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Abstract

We investigate in this paper the estimation of Gaussian graphs by model selection from
a non-asymptotic point of view. We start from a n-sample of a Gaussian law PC in Rp

and focus on the disadvantageous case where n is smaller than p. To estimate the graph
of conditional dependences of PC , we introduce a collection of candidate graphs and then
select one of them by minimizing a penalized empirical risk. Our main result assess the
performance of the procedure in a non-asymptotic setting. We pay a special attention to the
maximal degree D of the graphs that we can handle, which turns to be roughly n/(2 log p).
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1 Introduction

Let us consider a Gaussian law PC in Rp with mean 0 and positive definite covariance matrix C.
We write θ for the matrix of the regression coefficients associated to the law PC , more precisely
θ =

[
θ
(j)
i

]
i,j=1,...,p

is the p× p matrix such that θ
(j)
j = 0 for j = 1, . . . , p and

E
[
X(j)

∣∣X(k), k 6= j
]

=
∑
k 6=j

θ
(j)
k X(k), j ∈ {1, . . . , p} , a.s.

for any random vector X =
(
X(1), . . . ,X(p)

)T
of law PC . Our aim is to estimate the matrix

θ by model selection from a n-sample X1, . . . , Xn i.i.d. with law PC . We will focus on the
disadvantageous case where the sample size n is smaller than the dimension p.

We call henceforth shape of θ, the set of the couples of integers (i, j) such that θ
(j)
i 6= 0. The

shape of θ is usually represented by a graph g with p labeled vertices {1, . . . , p}, by setting an
edge between the vertices i and j when θ

(j)
i 6= 0. This graph is well-defined since θ

(j)
i = 0 if and

only if θ
(i)
j = 0; the latter property may be seen e.g. on the formula θ

(j)
i = −(C−1)i,j/(C−1)j,j

for all i 6= j. The graph g is of interest for the statistician since it depicts the conditional
dependences of the variables X(j)s. Actually, there is an edge between i and j if and only if
X(i) is not independent of X(j) conditionally on the other variables. The objective in Gaussian
graphs estimation is usually to detect the graph g. Even if the purpose of our procedure is to
estimate θ and not g, we propose to estimate g by the way as follows. We associate to our
estimator θ̂ of θ, the graph ĝ where we set an edge between the vertices i and j when θ̂

(j)
i is

non-zero.
Estimation of Gaussian graphs with n � p is a current active field of research motivated by
applications in postgenomic. Biotechnological developments (microarrays, 2D-electrophoresis,
etc) enable to produce a huge amount of proteomic and transcriptomic data. One of the challenge
in postgenomic is to infer from these data the regulation network of a family of genes (or
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proteins). The task is challenging for the statistician due to the very high-dimensional nature
of the data and the small sample size. For example, microarrays measure the expression levels
of a few thousand genes (typically 4000) and the sample size n is no more than a few tens.
The Gaussian graphical modeling appears to be a valuable tool for this issue, see the papers of
Kishino and Waddell [14], Dobra et al [9], Wu and Ye [20]. The gene expression levels in the
microarray are modeled by a Gaussian law PC and the regulation network of the genes is then
depicted by the graph g of the conditional dependences.
Various procedures have been proposed to perform graph estimation when p > n. Many are
based on multiple testing, see for instance the papers of Schäfer and Strimmer [16], Drton
and Perlman [8, 10] or Wille and Bühlmann [19]. We also mention the work of Verzelen and
Villers [17] for testing in a non-asymptotic framework whether there are (or not) missing edges
in a given graph. Recently, several authors advocate to take advantage of the nice computational
properties of the l1-penalization to either estimate the graph g or the concentration matrix C−1.
Meinshausen and Bühlmann [15] propose to learn the graph g by regressing with the Lasso each
variable against the others. Huang et al. [13] or Yuan and Lin [21] (see also Banerjee et al. [1]
and Friedman et al. [11]) suggest in turn to rather estimate C−1 by minimizing the log-likelihood
for the concentration matrix penalized by the l1-norm. The performance of these algorithms
are mostly unknown: the few theoretical results are only valid under restrictive conditions on
the covariance matrix and for large n (asymptotic setting). In addition to these few theoretical
results, Villers et al. [18] propose a numerical investigation of the validity domain of some of
the above mentioned procedures.
Our aim in this work is to investigate Gaussian graph estimation by model selection from a
non-asymptotic point of view. We propose a procedure to estimate θ and assess its performance
in a non-asymptotic setting. Then, we discuss on the maximum degree of the graphs that we
can accurately estimate and explore the performance of our estimation procedure in a small
numerical study.
We will use the Mean Square Error of Prediction (MSEP) as a criterion to assess the quality of
our procedure. To define this quantity, we introduce a few notations. For any k, q ∈ N, we write
‖ · ‖k×q for the Frobenius norm in Rk×q, namely ‖A‖2

k×q = Trace (AT A), for any A ∈ Rk×q. The
MSEP of the estimator θ̂ is then

MSEP(θ̂) = E
[
‖C1/2(θ̂ − θ)‖2

p×p

]
= E

[
‖XT

new(θ̂ − θ)‖2
1×p

]
,

where C1/2 is the positive square root of C and Xnew is a random vector, independent of θ̂, with
distribution PC . We underline that the MSEP focus on the quality of the estimation of θ and not
of g. In particular, we do not aim to estimate at best the ”true” graph g, but rather to estimate
at best the regression matrix θ. We choose this point of view for two reasons. First, we do not
believe that the matrix θ is exactly sparse in practice, in the sense that θ

(j)
i = 0 for most of

the i, j ∈ {1, . . . , p}. Rather, we want to handle cases where the matrix θ is only approximately
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sparse, which means that there exists a sparse matrix θ∗ which is a good approximation of θ.
In this case, the shape g of θ may not be sparse at all, it can even be the complete graph. Our
goal, is then not to estimate g but rather to capture the main conditional dependences given
by the shape g∗ of θ∗. The second reason for considering the MSEP as a quality criterion for
our procedure, is that we want to quantify the fact that we do not want to miss the important
conditional dependences, but we do not worry too much missing a weak one. In other words,
even in the case where the shape g of θ is sparse, we are interesting in finding the main edges
of g (corresponding to strong conditional dependences) and we do not really care of missing a
”weak” edge which is overwhelmed by the noise. The MSEP is a possible way to take this issue
into account.
To estimate θ, we will first introduce a collection M of graphs, which are our candidates for
describing the shape g of θ. If we have no prior information on g, a possible choice for M is
the set of all the graph with degree1 less than some fixed integer D. Then, we associate to each
graph m ∈ M, an estimator θ̂m of θ by minimizing an empirical version of the MSEP with the
constraint that the shape of θ̂m is given by m, see Section 2 for the details. Finally, we select
one of the candidate graph m̂ by minimizing a penalized empirical MSEP and set θ̂ = θ̂m̂. Our
main result states the following risk bound for a truncation θ̃ of θ̂.

