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Abstract

Let (Y, (X:)icz) be a zero mean Gaussian vector and V be a subset of Z. Suppose we are
given n i.i.d. replications of the vector (Y, X). We propose a new test for testing that Y is
independent of (X;);c7\v conditionally to (X;)icv against the general alternative that it is
not. This procedure does not depend on any prior information on the covariance of X or the
variance of Y and applies in a high-dimensional setting. It straightforwardly extends to test
the neighbourhood of a Gaussian graphical model. The procedure is based on a model of
Gaussian regression with random Gaussian covariates. We give non asymptotic properties
of the test and we prove that it is rate optimal (up to a possible log(n) factor) over various
classes of alternatives under some additional assumptions. Besides, it allows us to derive
non asymptotic minimax rates of testing in this setting. Finally, we carry out a simulation
study in order to evaluate the performance of our procedure.

1 Introduction

We consider the following regression model

i€l

where 6 is an unknown vector of RZ. The vector X follows a zero mean Gaussian distribution
with non singular covariance matrix ¥ and € is a zero mean Gaussian random variable indepen-
dent of X. We note p the cardinal of Z and var(Y) the variance of Y. Straightforwardly, the
variance of € corresponds to the conditional variance of Y given X, var(Y|X).

The variable selection problem for this model in a high-dimensional setting has recently at-
tracted a lot of attention. A large number of papers are now devoted to the design of new
algorithms and estimators which are computationally feasible and are proven to converge; see for
instance the works of Meinshausen and Biihlmann (2006), Candés and Tao (2007), Zhao and Yu
(2006), Zou and Hastie (2005), or Biithlmann and Kalisch (2007). Our issue is the natural testing
counterpart of this variable selection problem: we aim at defining a computationally feasible
testing procedure which achieves an optimal rate in some sense.

We are given n i.i.d. replications of the vector (Y, X). Let us respectively note Y and X; the
vectors of the n observations of Y and X; for any ¢ € Z. Let V be a subset of Z, then Xy refers
to the set {X;,7 € V} and 6y stands for the sequence (6;);cv. The first purpose of this paper is
to propose a test of the null hypothesis “07\y = 07 against the general alternative “f7\y # 07



under no prior knowledge of the covariance of X, the variance of €, nor the variance of Y. Note
that the property “67\y = 0” is equivalent to “Y is independent of Xz\y conditionally to Xy
Moreover, we want to be able to consider the difficult case of tests in a high-dimensional setting:
the number of covariates p is possibly much larger than the number of observations n. Such
situations arise in many statistical applications like in genomics or biomedical imaging. From
a theoretical point of view, our second purpose is to derive non asymptotic minimax rates of
testing for this model over various alternatives.

1.1 Application to Gaussian Graphical Models (GGM)

Our work was originally motivated by the following question: let (Z;);es be a random vector
which follows a zero mean Gaussian distribution whose covariance matrix ¥’ is non singular.
We observe n ii.d. replications of this vector Z and we are given a graph G = (I', E') where
I ={1,...]7|} and E is a set of edges in I" x I". How can we test that Z is an undirected
Gaussian graphical model (GGM) with respect to the graph G?7

The random vector Z is a GGM with respect to the graph G = (I', E) if for any couple
(¢,7) which is not contained in the edge set E, Z; and Z; are independent, given the remaining
variables. See Lauritzen (1996) for definitions and main properties of GGM. Interest in these
models has grown as they allow the description of dependence structure in high-dimensional
data. As such, they are widely used in spatial statistics (Cressie, 1993; Rue and Held, 2005)
or probabilistic expert systems (Cowell et al., 1999). More recently, they have been applied to
the analysis of microarray data. The challenge is to infer the network regulating the expression
of the genes using only a small sample of data, see for instance Schifer and Strimmer (2005),
Kishino and Waddell (2000) or Wille et al. (2004). This issue has motivated the research for new
estimation procedures to handle GGM in a high-dimensional setting.

It is beyond the scope of this paper to give an exhaustive review of these. Many of these
graph estimation methods are based on multiple testing procedures, see for instance Schafer and
Strimmer (2005) or Wille and Bithlmann (2006). Other methods are based on variable selection
for high-dimensional data we previously mentioned. For instance, Meinshausen and Biihlmann
(2006) proposed a computationally feasible model selection algorithm using Lasso penalisation.
Huang et al. (2006) and Yuan and Lin (2007) extend this method to infer directly the inverse
covariance matrix ¥’~! by minimizing the log-likehood penalised by the [! norm.

