∣∣∣∫
R3

IX (x) exp (−2πix · y) dx

∣∣∣∣2
]

, y ∈ R3. (1)

Note that the spectral density is also the Fourier transform of the (geometric) covariogram
of the random body X defined as the mean of the convolution product IX ∗ I−X where IX
is the indicator function of X.
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Figure 1: Four realisations of an isotropic random body.

2.2 Asymptotic formula of the spectral density

We are concerned with the asymptotic behaviour of the spectral density

PSDX (ρω0) , ω0 ∈ Ω, ρ →∞.

Here Ω denotes the unit sphere.
Below, we state a general convergence result for the spectral density of a random body

X as defined in formula (5). This convergence result involves the mean boundary area S
and the rose of unoriented normal directions to the boundary ∂X of X, see e.g. [16]. The
rose can be considered as a probability measure on the unit hemisphere. We shall assume
that rose of normal directions admits a density function r.

Under regularity conditions listed in the next section, the asymptotic formula of the
spectral density is the following:

lim
ρ→∞

ρ4 PSDX (ρω0) =
S r (ω0)

4π2
. (2)

The asymptotic result (2) is supplemented by the following estimate:

sup
ρ,ω0

ρ4 PSDX (ρω0) < ∞. (3)

For sake of simplicity, we shall restrict our statistical study (sections 3 and 4) to a
random body X which distribution is invariant by orthogonal transformations. In partic-
ular, X is assumed to be isotropic. In this particular case, the normal directions to the
boundary of X are uniformly distributed on the hemisphere. Hence, the approximation
formula of the spectral density becomes

lim
ρ→∞

ρ4 PSDX (ρω0) =
S

8π3
. (4)
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Figure 2: Spectral density of a random body and its asymptotic approximation. The
spectral density (dashed line) is computed from 200 realisations of the random body. The
realisations are obtained by the simulation procedure used in Figure 1. The asymptotic
approximation (solid line) is computed from Formula (2).

2.3 Regularity conditions

The asymptotic results provided in Section 2.2 hold under some regularity conditions.
Following [11], the regularity conditions involve the conditional distribution of the size
and the orientation of the random body X given its shape.

Under the action of translations, orthogonal transformations and dilatations, the space
of bodies can be decomposed into orbits. Each orbit defines a shape and can be assigned
a representative. Hence a random body X can be decomposed into

X = hPF + v, (5)

where h is a random dilatation factor, P is a random orthogonal transformation, F is a
random (representative) shape and v is a random translation vector.

The asymptotic results given in Section 2.2 hold if

Condition 1 The random body X is a.s. uniformly bounded in R3.

Condition 2 The boundary ∂X of X is a.s. a compact C1-manifold and the mean bound-
ary area S of X is finite.

Condition 3 The conditional distribution of (h,P) given F has a continuous and uni-
formly bounded (w.r.t. F) density with respect to the product of the Lebesgue mea-
sure on R+ and the Haar probability measure on the group of orthogonal transfor-
mations.
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In the degenerated case where X is deterministic, the convergence results (2) and (3)
do not hold. However a convergence result similar to Formula (2) can be derived using the
method of the stationary phase, see e.g. [8]. Then the limit involves an extra term which
can be written as a sum of oscillating functions. Each of these functions is associated with
a pair of points on the boundary of the body where both normals are parallel to ω0.

From now on, we shall assume that the random body X is isotropic and fulfils Condi-
tions 1–3.

3 Point sampling design

We consider a random body X with volume V. The problem considered here is to predict
V from measurements on the intersection of X with random sampling probes. The volume
predictor depends on the dimension of the sampling probes. In the case where X is sampled
by a lattice of points, the volume prediction is based on the number of points hitting the
body.

3.1 Volume stereological predictor

We consider a three-dimensional lattice of points Λ1 in R3 defined by

Λ1 =
{
Ek : k ∈ Z3

}
, (6)

where the generator matrix E is a 3 × 3 non singular real matrix. We denote λ the
determinant of E. Note that λ is the volume of the fundamental tile of the lattice.