Theorem 1 Assume that p > n ≥ 3. If for some η < 1 we have

degree(m) ≤ η
n

2
(
1.1 +

√
log p

)2 , for all m ∈M, (1)

then there exists some constant Cη, depending on η only, such that

MSEP(θ̃) ≤ Cη log(p)×
(

min
m∈M

{
MSEP(θ̂m)

}
∨ 1

n
‖C1/2(I − θ)‖2

)
+ Rn, (2)

where the residual term Rn is of order a p2n−4 log n.

In other words, if the candidate graphs have a degree small compared to n/(2 log p), then the
MSEP of θ̃ nearly achieves, up to a log(p) factor, the minimal MSEP of the collection of estima-
tors {θ̂m, m ∈ M}. In particular, if g ∈ M, the MSEP of θ̃ is upper-bounded by log(p) times
the MSEP of θ̂g, which in turn is roughly upper bounded by deg(g)× ‖C1/2(I − θ)‖2 log(p)/n.
The additional term n−1‖C1/2(I − θ)‖2 in (2) can be interpreted as a minimal variance for the
estimation of θ. This minimal variance is due to the inability of the procedure to detect with
probability one whether an isolated vertex of g is isolated or not. We mention that when each
vertex of the graph g is connected to at least one other vertex, this variance term n−1‖C1/2(I −
θ)‖2 remains smaller than the MSEP of θ̂g.

1the degree of a graph corresponds to the maximum number of edges incident to a vertex.
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It is of practical interest to know if the Condition (1) on the degree of the graphs can be avoided.
This point is discussed in Section 3.1, where we emphasize that it is hopeless to try to estimate
accurately graphs with a degree D large compared to n/(1 + log(p/n)). We also prove that the
size of the penalty involved in the selection procedure is minimal in some sense.
The remaining of the paper is organized as follows. After introducing a few notations, we
describe the estimation procedure in Section 2 and state a more precise version of Theorem 1 in
Section 3. Section 4 is devoted to a small numerical study and Section 6 to the proofs.

A few notations

Before describing our estimation procedure, we introduce a few notations about graphs we shall
use all along the paper.

a. Graphs

The set of the graphs with p vertices labeled by {1, . . . , p} is in bijection with the set G of all
the subset g of {1, . . . , p}2 fulfilling

• (j, j) /∈ g for all j ∈ {1, . . . , p},

• (i, j) ∈ g ⇒ (j, i) ∈ g for all i, j ∈ {1, . . . , p}.

Indeed, to any g ∈ G we can associate a graph with p vertices labeled by {1, . . . , p} by setting
an edge between the vertices i and j if and only if (i, j) ∈ g. For simplicity, we call henceforth
”graph” any element g of G.
For a graph g ∈ G and an integer j ∈ {1, . . . , p}, we set gj = {i : (i, j) ∈ g} and denote by |gj |
the cardinality of gj . Finally, we defined the degree of g by deg(g) = max {|gj | : j = 1, . . . , p}.

b. Directed graphs

As before, we will represent the set of the directed graph with p vertices labeled by {1, . . . , p}
by the set G+ of all the subset g of {1, . . . , p}2 fulfilling ”(j, j) /∈ g for all j ∈ {1, . . . , p}”. More
precisely, we associate to g ∈ G+ the directed graph with p vertices labeled by {1, . . . , p} and
with directed edges from i to j if and only if (i, j) ∈ g.
We note that G ⊂ G+ and we extend to g ∈ G+ the above definitions of gj , |gj |, and deg(g).

2 Estimation procedure

In this section, we explain our procedure to estimate θ. We first introduce a collection of graphs
and models, then we associate to each model an estimator and finally we give a procedure to
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select one of them.

2.1 Collection of graphs and models

Our estimation procedure starts by the choice of either a collection M ⊂ G of graphs or a
collection M ⊂ G+ of directed graphs which are our candidates to describe the shape of θ.
Among the possible choices for M we mention four of them:

1. the set M#
D ⊂ G of all the graph with at most D edges,

2. the set Mdeg
D ⊂ G of all the graph with degree less than D,

3. the set M#,+
D ⊂ G+ of all the directed graph with at most D directed edges,

4. the set Mdeg,+
D ⊂ G+ of all the directed graph with degree less than D.

We call degree ofM the integer DM = max {deg(m) m ∈M} and note that the above collections
of graphs have a degree bounded by D.
To the collection of (directed) graphs M, we associate the following collection {Θm, m ∈M} of
models to estimate θ. The model Θm is the linear space of those matrices in Rp×p whose shape
is given by the graph m, namely

Θm =
{

A ∈ Rp×p : (i, j) /∈ m ⇒ A
(j)
i = 0

}
.

As mentioned before, we known that θ
(j)
i = 0 if and only if θ

(i)
j = 0, so it seems irrelevant to

(possibly) introduce directed graphs instead of graphs. Nevertheless, we must keep in mind
that our aim is to estimate θ at best in terms of the MSEP. In some cases, the results can be
improved when using directed graphs instead of graphs, typically when for some i, j ∈ {1, . . . , p}
the variance of θ

(j)
i X(i) is large compared to the conditional variance Var(X(j)|X(k), k 6= j),

where as the variance of θ
(i)
j X(j) is small compared to Var(X(i)|X(k), k 6= i). Finally, we note

the following inclusions for the families of models mentioned above⋃
m∈M#,+

D

Θm ⊂
⋃

m∈M#
D

Θm ⊂
⋃

m∈Mdeg
D

Θm ⊂
⋃

m∈Mdeg,+
D

Θm .

2.2 Collection of estimators

We assume henceforth that 3 ≤ n < p and that the degree DM of M is upper bounded by some
integer D ≤ n − 2. We start with n observations X1, . . . , Xn i.i.d. with law PC and we denote
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by X the n × p matrix X = [X1, . . . , Xn]T . In the following, we write A(1), . . . , A(p) for the p
columns of a matrix A ∈ Rk×p.
We remind the reader that ‖C1/2(I − θ)‖2 = infA∈Θ ‖C1/2(I − A)‖2, where Θ is the space of
p × p matrices with 0 on the diagonal. An empirical version of ‖C1/2(I − A)‖2 is n−1‖X(I −
A)‖2

n×p, which can also be viewed as an empirical version of the ”risk” ‖C1/2(A− θ)‖2, since by
Pythagorean theorem ‖C1/2(A− θ)‖2 = ‖C1/2(I −A)‖2 − ‖C1/2(I − θ)‖2, for all A ∈ Θ.