While the issue of graph and covariance estimation is extensively studied, it seems that the
problem of hypothesis testing of GGM in a high-dimensional setting has not yet raised much
interest. We believe that this issue is significant for two reasons: first, when considering a gene
regulation network, the biologists often have a previous knowledge of the graph and may want
to test if the microarray data match with their model. Second, when applying an estimation
method in a high-dimensional setting, it could be useful to test the estimated graph as some of
these methods reveal too conservative.

Admittedly, some of the previously mentioned estimation methods are based on multiple
testing. However, as they are constructed for an estimation purpose, most of them do not take
into account some previous knowledge about the graph. This is for instance the case for the
approaches of Drton and Perlman (2007) and Schéfer and Strimmer (2005). Some of the other
existing procedures cannot be applied in a high-dimensional setting (|J| > n). Finally, most of
them lack theoretical justification in a non asymptotic way.

In a subsequent paper (Verzelen and Villers, 2007) we define a test of graph based on the
present work. It benefits the ability of handling high dimensional GGM and has minimax prop-
erties. Besides we show numerical evidence of its efficiency; see Verzelen and Villers (2007) for
more details. In this article, we shall only present the idea underlying our approach.



For any j € J, we note N(j) the set of neighbours of j in the graph G. Testing that Z is
a GGM with respect to G is equivalent to testing that the random variable Z; conditionnally
to (Z1)ien(j) is independent of (Z;)ic 7\ (n(j)ugjy) for any j € J. As Z follows a Gaussian
distribution, the distribution of Z; conditionally to the other variables decomposes as follows:

Zj = Z 0,71, + €5,
keT\{5}

where ¢; is normal and independent of (Z)res\(;}- Then, the statement of conditional inde-
pendency is equivalent to 6 7\ ;;3un(;) = 0. This approach based on conditional regression is also
used for estimation by Meinshausen and Biithlmann (2006).

1.2 Connection with tests in fixed design regression

Our work is directly inspired by the testing procedure of Baraud et al. (2003) in fixed design
regression framework. Contrary to model (1), the problem of hypothesis testing in fixed design
regression has been extensively studied. This is why we will use the results in this framework as
a benchmark for the theoretical bounds in our model (1). Let us define this second regression
model:

K:fi—f—O'Ei, iE{l,...,N}, (2)

where f is an unknown vector of RY, o some unknown positive number, and the ¢;’s a sequence
of i.i.d. standard Gaussian random variables. The problem at hand is testing that f belongs to
a linear subspace of RY against the alternative that it does not. We refer to Baraud et al. (2003)
for a short review of non parametric tests in this framework. Besides, we are interested in the
performance of the procedures from a minimax perspective. To our knowledge, there has been
no results in model (1). On the other hand, there are numerous papers on this issue in the fixed
design regression model. First, we refer to the seminal work of Ingster (1993,a,b,c) which gives
asymptotic minimax rates over non parametric alternatives. Our work is closely related to the
results of Baraud (2002) where he gives non asymptotic minimax rates of testing over ellipsoids
or sparse signals. Throughout the paper, we highlight the link between the minimax rates in
fixed and in random design.

1.3 Principle of our testing procedure

Let us briefly describe the idea underlying our testing procedure. Let m be a subset of Z\ V. We
respectively define Sy and Sy .y, as the linear subspaces of R such that O7\v = 0, respectively
O7\(vum) = 0. We note d and D,, for the cardinalities of V' and m and N,, refers to N, =
n—d— Dy,. If N,, >0, we define the Fisher statistic ¢,, by

Nm”HVUmY - HVY”?L

m(Y, X) = )
on(YX) =5 IV o Y2

(3)

where IIy refers to the orthogonal projection onto the space generated by the vectors (X;);ev
and ||.||,, is the canonical norm in R”™.

Let us consider a finite collection M of non empty subsets of Z \ V' such that for each
m € M, N, > 0. Our testing procedure consists of doing a Fisher test for each m € M. We



define {au,, m € M} a suitable collection of numbers in 0, 1] (which possibly depends on X).
For each m € M, we do the Fisher test ¢,, of level a,, of:

Hy : 0 € Sy against the alternative Hy ,, : 0 € Syum \ Sv

and we decide to reject the null hypothesis if one of those Fisher tests does.

The main advantage of our procedure is that it is very flexible in the choices of the model
m € M and in the choices of the weights {a,,}. Consequently, if we choose a suitable collection
M, the test is powerful over a large class of alternatives as shown in Sections 3, 4, and 5.