In order to get a lattice with uniform random location, Λ1 is translated by EU where
U is a uniform random point in the cube [0, 1]3. Then X is sampled by the random lattice
Λ1 defined by

Λ1 = Λ1 + EU,

see Figure 3. Notice that the distribution of Λ1 is invariant under translation.
The volume predictor V̂1 associated with this sampling design is defined by

V̂1 = λ
∑

x∈Λ1

IX (x) . (7)

Since the distribution of Λ1 is invariant under translation, one has

E
[
V̂1 | X

]
= V.

3.2 Mean square stereological error

The precision of the predictor V̂1 can be assessed from the mean square stereological error
(MSSE) defined as

MSSE
[
V̂1

]
= E

[(
V̂1 −V

)2
]

.
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(a) Body sampled by a grid of points
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Figure 3: Volume prediction and point sampling design. Right (b): the ratio between
the standard stereological error SSE (MSSE = SSE2) and the volume standard deviation
is plotted for various grid densities. The standard stereological error (circles) is com-
puted by simulating twice the sampling of 200 bodies. The standard stereological error
approximation (solid line) is computed from Formula (10).
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The mean square stereological error of V̂1 can be expressed in terms of the spectral
density of X. This type of result has been proved by Kendall [9] in a deterministic
framework. Conditionally on X the predictor V̂1 can be considered as a periodic function
of the random shift U. Using Parseval equality and simple Fourier calculus, it is easily
shown that

MSSE
[
V̂1

]
=

∑
y∈Λ∗

1\{0}

PSDX (y) , (8)

where Λ∗1 is the dual lattice of Λ1 with generator matrix E∗ =
(
E−1

)′.
3.3 Approximation formula

We are interested in the asymptotic behaviour of the mean square stereological error for
dense systematic sampling probes, i.e. for small values of λ. Introducing the “unit”
three-dimensional lattice Λ = λ−

1
3 Λ1, the mean square stereological error can be written

as
MSSE

[
V̂1

]
=

∑
y∈Λ∗\{0}

PSDX

(
λ−

1
3 y
)

.

For each y ∈ Λ∗, Formulae (4) and (3) applied with ρ = λ−
1
3 ‖y‖ yield the limit

lim
λ→0

λ−
4
3 PSDX

(
λ−

1
3 y
)

= ‖y‖−4 S

8π3

together with the inequality

λ−
4
3 PSDX

(
λ−

1
3 y
)
≤ ‖y‖−4 C, C < ∞.

Hence the approximation formula for the mean square stereological error is

MSSE
[
V̂1

]
∼ λ

4
3

S

8π3

∑
y∈Λ∗\{0}

‖y‖−4 , λ → 0.

Introducing the Epstein zeta function ZΛ∗ associated with the lattice Λ∗ of points in R3

and defined by
ZΛ∗ (s) =

∑
y∈Λ∗\{0}

‖y‖−s , s > 3, (9)

one finally gets

MSSE
[
V̂1

]
∼ λ

4
3

S

8π3
ZΛ∗ (4) , λ → 0. (10)

Note that the limit above is the extension term obtained by Matheron [12] in a de-
terministic framework. Matheron’s formula is based on a numerical approximation of the
Epstein zeta function. See Section 5 for more details.

A comparison between simulated and approximated mean square stereological errors
is provided in Figure 3.
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4 Serial and clustered section sampling designs

These two sampling designs involve a series of parallel planes intersecting the body X. In
this case, the mean volume can be predicted from profile areas measured on the sampling
sections.