In this direction, we associate to any m ∈ M, an estimator θ̂m of θ by minimizing on Θm this
empirical risk

‖X(I − θ̂m)‖2
n×p = min

A∈Θm

‖X(I −A)‖2
n×p. (3)

We note that the p× p matrix θ̂m then fulfills the equalities

Xθ̂(j)
m = Proj

XΘ
(j)
m

(
X(j)

)
, for j = 1, . . . , p,

where Θ(j)
m is the linear space Θ(j)

m =
{
θ(j) : θ ∈ Θm

}
⊂ Rp and Proj

XΘ
(j)
m

is the orthogonal

projector onto XΘ(j)
m in Rn (for the usual scalar product). Hence, since the covariance matrix

C is positive definite and D is less than n, the minimizer of (3) is unique a.s.

2.3 Selection procedure

To estimate θ, we will select one of the estimator θ̂m by minimizing some penalized version of
the empirical risk ‖X(I − θ̂m)‖2/n. More precisely, we set θ̂ = θ̂m̂ where m̂ is any minimizer on
M of the criterion

Crit(m) =
p∑

j=1

[
‖X(j) −Xθ̂(j)

m ‖2 ×
(

1 +
pen(|mj |)
n− |mj |

)]
, (4)

with the penalty function pen : N → R+ of the form of the penalties introduced in Baraud et
al. [4]. To compute this penalty, we define for any integers d and N the Dkhi function by

Dkhi(d, N, x) = P
(

Fd+2,N ≥ x

d + 2

)
− x

d
P
(

Fd,N+2 ≥
N + 2
Nd

x

)
, x > 0,

where Fd,N denotes a Fisher random variable with d and N degrees of freedom. The function
x 7→ Dkhi(d,N, x) is decreasing and we write EDkhi[d,N, x] for its inverse, see [4] Section 6.1 for
details. Then, we fix some constant K > 1 and set

pen(d) = K
n− d

n− d− 1
EDkhi

[
d + 1, n− d− 1,

(
Cd

p−1(d + 1)2
)−1

]
. (5)

7



Size of the penalty

The size of the penalty pen(d) is roughly 2Kd log p for large values of p. Indeed, we will work
in the sequel with collections of models, such that

DM ≤ η
n

2
(
1.1 +

√
log p

)2 , for some η < 1,

and then, we approximately have for large values of p and n

pen(d) . K
(
1 + eη

√
2 log p

)2
(d + 1), d ∈ {0, . . . , DM} ,

see Proposition 4 in Baraud et al. [4] for an exact bound. In Section 3.2, we show that the size
of this penalty is minimal in some sense.

Choice of the tuning parameter K

Increasing the value of K decreases the size of the graph m̂ that is selected. The choice K = 2
gives o good control of the MSEP of θ̂, both theoretically and numerically (see Section 3 and 4).
If we want that the rate of false discovery of edges remains smaller than 5%, the choice K = 3
may also be appropriated.

Computational cost

The computational cost of the selection procedure appears to be very high. For example, if
M = Mdeg,+

D the computational complexity of the procedure increases as p(D+1) with the
dimension p. In a future work [12], we will propose a modified version of this procedure, which
presents a much smaller complexity.

3 The main result

Next theorem is a more precise version of Theorem 1. It gives an upper-bound on the MSEP of
a slight variation θ̃ of θ̂, defined by

θ̃(j) = θ̂(j) 1{‖θ̂(j)‖≤√p Tn}, for all j ∈ {1, . . . , p} , with Tn = n2 log n. (6)

We note that θ̂ and θ̃ coincide in practice since the threshold level Tn increases very fast with
n, e.g. T20 ≈ 6.107.
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In the sequel, we write σ2
j =

(
C−1

j,j

)−1
= Var(X(j) | X(k), k 6= j) and define θm by

‖C1/2(θ − θm)‖2 = min
Am∈Θm

‖C1/2(θ −Am)‖2.

Theorem 2 Assume that DM = max {deg(m), m ∈M} fulfills the condition

1 ≤ DM ≤ η
n

2
(
1.1 +

√
log p

)2 , for some η < 1. (7)

Then, the MSEP of the estimator θ̃ defined by (6) is upper bounded by

E
[
‖C1/2(θ̃ − θ)‖2

]
≤ c(K, η) min

m∈M

‖C1/2(θ − θm)‖2

(
1 +

pen(deg(m))
n− deg(m)

)
+

1
n

p∑
j=1

(pen(|mj |) + K log n)σ2
j


+ Rn(η, C) (8)

where K is the constant appearing in (5), c(K, η) = K
(K−1)(1−√η)4

and the residual term Rn(η, C)

(made explicit in the proof) is of order a p2n−4 log n.

The proof of this theorem is delayed to Section 6.3 and we explain in Section 6.2 how to derive
Theorem 1 from Theorem 2. Below, we discuss on the necessity of Condition (7) on the degree
of the graphs and on the size of the penalty.

3.1 Is Condition (7) optimal or avoidable?

Condition (7) requires that DM remains small compared to n/(2 log p). We may wonder if
this condition is necessary, or if we can hope to handle graphs with larger degree D. A glance
at the proof of Theorem 2 shows that Condition (7) can be replaced by the weaker condition(√

DM + 1 +
√

2 log CDM
p−1 + 1/(4CDM

p−1 )
)2

≤ ηn. Using the classical bound CD
p−1 ≤ (ep/D)D,

we obtain that the latter condition is satisfied when

DM ≤ η

3
× n

2.1 + log p
DM

, (9)

so we can replace Condition (7) by Condition (9) in Theorem 2. Let us check now that we
cannot improve (up to a multiplicative constant) upon (9).
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Pythagoran equality gives ‖C1/2(θ− θ̂)‖2 = ‖C1/2(I− θ̂)‖2−‖C1/2(I− θ)‖2, so there is no hope
to control the size of ‖C1/2(θ − θ̂)‖2 if we do not have for some δ ∈ (0, 1) the inequalities

(1− δ)‖C1/2(I −A)‖p×p ≤
1√
n
‖X(I −A)‖n×p ≤ (1+ δ)‖C1/2(I −A)‖p×p for all A ∈

⋃
m∈M

Θm

(10)
with large probability. Under Condition (7) or (9), Lemma 1 Section 6 ensures that these
inequalities hold for any δ >

√
η with probability 1 − 2 exp

(
−n(δ −√η)2/2

)
. We emphasize

next that in the simple case where C = I, there exists a constant c(δ) > 0 (depending on δ only)
such that the Inequalities (10) cannot hold if M#

D ⊂M or M#,+
D ⊂M with

D ≥ c(δ)
n

1 + log p
n

.