Finally, let us mention that our procedure easily extends to the case where the expectation
of the random vector (Y, X) is unknown. Let X and Y denote the projections of X and Y onto
the unit vector 1. Then, one only has to apply the procedure to (Y — Y, X — X) and to replace
d by d+ 1. The properties of the test remain unchanged and one can adapt all the proofs to the
price of more technicalities.

1.4 Minimax rates of testing

In order to examine the quality of our tests, we will compare their performance with the minimax
rates of testing. That is why we now define precisely what we mean by the («, §)-minimax rate
of testing over a set ©. We write RZ for R? endowed with the euclidean norm

6] := 6'%26 = var (Z wg) . (4)

i€l

As € and X are independent, we derive from the definition of ||.||? that var(Y) = [|0|* +
var(Y|X). Thus, if we have ||0|| vary, either the quantity var(Y") or var(Y]|X) has to vary. In the
sequel, we suppose that var(Y) is fixed. We briefly justify this choice in Section 4.2. Consequently,
if ||0]|? is increasing, then var(Y|X) has to decrease so that the sum remains constant. Let «
be a number in |0; 1[ and let § be a number in ]0; 1 — [ (typically small). For a given vector 6,
matrix ¥ and var(Y), we denote Py the joint distribution of (Y, X). For the sake of simplicity,
we do not emphasize the dependence of Py on var(Y) or X. Let 1, be a test of level « of the
hypothesis "6 = 0" against the hypothesis "0 € ©\0". In our framework, it is natural to measure
the performance of 1, using the quantity p (¢, 0,4, var(Y),X) defined by:

. . 1611 2
= = S L L >1—
p (e, 0,8, var(Y), X) inf {p > 0, inf {P9(¢a 1), 6 € © and var(Y) — 0] p 1
where the quantity
161>
0) = ————— 5
Ts/n(0) var(Y') — ||6]/2 (5)

appears naturally as it corresponds to the ratio ||0||?/var(Y|X) which is the quantity of informa-
tion brought by X (i.e. the signal) over the conditional variance of Y (i.e. the noise). We aim
at describing the quantity

iur}f p (We,0,0,var(Y), %) := p(0,«,d,var(Y),X), (6)

where the infimum is taken over all the level-« tests ¢,. We call this quantity the («, §)-minimax
rate of testing over ©.



A dual notion of this p function is the function Bx. For any © C R? and a €]0, 1[, we denote
B (0) the quantity

Bs (©) := inf sup Py [, = 0],
Ya 9O

where the infimum is taken over all level-a tests 1, and where we recall that ¥ refers to the
covariance matrix of X.

1.5 Organization of the Paper

We present the procedure in Section 2. In Section 3, we give a general theorem which character-
izes a set of vectors # over which the test is powerful in a non asymptotic setting. In Section 4
and 5, we apply our procedure to define tests and study their optimality for two different classes
of alternatives. More precisely, in Section 4 we test 0 against the class of § whose components
equal 0, except at most k of them (k is supposed small). We define a test which under mild
conditions achieves the minimax rate of testing. When the covariates are independent, it is
interesting to note that the minimax rates exhibits the same ranges in our statistical model (1)
and in fixed design regression model (2). In section 5, we define two procedures which achieve
the simultaneous minimax rates of testing over large classes of ellipsoids (to sometimes the price
of a log(p) factor). Besides, we show that the problem of adaptation over classes of ellipsoids is
impossible without a loss in efficiency. This was previously pointed out by Spokoiny (1996) in
fixed design regression framework. The simulation studies are presented in Section 6. Finally,
Sections 7 and 8 contain the proofs.

Let us now introduce some notations that will be used throughout the paper. For z,y € R,
we set

x Ay :=inf{z,y}, z Vy:=sup{z,y}.

For any u € R, Fp n(u) denotes the probability for a Fisher variable with D and N degrees of
freedom to be larger than w.

2 The Testing procedure

In this section, we adapt the testing procedure of Baraud et al. (2003) in our random design
model (1).

2.1 Description of the procedure

Let us first fix some level o €]0,1[. Throughout this paper, we suppose that n > d + 2. Let
us consider a finite collection M of non empty subsets of Z \ V such that for all m € M,
1< D,, <n—d-—1. Most of the notations used in this definition were defined in Section 1.3.
We introduce the following test of level a. We reject Hy:"0 € Sy" when the statistic

To = sup {6 (Y. X) = !y (an(X))} (7)
meM

is positive, where the collection of weights {c.,(X), m € M} is chosen according to one of the
two following procedures:



P, : The a4y, ’s do not depend on X and satisfy the equality :

S am=a ®)

meM

P, : For all m € M, a,(X) = ¢x q, the a-quantile of the distribution of the random variable

Ty (€) — Ty (€)[|2 /Do,
ity ot ( le = TvGm (€)[I2 /N ) 9)

conditionally to X.