4.1 Serial section sampling design

Here the body is intersected by parallel equidistant planes, see Figure 4. The orientation
of the planes is considered as fixed. Without loss of generality, we may assume that the
planes are horizontal. Any horizontal plane can be identified to its intersection with the
vertical axis. Thus parallel equidistant planes are identified to a one-dimensional vertical
lattice of points. The series of planes is said to be uniform random if the one-dimensional
lattice of points can be written as

Λ2 = {(k + U) δω : k ∈ Z} , (11)

where U is uniformly distributed in [0, 1], δ is the distance between two neighbour planes
and ω is a unit vertical vector in R3.

(a) Serial sections
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(b) SSE approximation

Figure 4: Volume prediction and serial section sampling design. Right (b): the ratio be-
tween the standard stereological error SSE and the volume standard deviation is plotted
for various sampling densities. The standard stereological error (circles) is computed by
simulating twice the sampling of 200 bodies. The standard stereological error approxima-
tion (solid line) is computed from Formula (15).
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The unbiased volume predictor associated with this sampling probe, so-called Cavalieri
predictor (when the body under investigation is deterministic), is

V̂2 = δ
∑

x∈Λ2

A (x) (12)

where A (x) denotes the area of X measured on the sampling section hitting the vertical
axis at point x. Using the same arguments as for Equation (8), it can be shown that

MSSE
[
V̂2

]
=

∑
k∈Z\{0}

PSDA

(
k

δ
ω

)
,

where PSDA is defined as the mean squared modulus of the Fourier transform of the
function A considered as a function on the vertical axis.

The profile area function A in (12) is obtained by integrating IX over horizontal planes.
This integration operation is called grading by Matheron [12, 14]. Using Matheron’s
general result on the spectral density of a graded regionalized variable, one gets

PSDA (y) = PSDX (y) , (13)

for any y on the vertical axis. This relationship is a straightforward consequence of the
fact that the Fourier transform of the area measure on the horizontal plane through the
origin is just the length measure on the vertical axis.

Using (13), we can then express the mean square stereological error as

MSSE
[
V̂2

]
=

∑
k∈Z\{0}

PSDX

(
k

δ
ω

)
. (14)

We will give now an approximation formula for the mean square stereological error
when the spacing δ between section planes tends to 0.

For each k ∈ Z, Formulae (4) and (3) applied with ρ = k/δ yield the limit

lim
δ→0

δ−4 PSDX

(
k

δ
ω

)
= k−4 S

8π3

with the inequality

δ−4 PSDX

(
k

δ
ω

)
≤ k−4 C, C < ∞.

The approximation formula for the mean square stereological error is then

MSSE
[
V̂2

]
∼ S

8π3
δ4

∑
k∈Z\{0}

k−4, δ → 0.

The infinite sum is equal to 2 ζ (4) where ζ denotes the zeta function, and simplifies as
π4/45. One finally gets

MSSE
[
V̂2

]
∼ S π

360
δ4, δ → 0. (15)
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The precision of the Cavalieri predictor has been investigated in previous papers. In
particular, it has been shown that when X is a deterministic ellipsoid (fixed size and
orientation) the mean square stereological error tends to 0 as fast as δ4, see [3]. In [6]
general mean square stereological error approximations have been derived using the tran-
sitive methods. Due to a misinterpretation of Matheron’s theory it has been stated that
the mean square stereological error of the Cavalieri predictor tends to 0 as fast as δ2. In
[5], the application of the transitive methods has been reconsidered and it has been stated
that for “quasi-ellipsoidal bodies” the variance of the Cavalieri predictor tends to 0 as fast
as δ4. This statement has been further investigated in [10, 7] where the result is extended
to bodies with curved boundaries.

Note that the variance approximations derived in [5, 10, 7] are of the type Cδ4 where C
is not given a geometric interpretation. Instead C is expressed as a covariogram derivative
at the origin.

A comparison between simulated and approximated mean square stereological errors
is provided in Figure 4.

4.2 Clustered section sampling design

Next let us consider a sampling scheme where the section planes are distributed as a se-
ries of clusters, see Figure 5. This type of sampling scheme can be practically implemented
through a two-stage procedure:

• First the spatial structure under investigation is sliced into physical slabs.