Indeed, when C = I and M#
D ⊂M (or M#,+

D ⊂M), the Inequalities (10) enforces that n−1/2X
satisfies the so-called δ-Restricted Isometry Property of order D introduced by Candès and
Tao [5], namely

(1− δ)‖β‖p×1 ≤ ‖n−1/2Xβ‖p×p ≤ (1 + δ)‖β‖p×1

for all β in Rp with at most D non-zero components. Barabiuk et al. [2] (see also Cohen et al. [6])
have noticed that there exists some constant c(δ) > 0 (depending on δ only) such that no n× p
matrix can fulfill the δ-Restricted Isometry Property of order D if D ≥ c(δ)n/(1+ log(p/n)). In
particular, the matrix X cannot satisfies the Inequalities (10) when M#

D ⊂M (or M#,+
D ⊂M)

with D ≥ c(δ)n/(1 + log(p/n)).

3.2 Can we choose a smaller penalty?

As mentioned before, under Condition (7) the penalty pen(d) given by (5) is approximately
upper bounded by K

(
1 + eη

√
2 log p

)2 (d + 1). Similarly to Theorem 1 in Baraud et al. [4], a
slight variation of the proof of Theorem 2 enables to justify the use of a penalty of the form
pen(d) = 2Kd log(p−1) with K > 1 as long as DM remains small (the condition on DM is then
much stronger than Condition (7)). We underline in this section, that it is not recommended to
choose a smaller penalty. Indeed, next proposition shows that choosing a penalty of the form
pen(d) = 2(1− γ)d log(p− 1) for some γ ∈ (0, 1) leads to a strong overfitting in the simple case
where θ = 0, which corresponds to C = I.

Proposition 1 Consider three integers 1 ≤ D < n < p such that p ≥ e2/(1−γ)+1 and M#
D ⊂M

or M#,+
D ⊂M. Assume that pen(d) = 2(1−γ)d log(p−1) for some γ ∈ (0, 1) and θ = 0. Then,

there exists some constant c(γ) made explicit in the proof, such that when m̂ is selected according
to (4)

P

(
|m̂| ≥ c(γ) min(n, pγ/4)

(log p)3/2
∧ bγD/8c

)
≥ 1− 3(p− 1)−1 − 2e−γ2n/83

.
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In addition, in the case where M = Mdeg,+
D , we have

P

(
|m̂j | ≥

c(γ) min(n, pγ/4)
(log p)3/2

∧ bγD/8c

)
≥ 1− 3(p− 1)−1 − 2e−γ2n/83

for all j ∈ {1, . . . , p}.

4 Numerical study

In this section, we carry out a small simulation study to evaluate the performance of our pro-
cedure. Our study concerns the behaviour of the estimator θ̂ when the sparsity decreases (Sec-
tion 4.2) or when the number of covariates p increases (Section 4.3). In this direction, we fix the
sample size n to 15 (a typical value in post-genomics) and run simulations for different values of p
and for different sparsity levels. For comparison, we include the procedure ”or” of Meinshausen
and Bühlmann [15]. This choice is based on the numerical study of Villers et al. [18], where
this procedure achieves a good trade-off between the power and the FDR. We write henceforth
”MB” to refer to this procedure.

4.1 Simulation scheme

The graphs g are sampled according to the Erdös-Rényi model: starting from a graph with p
vertices and no edges, we set edges between each couple of vertices at random with probability
q (independently of the others). Then, we associate to a graph g a positive-definite matrix K
with shape given by g as follows. For each (i, j) ∈ g, we draw Ki,j = Kj,i from the uniform
distribution in [−1, 1] and set the elements on the diagonal of K in such a way that K is diagonal
dominant, and thus positive definite. Finally, we normalize K to have ones on the diagonal and
set C = K−1.
For each value of p and q we sample 20 graphs and covariance matrices C. Then, for each
covariance matrix C, we generate 200 independent samples (X1, . . . , X15) of size 15 with law
PC . For each sample, we estimate θ with our procedure and the procedure of Meinshausen and
Bühlmann. For our procedure, we set M = Mdeg

4 and K = 2 or 2.5. For Meinshausen and
Bühlmann’s estimator θ̂MB we set λ according to (9) in [15] with α = 5%, as recommended by
the authors.
On the basis of the 20*200 simulations we evaluate the risk ratio

r.Risk =
MSEP(θ̂)

minm MSEP(θ̂m)
,

as well as the power and the FDR for the detection of the edges of the graph g. The calculations
are made with R www.r-project.org/.
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q = 10% q = 30% q = 33%

Estimator r.Risk Power FDR r.Risk Power FDR r.Risk Power FDR

K = 2 2.3 82% 4.9% 4.3 23% 6.8% 4.4 13% 5.6%

K = 2.5 2.5 81% 4.4% 4.9 20% 5.4% 4.9 10% 4.1%

MB 3.3 81% 3.7% 6.9 14% 2.9% 6.4 3.8% 1.1%

Table 1: Our procedure with K = 2, K = 2.5 and MB procedure: Risk ratio (r.Risk), Power
and FDR when n = 15, p = 10 and q = 10%, 30% and 33%.

p = 15 p = 20 p = 40
Estimator r.Risk Power FDR r.Risk Power FDR r.Risk Power FDR

K = 2 3.6 74% 6.6% 3.7 69% 6% 5.4 68% 5.4 %
K = 2.5 4.3 72% 6% 4.4 68% 5.3% 6.5 67% 4.7%

MB 17 60% 4% 160 20% 4.8% 340 0.0% 0.0%

Table 2: Our procedure with K = 2, K = 2.5 and MB procedure: Risk ratio (r.Risk), Power
and FDR when n = 15, s = 1 and p = 15, 20 and 40.

4.2 Decreasing the sparsity

To investigate the behaviour of the procedure when the sparsity decreases, we fix (n, p) = (15, 10)
and consider the three graph-density levels q = 10%, q = 30% and q = 33%. The results are
reported in Table 1.
When q = 10% the procedures have a good performance. They detect on average more than
80% of the edges with a FDR lower than 5% and a risk ratio around 2.5. We note that MB has
a slightly larger risk ratio than our procedure, but also a slightly smaller FDR.
When q increases above 30% the performances of the procedures declines abruptly. They detect
less than 25% of the edges on average and the risk ratio increases above 4. When q = 30% or
q = 33% our procedure is more powerful than MB, with a risk ratio 33% smaller.

4.3 Increasing the number of covariates

In this section, we focus on the quality of the estimation of θ and g when the number of covariates
p increases. We thus fix the sample size n to 15 and the sparsity index s := pq to 1. This last
index corresponds to the mean degree of a vertex in the Erdös-Rényi model. Then, we run
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simulations for three values of p, namely p = 15, p = 20 and p = 40. The results are reported in
Table 2.
When the number p of covariates increases, the risk ratios of the procedures increase and their
power decrease. Nevertheless, the performance of our procedure remains good, with a risk ratio
between 3.6 and 6.5, a power close to 70% and a FDR around 5.6 ± 1%. In contrast, the
performances of MB decrease abruptly when p increases. For values of p larger or equal to 22
(not shown), MB procedure does not detect any edge anymore. This phenomenon was already
noticed in Villers et al. [18].