Note that it is easy to compute the quantity ¢x o. Let Z be a standard Gaussian random
vector of size n independent of X. As € is independent of X, the distribution of (9) conditionally
to X is the same as the distribution of

inf FD N,
meMm mNm

<IIHVUm(Z) - Hv(Z)Ilz/Dm)
12 =y um(2)|12/Nm

conditionally to X. Thus, we can easily work out its quantile using Monte-Carlo method.
It is clear that the computational complexity of the procedure is linear with respect to the
size of the collection of models M even when using Procedure P,. Consequently, when we apply

our procedure to high-dimensional data as in Section 6 or in Verzelen and Villers (2007), we
favour collections M whose size is linear with respect to the number of covariates p.

2.2 Behavior of the test under the null hypothesis

The test associated with Procedure P; corresponds to a Bonferroni test and is of size less than
a by arguing as follows: let 6 be an element of Sy (defined in Section 1.3),

Po(T.>0) < > Py (¢m(X,Y) Fpl n (am) > 0),
meM

where ¢,,,(X,Y) is defined in (3). We now define the test statistic ¢, q,, (X,Y) as

Prmsonm (X, Y) = (X, Y) — FD,}L,Nm(am) (10)

The test is rejected if ¢, q,, (X,Y) is positive. As 6 belongs to Sy, vy, Y —IIyY = yume —
IIye and Y — IyyumY = € — Iyume. Then, the quantity ¢,,,(X,Y) is equal to
N [Ty ume — Hyell?

(X, Y) =
onXY) =75 e Tyomel2

Because € is independent of X, the distribution of ¢,,(X,Y) conditionally to X is a Fisher
distribution with D,, and N,, degrees of freedom. As a consequence, ¢m q,,(X,Y) is a Fisher
test with D,, and N,, degrees of freedom. It follows that:

Py(T,, > 0) Zam<a
meM

Procedure P is therefore conservative.



The test associated with Procedure P, has the property to be of size exactly a. More precisely,
for any 6 € Sy, we have that
Po(To >0X)=a Xas..

The result follows from the fact that ¢x . satisfies

{NmnHVUm(e) — Iy (e)||2
Dple = yum(e€)||2

and that for any 0 € Sy, Iy, Y —IIyY =Ilyume — lIye and Y — Iy, Y = € — Ilyume.

Py < sup

- FBi.NW (QX,a)} > O‘X) = q,
meM N

2.3 Comparison of Procedures P, and P,

We show in this section that the test (7) with Procedure P, is more powerful than the corre-
sponding test defined with Procedure P; with weights ., = a/|M|. We respectively refer to T}
and T? for these two tests associated with Procedure P; and P,. More precisely, let us prove
that

VO ¢ Sy, Py (TH(X,Y) > 0| X) > Py (To(X,Y) >0[X) Xa.s. . (11)

In fact this previous inequality is straighforward when considering the definitions of T} and T'2:

TAXY) = swp {0n(X,Y) = Fpl y (a/IM])}
meM

T2(X,Y) = sup {¢m(x Y) - FDj“Nm(ar)}
meM

Conditionally on X, the size of T is smaller than «, whereas the size T2 is exactly a. As a
consequence gx o > a/| M| as the statistics 7! and 7?2 differ only through these quantities. Thus,
T2(X,Y) > THX,Y), (X,Y) almost surely and the result (11) follows.

The choice of Procedure P; allows to avoid the computation of the quantile ¢x  and possibly
permits to give a Bayesian flavor to the choice of the weights. On the other hand, Procedure
P is more powerful than the corresponding test with Procedure P;. This will be illustrated
in Section 6. In the next three sections we study the power and rates of testing of T, with
Procedure P;.

3 Power of the Test

In this section, we aim at describing a set of vectors # in R over which the test defined in
Section 2 with Procedure P; is powerful. We note that since Procedure P, is more powerful than
Procedure P; with a,, = a/| M|, the test with Procedure P, will also be powerful on this set
of 6.

Let @ and § be two numbers in |0, 1], and let {a,,, m € M} be weights such that Eme/\/t am < o
We introduce some quantities that depend on «,, 0, D,,, and N,,,. We set L = 1og and for

any m € M, we define L,,, = log (E) km = 2exp(4L,,/Np,), and [, (1 + 2,/ -~ + 2 )
Under the following condition, k,, and [,, behave like constants:

(Hm) For all m € M, ay, > exp(—N,,/10) and § > exp(—N,,/21).