• Then a sample of slabs (e.g. every tenth slab) are investigated by means of (optical)
sections.

As in Section 4, the section planes are assumed to be horizontal and any section plane
is identified with its intersection with the vertical axis. The section planes are randomised
such that the series of points on the vertical axis can be written as

Λ3 = {((k + U) ∆ + lδ) ω : k ∈ Z, l = 1, . . . ,m} ,

where U is uniformly distributed in [0, 1], ∆ is the distance between the “first” section
planes of neighbour clusters, δ is the distance between neighbour section planes within a
cluster and m is the number of section planes per cluster.

The volume predictor associated with this sampling scheme is

V̂3 =
∆
m

δ
∑

x∈Λ3

A (x) . (16)

Note that when ∆ = mδ, the section planes the total sampling fraction is equal to 1
and the series Λ3 defines an ordinary series of sections with spacing equal to ∆/m.
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Figure 5: Volume prediction and clustered section sampling design.

The mean square stereological error of V̂3 is given by

MSSE
[
V̂3

]
=

δ2

t2

∑
k∈Z\{0}

PSDX

(
k

∆
ω

) m∑
l1,l2=1

exp
(

2πi (l1 − l2) kδ

∆

)
. (17)

This formula is derived by using the same technical approach as before. First the mean
square stereological error can be written as

MSSE
[
V̂3

]
=

δ2

t2

∑
k∈Z\{0}

PSDA∗Tm

(
k

∆
ω

)

where Tm denotes the finite sum of Dirac measures at δω, 2δω, ..., mδω. Note that the con-
volution product A∗Tm (x) is the sum of section areas measured inside the slab associated
with x.

The spectral density of the convolution product is just the product of the spectral
density of A with the spectral density of Tm. The square modulus of the Fourier transform
of Tm is given by

PSDTm (y) =
m∑

l1,l2=1

exp (2πi (l1 − l2) δω · y) .

Combining this result together with Formula (13), one gets the mean square stereological
error formula (17).

We are concerned with the asymptotic behaviour of the mean square stereological error
for small values of ∆. For ∆ tending to 0, the approximation formula for the mean square
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stereological error is

MSSE
[
V̂3

]
∼ S π

12
δ2

t2
∆4

(
m2

30
− 2

m∑
l=1

(m− l)
(

lδ

∆

)2( lδ

∆
− 1
)2
)

. (18)

To obtain this asymptotic formula, we first apply Formulae (4) and (3) to (17). This yields
the limit result

lim
∆→0

∆−4 MSSE
[
V̂3

]
=

S

8π3

δ2

t2

m∑
l1,l2=1

∞∑
k=1

k−4 exp
(

2πi (l1 − l2) kδ

∆

)
.

Introducing the Bernoulli polynomial B4 of index 4, the last result can be written as

lim
∆→0

∆−4 MSSE
[
V̂3

]
=

S π

12
δ2

t2

(
−mB4 (0)− 2

m∑
l=1

(m− l) B4

(
lδ

∆

))
.

The approximation formula (18) follows from using the polynomial expression of B4.
Expanding the sum and using f, t and m as sampling parameters, one gets the alter-

native formula

MSSE
[
V̂3

]
∼ S π

360
t4

f4m4

(
m4
(
1 + 2f − 2f2

)
(1− f)2 + 5m2f2 (1− f)2 + f3 (4− 3f)

)
. (19)

This asymptotic approximation formula holds for fixed parameters f and m and slab
thickness t → 0.

Note that when all slabs are analysed (f = 1), Formula (19) reduces to the approxi-
mation formula (15) for sampling by serial sections with spacing δ = t/m.

A comparison between exact and approximated mean square stereological errors is
provided in Figure 5.