5 Conclusion

In this paper, we propose to estimate the matrix of regression coefficients θ by minimizing
some penalized empirical risk. The resulting estimator has some nice theoretical and practical
properties. From a theoretical point of view, Theorem 1 ensures that the MSEP of the estimator
can be upper-bounded in terms of the minimum of the MSEP of the {θ̂m, m ∈ M} in a non-
asymptotic setting and with no condition on the covariance matrix C. From a more practical
point of view, the simulations of the previous section exhibit a good behaviour of the estimator.
The power and the risk of our procedure are better than those of the procedure of Meinshausen
and Bühlmann, especially when p increases. The counterpart of this better power is a slightly
higher FDR of our procedure compared to that of Meinshausen and Bühlmann. If the FDR
should be reduced, we recommand to set the tuning parameter K to a larger value, e.g. K = 3.
The main drawback of our procedure is its computational cost and in practice it cannot be used
when p is larger than 50. In a future work [12], we propose a modification of the procedure that
enables to handle much larger values of p.
Finally, we emphasize that our procedure can only estimate accurately graphs with a degree
smaller than n/(2 log p) and as explained in Section 3.1, we cannot improve (up to a constant)
on this condition.

6 Proofs

6.1 A concentration inequality

Lemma 1 Consider three integers 1 ≤ d ≤ n ≤ p, a collection V1, . . . , VN of d-dimensional
linear subspaces of Rp and a n× p matrix Z whose coefficients are i.i.d. with standard gaussian
distribution. We set ‖ · ‖n = ‖ · ‖n×1/

√
n and

λ∗d(Z) = inf
v∈V1∪...∪VN

‖Zv‖n

‖v‖p×1
.
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Then, for any x ≥ 0

P

(
λ∗d(Z) ≤ 1−

√
d +

√
2 log N + δN + x√

n

)
≤ P (N ≥ x) ≤ e−x2/2, (11)

where N has a standard Gaussian distribution and δN =
(
N
√

8 log N
)−1.

Similarly, for any x ≥ 0

P

(
sup

v∈V1∪...∪VN

‖Zv‖n

‖v‖p×1
≥ 1 +

√
d +

√
2 log N + δN + x√

n

)
≤ P (N ≥ x) ≤ e−x2/2. (12)

Proof. The map Z → (
√

n λ∗d(Z)) is 1-Lipschitz, therefore the Gaussian concentration inequality
enforces that

P
(
λ∗d(Z) ≤ E (λ∗d(Z))− x/

√
n
)
≤ P (N ≥ x) ≤ e−x2/2.

To get (11), we need to bound E (λ∗d(Z)) from below. For i = 1, . . . , N , we set

λi(Z) = inf
v∈Vi

‖Zv‖n

‖v‖
.

We get from [7] the bound

P

(
λi(Z) ≤ 1−

√
d

n
− x√

n

)
≤ P(N ≥ x)

hence, there exists some standard Gaussian random variables Ni such that

λi(Z) ≥ 1−
√

d/n− (Ni)+ /
√

n,

where (x)+ denotes the positive part of x. Starting from Jensen inequality, we have for any
λ > 0

E
(

max
i=1,...,N

(Ni)+

)
≤ 1

λ
log E

(
eλ maxi=1,...,N (Ni)+

)
≤ 1

λ
log

(
N∑

i=1

E
(
eλ(Ni)+

))

≤ 1
λ

log N +
1
λ

log
(
eλ2/2 + 1/2

)
≤ log N

λ
+

λ

2
+

e−λ2/2

2λ
.

Setting λ =
√

2 log N , we finally get

E (λ∗d(Z)) = E
(

min
i=1,...,N

λi(Z)
)
≥ 1−

√
d +

√
2 log N + δN√

n

This concludes the proof of (11) and the proof of (12) is similar.
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6.2 Proof of Theorem 1

Theorem 1 is a direct consequence of Theorem 2 and of the three following facts.

1. The equality
∑p

j=1 σ2
j = ‖C1/2(I − θ)‖2 holds.

2. Proposition 4 in Baraud et al. [4] ensures that when DM fulfills Condition (7), there exists
a constant C(K, η) depending on K and η only, such that

pen(d)
n− d

≤ C(K, η) for all d ≤ DM.

3. When DM fulfills (7) the MSEP of the estimator θ̂m is bounded from below by

E
(
‖C1/2(θ − θ̂m)‖2

)
≥ ‖C1/2(θ − θm)‖2 +

1(
1 +

√
η/(2 log p)

)2

p∑
j=1

|mj |
σ2

j

n
.

The latter inequality follows directly from Lemma 1.

Finally, to give an idea of the size of C(K, η), we mention the following approximate bound (for
n and p large)

C(K, η) =
pen(DM)
n−DM

.
K
(
1 + eη

√
2 log p

)2
n−DM

× η
n

2
(
1.1 +

√
log p

)2 � Kη e2η.

6.3 Proof of Theorem 2

The proof is split into two parts. First, we bound from above E
[
‖C1/2(θ̃ − θ)‖2

]
by
(
1−√η

)−4 E
[
‖X(θ̂ − θ)‖2

n

]
+

Rn. Then, we bound this last term by the right hand side of (8).
To keep formulaes short, we write henceforth D for DM.

a. From E
[
‖C1/2(θ̃ − θ)‖2

]
to E

[
‖X(θ̂ − θ)‖2

n

]
.

We set ‖ · ‖n = ‖ · ‖n×1/
√

n, λ0 =
(
1−√η

)2,
λ1

j =
‖Xθ(j)‖n

‖C1/2θ(j)‖
and λ∗j = inf

‖XC−1/2v‖n

‖v‖
: v ∈

⋃
m∈M∗

j,D

Vm


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where Vm = C1/2 < θ(j) > +C1/2Θ(j)
m andM∗

j,D is the set of those subsets m of {1, . . . , j − 1, j + 1, . . . , p}×
{j} with cardinality D. Then, for any j = 1, . . . , p

E
[
‖C1/2(θ̃(j) − θ(j))‖2

]
= E

[
‖C1/2(θ̂(j) − θ(j))‖21{λ∗j≥λ0, θ̂(j)=θ̃(j)}

]
+E

[
‖C1/2θ(j)‖21{λ∗j≥λ0, θ̃(j)=0, λ1

j≤3/2}
]

+E
[
‖C1/2θ(j)‖21{λ∗j≥λ0, θ̃(j)=0, λ1

j>3/2}
]

+E
[
‖C1/2(θ̃(j) − θ(j))‖21{λ∗j <λ0}

]
= E(j)

1 + E(j)
2 + E(j)

3 + E(j)
4 .