For typical choices of the collections M and {a;,, m € M}, these conditions are fulfilled. In
Sections 4 and 5, we discuss these assumptions for various settings. Let us now turn to the main
result.

Theorem 1. Let T, be the test procedure defined by (7). We assume that n > d + 2. Then
Po(To, > 0) > 1 — 6 for all 6 belonging to the set

var(Y|Xy) — var(Y | Xvium)
var(Y | Xvum)

Fm(d) := {QERI,EImGM: >A(m)}’

where

A(m) := . 12
o) (n—d)<1—1/2\/2 %) 12

Under the hypothesis Haq, for any m € M,

Al \ | Dy log (%mé) (1 + ﬁjﬂ) + log (ﬁ) [8 V il (1 + 2%—;)}

A < Cry/Dmlog (25) (14 /82 ) + G2 (1+282) 108 (15)

< — , (13)

where C1 and Cy are universal constants.

This result is similar to Theorem 1 in Baraud et al. (2003) in fixed design regression framework
and the same comment also holds: the test T, under procedure P; has a power comparable to
the best of the tests among the family {¢,, o,m € M}. Indeed, let us assume for instance
that V = {0} and that the a,, are chosen to be equal to /| M|. The test T, defined by (7)
is equivalent to doing several tests of § = 0 against 6 € S, at level «a,, for m € M and it
rejects the null hypothesis if one of those tests does. From Theorem 1, we know that under the
hypothesis Ha4 this test has a power greater than 1 — § over the set of vectors € belonging to
Umet Frn (9, ) where

F! (8, 0m) = {9 e o, YY) —var(¥|Xm) ., €1 (Dm, Nim) ( Dy log (%) +log <i5)> } . (14)

var(Y|X,,) n Qm Qm

Besides, C|(D,,, Np,) behaves like a constant if the ratio D,,/N,, is bounded. Let us compare
this result with the set of 6 over which the Fisher test ¢, at level o has a power greater
than 1 — §. Applying Theorem 1, we know that it contains F/ (8, @). Moreover, the following
Proposition shows that this set is not much larger than F, (4, «):

Proposition 2. Let § €]0,1 — o[ and

t(a, §) == \/10g (1 +8(1— a—5)2) [1 A \/log (1 +8(1—a-— 5)2) /(210g2)] :

If

var(Y) — var(Y|X,,) VD,
var(Y | X,,) < Ha9) n -’

then Py (¢, > 0) < 1 —0.



The proof is postponed to Section 8 and is based on a lower bound of the minimax rate of
testing.

F! (8,a) and F/ (8, ) defined in (14) differ from the fact that log(1/«) is replaced by
log(1/ay,). For the main applications that we will study in section 4, 5, and 6, the difference
log (1/am) —log (1/a) is of order klog(ep/k) where k is a “small” integer of the order log(n) or
loglogn. Thus, for each ¢ €]0,1 — a], the test based on T, has a power greater than 1 — § over
a class of vectors which is close to U,,c g Fr (6, ). It follows that for each 6 # 0 the power of
this test under Py is comparable to the best of the tests among the family {¢,, o, m € M}.

In the next two sections, we use this theorem to establish rates of testing against different
types of alternatives. First, we give an upper bound for the rate of testing # = 0 against a class
of § for which a lot of components are equal to 0. In Section 5, we study the rates of testing
and simultaneous rates of testing # = 0 against classes of ellipsoids. For the sake of simplicity,
we will only consider the case V= {0}. Nevertheless, the procedure T, defined in (7) applies
in the same way when one considers more complex null hypothesis and the rates of testing are
unchanged except that we have to replace n by n — d and var(Y") by var(Y | Xy ).

4 Detecting non-zero coordinates

Let us fix a number k between 1 and p. In this section, we are interested in testing 8 = 0 against
the class of # with a most k non zero components. This typically corresponds to the situation
encountered when considering tests of neighbourhood for large sparse graphs. As the graph
is assumed to be sparse, only a small number of neighbours are missing under the alternative
hypothesis.

For each pair of integers (k,p) with k < p, let M(k,p) be the class of all subsets of Z =
{1,...,p} of cardinality k. The set O[k, p|] stands for the subset of § € RZ, such that at most k
coordinates of 6 are non-zero.

First, we define a test T, of the form (7) with Procedure P;, and we derive an upper bound for
the rate of testing of T, against the alternative 6 € O[k,p]. Then, we show that this procedure
is rate optimal when all the covariates are independent. Finally, we study the optimality of the
test when k = 1 for some examples of matrices X.