5 Comparisons of the sampling designs

The approximation formula (10) can be used in order to compare sampling point
grids according to their shape (the sampling density being fixed i.e. λ = 1). Note that
the Epstein zeta function ZΛ∗(4) can be computed numerically using the Chowla-Selberg
expansion, see [2]. Matheron’s approximation formula [12, page 105] is obtained from the
first three terms of the Chowla-Selberg expansion. These first three terms depend only on
particular values of the Riemann zeta function and on some Bernoulli numbers. Thus they
are easily computed from numerical tables. Higher-order expansions used below involve
values of Bessel functions.

When Λ is the unit self-dual cubic lattice then

ZΛ∗(4) = 16.53.
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Next let us consider rectangular sampling lattices of the type Λ = α−
1
3 Z × α−

1
3 Z ×

α
2
3 Z. When α > 1, the horizontal density is higher than the vertical density. Numerical

computations yield

α : 1 2 3 4 5 6 7 8 9 10
ZΛ∗(4) : 16.53 25.01 50.36 96.21 166.5 265.1 395.6 561.2 765.5 1011

Hence under the isotropy assumption, the cubic sampling grid yields a better volume
predictor than anisotropic rectangular sampling grids.

Better predictors are obtained using the centred cubic lattice or the face-centred cubic
lattice: ZΛ∗(4) = 15.96 and ZΛ∗(4) = 15.97 respectively. In [1], it is shown that 16.96 is a
local minimum for the function

Λ → ZΛ∗(4)

defined for all unit lattices (λ = 1).
Based on the MSSE approximations formulae, the three predictors V̂1, V̂2 and V̂3 can

be compared independently of the spatial structure under investigation.
First let us compare point and serial section sampling designs. These sampling designs

are based respectively on a three-dimensional lattice of points Λ1 and a vertical one-
dimensional lattice of points Λ2. For sake of simplicity, we take a rectangular lattice of
points

Λ1 = δ
(
α−1Z2 × Z

)
.

We consider the case where the vertical inter-distances (δ) of Λ1 and Λ2 are equal.
Using approximations (10) and (15), for small values of δ we get

r12 =
SSE

[
V̂1

]
SSE

[
V̂2

] ∼√Z(αZ2)×Z (4)
2ζ (4)

.

Below, we give numerical values of the ratio r12 for some values of α:

α : 1 2 3
r12 : 2.8 1.3 1.1

Now let us compare serial and clustered section sampling designs. Consider the case
where the mean number of sections hitting the body is the same for both sampling schemes:
δ1 = δ2/f where δ1 is the spacing for the serial sections and δ2 is the distance between
two neighbour sections within a cluster. Using approximations (15) and (19), we get

r32 =
SSE

[
V̂3

]
SSE

[
V̂2

] ∼√1 + (1− f2)(m− 1)(m + 1)(m2 + 2m2f − 2m2f2 + 3f2 + 2f + 1).

The parameters f and m describe the type of clusters: m is the cluster size and f the
cluster coverage fraction. When m = 1 or f = 1, both sampling schemes are equivalent.
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Below the ratio r32 of approximated standard stereological errors is computed for several
cluster sizes m and cluster coverage fractions f :

m : 3 3 4 4
f : 0.1 0.5 0.1 0.5

r32 : 8.82 5.79 16.7 10.1

6 Concluding remarks

In practice the mean boundary area S is not known a priori and an estimation method is
required. When the body X is intersected by a series of parallel sections, the mean surface
area S can be estimated from perimeters measured on sections. Standard estimation
formulae can be found in [16] and [17].

For sake of simplicity we have focused on the case of an isotropic random body. Note
that approximation formulae (15) and (19) can easily be extended to the anisotropic
case. One just has to replace the mean surface area S by S r (ω) where ω is the unit
vector perpendicular to the section planes. The comparison ratio r32 as given in Section
5 remains valid.

Some sampling designs used in microscopy are more complicated than those considered
here. Approximations of the mean square stereological errors of these sampling designs
are still required.
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