We prove in the next paragraphs that
∑p

j=1 E(j)
1 ≤ λ−2

0 E
[
‖X(θ̂ − θ)‖2

n

]
and that the residual

term Rn(η, C) =
∑p

j=1(E
(j)
2 + E(j)

3 + E(j)
4 ) is of order a p2T−2

n . The proofs of these bounds bear
the same flavor as the proof of Theorem 1 in Baraud [3].

Upper bound on E(j)
1 . Since

C1/2(θ̂(j) − θ(j)) ∈
⋃

m∈M∗
j,D

Vm,

we have
‖C1/2(θ̂(j) − θ(j))‖21{λ∗j≥λ0} ≤ λ−2

0 ‖X(θ̂(j) − θ(j))‖2
n

and therefore
E(j)

1 ≤ λ−2
0 E

[
‖X(θ̂(j) − θ(j))‖2

n

]
. (13)

Upper bound on E(j)
2 . All we need is to bound P

(
λ∗j ≥ λ0, θ̃(j) = 0, λ1

j ≤ 3/2
)

from above.

Writing λ− for the smallest eigenvalue of C, we have on the event
{

λ∗j ≥ λ0

}
‖θ̂(j)‖ ≤ ‖C1/2θ̂(j)‖√

λ−
≤ ‖Xθ̂(j)‖n

λ0

√
λ−

.

Besides, for any m ∈M,
Xθ̂(j)

m = Proj
XΘ

(j)
m

(
Xθ(j) + σjε

(j)
)

with ε(j) distributed as a standard Gaussian random variable in Rn. Therefore, on the event{
λ∗j ≥ λ0, θ̃(j) = 0, λ1

j ≤ 3/2
}

we have

‖θ̂(j)‖ ≤ ‖Xθ(j)‖n + σj‖ε(j)‖n

λ0

√
λ−

≤ 1.5 ‖C1/2θ(j)‖+ σj‖ε(j)‖n

λ0

√
λ−

.
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As a consequence,

P
(
λ∗j ≥ λ0, θ̃(j) = 0, λ1

j ≤ 3/2
)

≤ P

(
1.5 ‖C1/2θ(j)‖+ σj‖ε(j)‖n

λ0

√
λ−

> Tn
√

p

)

≤

{
1 when 3 ‖C1/2θ(j)‖ > λ0

√
pλ− Tn

P
(
2σj‖ε(j)‖n > λ0

√
pλ− Tn

)
else,

≤
{

9 ‖C1/2θ(j)‖2/(λ2
0λ
− pT 2

n) when 3 ‖C1/2θ(j)‖ > λ0

√
pλ− Tn

4σ2
j /(λ2

0λ
− pT 2

n) else.

Finally,

E(j)
2 ≤ ‖C1/2θ(j)‖2

9 ‖C1/2θ(j)‖2 + 4σ2
j

λ2
0λ
− pT 2

n

. (14)

Upper bound on E(j)
3 . We note that n

(
λ1

j

)2
follows a χ2 distribution, with n degrees of freedom.

Markov inequality then yields the bound

P
(
λ1

j > 3/2
)
≤ exp

(
− n

2
(9/4− 1− log(9/4))

)
≤ exp(−n/5).

As a consequence, we have
E(j)

3 ≤ ‖C1/2θ(j)‖2 exp(−n/5). (15)

Upper bound on E(j)
4 . Writing λ+ for the largest eigenvalue of the covariance matrix C, we have

E(j)
4 ≤ 2E

[(
‖C1/2θ(j)‖2 + ‖C1/2θ̂(j)‖2

)
1{λ∗j <λ0}

]
≤ 2

(
‖C1/2θ(j)‖2 + λ+pT 2

n

)
P
(
λ∗j < λ0

)
.

The random variable Z = XC−1/2 is n × p matrix whose coefficients are i.i.d. and have the
standard Gaussian distribution. The condition (7) enforces the bound

√
D + 1 +

√
2 log |M∗

j,D|+ δ|M∗
j,D|√

n
≤ √η,

so Lemma 1 ensures that

P
(
λ∗j < λ0

)
≤ exp (−n(1−√η)η/2)
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and finally
E(j)

4 ≤ 2
(
‖C1/2θ(j)‖2 + λ+pT 2

n

)
exp (−n(1−√η)η/2) . (16)

Conclusion. Putting together the bounds (13) to (16), we obtain

E
[
‖C1/2(θ̃ − θ)‖2

]
=

p∑
j=1

E
[
‖C1/2(θ̃ − θ)‖2

]
≤ λ−2

0 E
[
‖X(θ̂ − θ)‖2

n

]
+ Rn(η, C) (17)

with Rn(η, C) =
∑p

j=1(E
(j)
2 + E(j)

3 + E(j)
4 ) of order a p2T−2

n = p2n−4 log n.

b. Upper bound on E
[
‖X(θ̂ − θ)‖2

n

]
. Let m∗ be an arbitrary index in M. Starting from the

inequality
p∑

j=1

(
‖X(j) −Xθ̂

(j)
m̂ ‖2 ×

(
1 +

pen(|m̂j |)
n− |m̂j |

))
≤

p∑
j=1

(
‖X(j) −Xθ̂

(j)
m∗‖

2 ×

(
1 +

pen(|m∗
j |)

n− |m∗
j |

))
and following the same lines as in the proof of Theorem 2 in Baraud et al. [4] we obtain for any
K > 1

K − 1
K

p∑
j=1

‖X(θ̂(j) − θ(j))‖2
n

≤
p∑

j=1

‖X(θ(j) − θ̄
(j)
m∗)‖

2
n + R

(j)
m∗ +

σ2
j

n

KU
(j)
m̂j
− pen(|m̂j |)

V
(j)
m̂j

n− |m̂j |

 ,

where for any m ∈M and j ∈ {1, . . . , p}

Xθ̄(j)
m = Proj

XΘ
(j)
m

(Xθ(j)), E
(
R(j)

m

∣∣X(k), k 6= j
)
≤ pen(|mj |)

[
‖X(θ(j) − θ̄

(j)
m )‖2

n

n− |mj |
+

σ2
j

n

]
a.s.

and the two random variables U
(j)
mj and V

(j)
mj are independent with a χ2(|mj |+ 1) and a χ2(n−

|mj | − 1) distribution respectively. Combining this bound with Lemma 6 in Baraud et al. [4],
we get

K − 1
K

E
[
‖X(θ̂ − θ)‖2

n

]
≤ E

[
‖X(θ − θ̄m∗)‖2

n

]
+

p∑
j=1

pen(|m∗
j |)