4.1 Rate of testing of T},

Proposition 3. We consider the set of models M = M(k,p). We use the test T, under Proce-
dure P1 and we take the weights o, all equal to a/|M|. Let us suppose that n satisfies:

1 ep
> - — .
n>k+ [10 {log <a> + klog ( . )] v 2110g(1/5)]
Let us set the quantity

L Csklog () +Cu[y/ilos (&) v los ()]

= 15
pk,n,p n ) ( )

2
where C3 and Cy are universal constants. For any 0 in O[k,p|, such that % > pf’n}p,

Py (To >0)>1— 3.

This Proposition follows easily from Theorem 1 and its proof is given in Section 7. Let us
note that this upper bound does not directly depend on the covariance matrix of the vector X.
We will further discuss this result after deriving lower bounds for the minimax rate of testing in
this setting.



4.2 Minimax lower bounds for independent covariates

In the statistical framework considered here, the problem of giving minimax rates of testing un-
der no prior knowledge of the covariance of X and of var(Y) is open. That is why we shall only
derive lower bounds when var(Y) and the covariance matrix of X are known. In this section,
we give non asymptotic lower bounds for the («, d)-minimax rate of testing over the set ©[k, p)
when the covariance matrix of X is the identity matrix. As these bounds coincide with the upper
bound obtained in Section 4.1, this will show that our test T, is rate optimal.

2
In order to simplify the notations, we set n = 2(1 — a — d) and L(n) = M. We first
give a lower bound for the (o, §)-minimax rate of detection of all p non-zero coordinates, as we
will need it later.

Proposition 4. Let us suppose that var(Y') is known. Let us set pin such that:

) = VE | VI A M] VP, (16)

log(2)| n

Then for all p < ppn(n),

B ({9 € O[p, pl, % = ,02}) >4,

where we recall that X is the covariance matriz of X.
We now turn to the lower bound for the (o, d)-minimax rate of testing against 6 € O[k, p).

Theorem 5. Let us set pi,p,n such that

k(L(n) A1 /
pi,p,n = 7( (:]3 ) log (1 + % + 2]{3) . (17)

Moreover, we suppose that the covariance of X is the identity matriz I. Then, for all p < pinp,

n({oeemn e - ) =4

where the quantity var(Y') is known.
If a+ 0 < 53%, then one has

k P P
2
Py 2 ;108 (” 3z \/z?) '

This result implies the lower bound

p (Olk, pl, . 8, var(Y), 1)) = pi. .

The proof is given in Section 8. To the price of more technicity, it is possible to prove that
the lower bound still holds if the variables (X;) are assumed independent with known variances
possibly different. This theorem recovers approximately the lower bounds for the minimax rates
of testing in signal detection framework obtained by Baraud (2002). The main difference lies in
the fact that we suppose var(Y") known which in the signal detection framework translates in the
fact that we would know the quantity ||f||? + o2

We are now in position to compare the results of Proposition 3 and Theorem 5. We distinguish
between the values of k.

10



e When k < p” for some v < 1/2, if n is large enough to satisfy the assumption of Proposi-
tion 3, the quantities pz,n’p and pﬁn,p are both of the order k:]ng(p) times a constant (which
depends on v, «, and ¢). This shows that the lower bound given in Theorem 5 is sharp.
Additionally, in this case, the procedure T, defined in Proposition 3 follows approximately
the minimax rate of testing. We recall that our procedure T, does not depend on the
knowledge of var(Y") and corr(X). In applications, this choice of a small k typically corre-
sponds to testing a Gaussian graphical model with respect to a graph G, when the number

of nodes is large and the graph is supposed to be sparse.

e When /p < k < p, the lower bound and the upper bound do not coincide anymore.
Nevertheless, if n > (1 + v)p for some v > 0, Theorem 1 shows that the test ¢z, defined
in (10) has power greater than § over the vectors 6 which satisfy

o] VP

— > C(v,,6) . 18
vary) —Jape = 0 (18)

This upper bound and the lower bound do not depend on k. Here again, the lower bound

obtained in Theorem 5 is sharp and the test ¢z, defined previously is rate optimal. The

fact that the rate of testing stabilizes around /p/n for k > /p also appears in signal

detection and there is a discussion of this phenomenon in Baraud (2002).

e When £k < /p and k is close to ,/p, the lower bound and the upper bound given by
Proposition 3 differ from at most a log(p) factor. For instance, if k is of order ,/p/logp,
the lower bound in Theorem 5 is of order \/ploglogp/logp and the upper bound is of
order \/p. We do not know if any of this bound is sharp and if the minimax rates of testing
coincide when var(Y’) is fixed and when it is not fixed.

All in all, the minimax rates of testing exhibit the same range of rates in our framework as in
signal detection (Baraud, 2002) when the covariates are independent. Moreover, our result shows
that the minimax rate of testing is slower when the (X;);cz are independent than for any form
of dependence. Indeed, the upper bounds obtained in Proposition 3 and in (18) do not depend
on the covariance of X. Then, a natural question arises: is the test statistic T, rate optimal
for other correlation of X7 We will partially answer this question only when testing against the
alternative § € O[1, p].

4.3 Minimax rates for dependent covariates

In this section, we look for the minimax rate of testing § = 0 against § € ©O[1,p] when the
covariates X; are no longer independent. We know that this rate is between the orders %,

which is the minimax rate of testing when we know which coordinate is non-zero, and %@, the
minimax rate of testing for independent covariates.

Proposition 6. Let us suppose that there exists a positive number ¢ such that for any i # j,
|corr(X;, X;)| < ec.

We define p3 ,,, . as

1
log(1 + n*p) A - log (1+7%)] . (19)

3

2 —
pl,p,n,c T
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Then for any p < p1.pn,cs

Bs ({9 € O[1,p], % = ,02}) >4,

where X refers to the covariance matriz of X.

Remark: If the correlation between the covariates is smaller than 1/log(p), then the minimax
rate of testing is of the same order as in the independent case. If the correlation between the
covariates is larger, we show in the following Proposition that under some additional assumption,
the rate is faster.

Proposition 7. Let us suppose that the correlation between X; and X; is exactly ¢ > 0 for any
i # j. Moreover n satisfies the following condition:

ox e ronn ()] e

If a« < 60% and § < 60% the test T, defined by
To = [ sup ¢{i},a/(2(p—l)):| V d1},a/2
2<i<p

satisfies
Py (To, > 0) < and Py (T, > 0) > 1 -6,

for any 0 in ©[1, p] such that
1611 2
- >
ax(V) A7 = P

Cy 2p 1 _2
. G 2\ A 1 21
g = = (log (a5> A - log (a5>) : (21)

and Cs, Cg, and C7 are universal constants.

where

Consequently, when the correlation between X; and X is a positive constant ¢, the minimax
rate of testing is of order los@)A(/e) WWhen the correlation coefficient c is small, the minimax rate
of testing coincides with the independent case, and when c is larger those rates differ. Therefore,
the test T, defined in Proposition 3 is not rate optimal when the correlation is known and is
large. Indeed, when the correlation between the covariates is large, all the tests statistics ¢m q,,
defining T, are highly correlated. The choice of the weights a,, in Procedure P; corresponds to
a Bonferroni procedure. The loss due to a Bonferroni procedure is precisely large when the tests
are positively correlated.

This example shows the limits of Procedure P;. However, it is not very realistic to suppose
that the covariates have a constant correlation, for instance when one considers a GGM. Indeed,
we expect that the correlation between two covariates is large if they are neighbours in the graph
and smaller if they are far (w.r.t. the graph distance). That is why we derive lower bounds of the
rate of testing for other kind of correlation matrices often used to model stationary processes.

Proposition 8. Let Xi,...,X, form a stationary process on the one dimensional torus. More
precisely, the correlation between X; and X; is a function of |i — j|, where |.|, refers to the
toroidal distance defined by:

i = jlp == (li = gD A (p=li=Jl)

12



Y1 (w) and Xo(t) respectively refer to the correlation matriz of X such that

corr(X;, X;) = exp(—wli — j|p) where w >0,
corr(Xy, X;) = (1+|i—jlp)~" wheret > 0.

Let us set p3 , s (w) and p} < () such that:

1 ol —e™®
2 .
Plpms (W) - 1 + 2pn? m)

n
{ 1log1+M) it t>1

2 — .
P1,p,n,3s t) = log ]. + HT;(ZPU) if t=1

1log L4+p217 11 —t)?) if 0<t<l.

Then, for any p? < p%,P,n,El (w),

0 2
Bs1 (w) ({9 € O[1,pl, W = 02}) > 9,

and for any p < p%’p’mzz (1),

9 2
522(75) <{9 € 011, p|, #”_HHHQ = pz}) > 0.

All in all, these lower bounds are of order 10%. As a consequence, for any of these correla-
tion models the minimax rate of testing is of the same order as the minimax rate of testing for
independent covariates. This means, that our test Tj, defined in Proposition 3 is rate-optimal
for these correlations matrices.