E
[
‖X(θ(j) − θ̄

(j)
m∗)‖2

n

]
n− |m∗

j |
+

σ2
j

n


+ K

p∑
j=1

σ2
j

n

∑
mj∈Mj

(|mj |+ 1)Dkhi

(
|mj |+ 1, n− |mj | − 1,

(n− |mj | − 1)pen(|mj |)
K(n− |mj |)

)
,
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where Mj = {mj , m ∈M}. The choice (5) of the penalty ensures that the last term is
upper bounded by K

∑p
j=1 σ2

j log(n)/n. We also note that ‖X(θ(j) − θ̄
(j)
m∗)‖2

n ≤ ‖X(θ(j) −
θ
(j)
m∗)‖2

n for all j ∈ {1, . . . , p} since Xθ̄
(j)
m∗ = Proj

XΘ
(j)
m∗

(Xθ(j)). Combining this inequality with

E
[
‖X(θ(j) − θ

(j)
m∗)‖2

n

]
= ‖C1/2(θ(j) − θ

(j)
m∗)‖2, we obtain

K − 1
K

E
[
‖X(θ̂ − θ)‖2

n

]
≤ ‖C1/2(θ − θm∗)‖2 +

p∑
j=1

pen(|m∗
j |)

[
‖C1/2(θ(j) − θ

(j)
m∗)‖2

n− |m∗
j |

+
σ2

j

n

]
+ K

p∑
j=1

σ2
j

n
log n

≤ ‖C1/2(θ − θm∗)‖2

(
1 +

pen(D)
n−D

)
+

p∑
j=1

(pen(|mj |) + K log n)
σ2

j

n
(18)

c. Conclusion. The bound (18) is true for any m∗, so combined with (17) it gives (8).

6.4 Proof of Proposition 1.

The proof of Proposition 1 is based on the following Lemma.

Let us consider a n×p random matrix Z whose coefficients Z
(j)
i are i.i.d. with standard Gaussian

distribution and a random variable ε independant of Z, with standard Gaussian law in Rn.
To any subset s of {1, . . . , p} we associate the linear space Vs = span {ej , j ∈ s} ⊂ Rp, where
{e1, . . . , ep} is the canonical basis of Rp. We write Zθ̂s = ProjZVs

(ε), we denote by ŝd the set of
cardinality d such that

‖Zθ̂ŝd
‖2 = max

|s|=d
‖Zθ̂s‖2. (19)

and we define

Crit′(s) = ‖ε− Zθ̂s‖2

(
1 +

pen(|s|)
n− |s|

)
.

Lemma 2 Assume that p ≥ e2/(1−γ) and pen(d) = 2(1−γ)d log p. We write Dn,p for the largest
integer smaller than

5D/6,
pγ/4

(4 log p)3/2
and

γ2n

512(1.1 +
√

log p)2
.

Then, the probability to have

Crit′(s) > Crit′(ŝDn,p) for all s with cardinality smaller than γDn,p/6

is bounded from below by 1− 3p−1 − 2 exp(−nγ2/512).
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The proof of this lemma is technical and in a first time we only give a sketch of it. For the
details, we refer to Section 6.5.
Sketch of the proof of Lemma 2. We have

‖Zθ̂s‖2 = ‖ε‖2 − inf
α̂∈Vs

‖ε− Zα̂‖2

= sup
α̂∈Vs

[
2 < ε,Zα̂ > −‖Zα̂‖2

]
.

According to Lemma 1, when |s| is small compare to n/ log p, we have ‖Zα̂‖2 ≈ n‖α̂‖2 with
large probability and then

‖Zθ̂s‖2 ≈ sup
α̂∈Vs

[
2 < ZT ε, α̂ > −n‖α̂‖2

]
=

1
n
‖ProjVs

(ZT ε)‖2.

Now, ZT ε = ‖ε‖Y with Y independent of ε and with N (0, Ip) distribution, so

‖Zθ̂s‖2 ≈ ‖ε‖2

n
‖ProjVs

Y ‖2.

Since max|s|=d ‖ProjVs
Y ‖2 ≈ 2d log p with large probability, we have ‖Zθ̂ŝd

‖2 ≈ 2d log p×‖ε‖2/n
and then

min
|s|=d

Crit′(s) = Crit′(ŝd) ≈ ‖ε‖2

(
1− 2γd log p

n

)
.

Therefore, with large probability we have Crit′(s) > Crit′(ŝDn,p) for all s with cardinality less
than γDn,p/6.

Proof of Proposition 1. We start with the case M#,+
D ⊂ M. When |m̂| ≤ γDn,p−1/6, we

have in particular |m̂1| ≤ γDn,p−1/6. We build m̃ from m̂ by replacing m̂1 by a set m̃1 ⊂
{1} × {2, . . . , p} which maximizes ‖Xθ̂

(1)
m̃ ‖2 among all the subset m̃1 of {1} × {2, . . . , p} with

cardinality Dn,p−1. It follows from Lemma 2 (with p replaced by p − 1) that the probability
to have Crit(m̂) ≤ Crit(m̃) is bounded from above by 3(p − 1)−1 + 2 exp(−nγ2/512). Since
m̃ ∈M#,+

D , the first part of Proposition 1 follows. When M#
D ⊂M, the proof is similar.

When Mdeg,+
D ⊂ M, the same argument shows that for any j ∈ {1, . . . , p} the probability to

have |m̂j | ≤ γDn,p−1/6 is bounded from above by 3(p− 1)−1 + 2 exp(−nγ2/512).

6.5 Proof of Lemma 2

We write D for Dn,p and Ω0 for the event

Ω0 =
{
‖Zθ̂ŝD

‖2 ≥ 2D(1− γ/2)‖ε‖2
n log p and

‖Zθ̂s‖2 ≤ 2 |s| (2 + γ)‖ε‖2
n log p, for all s with |s| ≤ D

}
.
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We will prove first that on the event Ω0 we have Crit′(s) > Crit′(ŝDn,p) for any s with cardinality
less than γDn,p/6 and then we will prove that Ω0 has a probability bounded from below by
1− 3p−1 − 2 exp(−nγ2/512).
We write ∆(s) = Crit′(ŝD) − Crit′(s). Since we are interested in the sign of ∆(s), we will still
write ∆(s) for any positive constant times ∆(s). We have on Ω0

∆(s)
‖ε‖2

≤
(

1− 2 log p

n
(1− γ/2)D

)(
1 +

pen(D)
n−D

)
−
(

1− 2 log p

n
(2 + γ)|s|

)(
1 +

pen(|s|)
n− |s|

)
.

We note that pen(|s|)/(n− |s|) ≤ pen(D)/(n−D). Multiplying by n/(2 log p) we obtain

∆(s) ≤ (1− γ)D
(

1 +
D − 2(1− γ/2)D log p

n−D

)
− (1− γ/2)D

−(1− γ)|s|+ (2 + γ)|s|+ (2 + γ)|s|pen(D)
n−D

≤ (1− γ)D
(

1 +
D − 2(1− γ/2)D log p + 2(2 + γ)|s| log p

n−D

)
− (1− γ/2)D + (1 + 2γ)|s|.

When p ≥ e2/(1−γ) and |s| ≤ γD/6 the first term on the right hand side is bounded from above
by (1− γ)D, then since γ < 1

∆(s) ≤ (1 + 2γ)γD/6− γD/2 < 0.

We will now bound P (Ωc
0) from above. We write Y = ZT ε/‖ε‖ (with the convention that Y = 0

when ε = 0) and

Ω1 =

 2
2 + γ

≤ ‖Zα̂‖2
n

‖α̂‖2
≤ (1− γ/2)−1/2 , for all α̂ ∈

⋃
|s|=D

Vs

 ,

Ω2 =
{

max
|s|=D

‖ProjVs
Y ‖2 ≥ 2(1− γ/2)1/2D log p

}
,

Ω3 =
{

max
i=1,...,p

Y 2
i ≤ 4 log p

}
.

We first prove that Ω1 ∩ Ω2 ∩ Ω3 ⊂ Ω0. Indeed, we have on Ω1 ∩ Ω2

‖Zθ̂ŝD
‖2 = max

|s|=D
sup
α̂∈Vs

[
2 < ε,Zα̂ > −‖Zα̂‖2

]
≥ max

|s|=D
sup
α̂∈Vs

[
2 < ZT ε, α̂ > −n(1− γ/2)−1/2‖α̂‖2

]
≥ (1− γ/2)1/2 ‖ε‖2

n
max
|s|=D

‖ProjVs
Y ‖2

≥ 2D (1− γ/2) ‖ε‖2
n log p.
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Similarly, on Ω1 we have ‖Zθ̂s‖2 ≤ ‖ε‖2
n‖ProjVs

Y ‖2 × (2 + γ)/2 for all s with cardinality less
than D. Since ‖ProjVs

Y ‖2 ≤ |s|maxi=1,...,p(Y 2
i ), we have on Ω1 ∩ Ω3

‖Zθ̂s‖2 ≤ 2(2 + γ)|s| ‖ε‖2
n log p,

for all s with cardinality less than D and then Ω1 ∩ Ω2 ∩ Ω3 ⊂ Ω0.
To conclude, we bound P(Ωc

i ) from above, for i = 1, 2, 3. First, we have

P(Ωc
3) = P

(
max

i=1,...,p
Y 2

i > 4 log p

)
≤ 2p P(Y1 ≥ 2

√
log(p)) ≤ 2p−1.

To bound P(Ωc
1), we note that (1 − γ/2)−1/4 ≥ 1 + γ/8 and

√
2/(2 + γ) ≤ 1 − γ/8 for any

0 < γ < 1, so Lemma 1 ensures that P(Ωc
1) ≤ 2e−nγ2/512. Finally, to bound P(Ωc

2), we sort the
Y 2

i in decreasing order Y 2
(1) > Y 2

(2) > . . . > Y 2
(p) and note that

max
|s|=D

‖ProjVs
Y ‖2 ≥ DY 2

(D).

Furthermore, we have

P
(
Y 2

(D) ≤ 2(1− γ/2)1/2 log p
)

≤
(

D − 1
p

)
P
(
Y 2

1 ≤ 2(1− γ/2)1/2 log p
)p−D+1

≤ pD−1

(
1− p

√
1−γ/2

4(1− γ/2)1/4
√

2 log p

)p−D+1

,

where the last inequality follows from p ≥ e2/(1−γ) and Inequality (60) in Baraud et al. [4].
Finally, we obtain

P
(
Y 2

(D) ≤ 2(1− γ/2)1/2 log p
)

≤ p−1 exp

(
D log p− (p−D + 1)p

√
1−γ/2

4(1− γ/2)1/4
√

2 log p

)
≤ p−1,

where the last inequality comes from D ≤ pγ/4/(4 log p)3/2. To conclude P(Ωc
2) ≤ p−1 and

P (Ωc
0) ≤ 3p−1 + 2 exp(−nγ2/512).

References

[1] O. Banerjee, L.E. Ghaoui and A. d’Aspremont. Model selection through sparse maximum
likelihood estimation. To appear, J. Machine Learning Research 101 (2007).

[2] R. Baraniuk, M. Davenport, R. De Vore and M. Wakin. A simple proof of the restricted
isometry property for random matrices. To appear in Constructive Approximation (2007)

22



[3] Y. Baraud. Model selection for regression on a random design. ESAIM Probab. Statist. 6
(2002), 127–146 (electronic).

[4] Y. Baraud, C. Giraud and S. Huet. Gaussian model selection with unknown variance. To
appear in the Annals of Statistics. http://arxiv.org/abs/math/0701250v1

[5] E. Candès and T. Tao. Decoding by linear programing. IEEE Trans. Inf. Theory 51 (2005)
no. 12, 4203–4215.

[6] A. Cohen, W. Dahmen and R. De Vore. Compressed sensing and the best k-term approxi-
mation. Preprint (2006) http://www.math.sc.edu/ devore/publications/CDDSensing 6.pdf

[7] K.R. Davidson and S.J. Szarek. Local operator theory, random matrices and Banach spaces.
Handbook in Banach Spaces Vol I, ed. W. B. Johnson, J. Lindenstrauss, Elsevier (2001),
317–366.

[8] M. Drton and M. Perlman. A sinful approach to Gaussian graphical model selection. Tech.
Rep. 457 (2004), Dept. of Statistics, University of Washington, Seattle.
http://www.stat.washington.edu/www/research/reports/2004/tr457.pdf

[9] A. Dobra, C. Hans, B. Jones, J. R. Nevins, G. Yao, and M. West. Sparse graphical models
for exploring gene expression data. J. Multivariate Analysis 90 (2004),196–212.

[10] M. Drton and M. Perlman. Multiple testing and error control in Gaussian Graphical model
selection. To appear in Statistical Science (2007).

[11] J. Friedman, T. Hastie, R. Tibshirani. Sparse inverse covariance estimation with the lasso.
Preprint (2007). http://www-stat.stanford.edu/ tibs/ftp/graph.pdf

[12] C. Giraud, S. Huet and N. Verzelen. In preparation.

[13] J.Z. Huang, N. Liu, M. Pourahmadi and L. Liu. Covariance matrix selection and estimation
via penalised normal likelihood. Biometrika 93 no 1, (2006), 85–98

[14] H. Kishino and P.J. Waddell. Correspondence analysis of genes and tissue types and finding
genetic links from microarray data. Genome Informatics 11 (2000), 83–95.
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