To conclude, when k < p? (for v < 1/2), the test T}, defined in Proposition 3 is approximately
(cv, §)-minimax against the alternative 6 € Ok, p], when neither var(Y’) nor the covariance matrix
of X is fixed. Indeed, the rate of testing of T, coincide (up to a constant) with the following
quantity:

p(@[k,p],a,&) = sup p(@[k,p],a,d,var(Y),Z),
var(y)>0,5>0

where the supremum is taken over all positive var(Y) and every positive definite matrix ¥. When
k> /p and when n > (14 )p (for v > 0), the test defined in (18) has the same behavior.

However, our procedure does not adapt to 3: for some correlation matrices (as for instance in
Proposition 7) T, with Procedure P; is not rate optimal. Nevertheless, we believe and this will
be illustrated in Section 6 that Procedure P; slightly improves the power of the test in practice.

5 Rates of testing on “ellipsoids” and adaptation

In this section, we define tests T, of the form (7) in order to test simultaneously § = 0 against 6
belongs to some classes of ellipsoids. We will study their rates and show that they are optimal
at sometimes the price of a logp factor. In this section, Z is supposed again to be {1,...,p}.

In the sequel for any non increasing sequence (a;)1<i<p+1 such that a1 =1 and a,41 = 0 and
any R > 0, we define the ellipsoid &,(R) by

2
a’
=1 ¢

Ea(R) == {9 e R, f: varXm,) = var(¥[Xm) szar(Y|X)} , (22)

13



where for any 1 < ¢ < p, m; refers to the set {1,...,i} and mg = @.

Let us explain why we call this set an ellipsoid. For instance, let us suppose that the (X;) are
independent identically distributed with variance one. In this case, the difference var(Y|X,,, ,)—
var(Y|X,,,) equals |0;|> and the definition of &,(R) translates in

p 12
Eu(R) = {9 eRT> % < R2var(Y|X)} :

i=1 g

The main difference between this definition and the classical definition of an ellipsoid in the
fixed design regression framework (as for instance in Baraud (2002)) is the presence of the
term var(Y|X). We added this quantity in order to be able to derive lower bounds of the
minimax rate. If the X; are not i.i.d. with unit variance, it is always possible to create a
sequence X/ of i.i.d. standard gaussian variables by orthogonalizing the X; using Gram-Schmidt
process. If we call & the vector in R? such that X6 = X'¢’, it is straightforward to show that
var(Y| X, ,) — var(Y|X,,,) = |0}]*>. We can then express &,(R) using the coordinates of 6’ as
previously:

P /(2
Eu(R) = {9 eRT> % < R2var(Y|X)} .
i=1

The main advantage of definition (22) is that it does not depend on the covariance of X.
In the sequel we also consider the special case of ellipsoids with polynomial decay,

P
, o . var(Y| X, ,) — var(Y|X,,) < B2
EN(R) := {9 €RZ, ;le Tar (V1Y) <R}, (23)

where s > 0 and R > 0. First, we define two tests procedures of the form (7) and evaluate their
power respectively on the ellipsoids &, (R) and on the ellipsoids £/(R). Then, we give some lower
bounds for the (o, d)-simultaneous minimax rates of testing. Extensions to more general [, balls
with 0 < p < 2 are possible to the price of more technicalities by adapting the results of Section
4 in Baraud (2002).

These alternatives correspond to the situation where we are given an order of relevance on the
covariates that are not in the null hypothesis. This order could either be provided by a previous
knowledge of the model or by a model selection algorithm such as LARS (least angle regression)
introduced by Efron et al. (2004). We apply this last method to build a collection of models for
our testing procedure (7) in Verzelen and Villers (2007).

5.1 Simultaneous Rates of testing of 7, over classes of ellipsoids

First, we define a test of the form (7) in order to test # = 0 against 6 belongs to any of the
ellipsoids &,(R). For any x > 0, [x] denotes the integer part of z.
The class of models M and the weights «,,, depend on n and p:

o If n < 2p, we take the set M to be Uj<p<[n/2mi and all the weights a,, are equal to
af|M].

o If n > 2p, we take the set M to be Ui<p<pmi. o, equals /2 and for any k& between 1
and p — 1, a,,, is chosen to be a/(2(p — 1)).

Proposition 9. Let us assume that

o 1o () vis (1)) o
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For any ellipsoid £,(R), the test T, defined by (7) with Procedure Py and with the class of models
given just above satisfies

]P)O(Ta SO)Z]_—OZ,
and Py (To, > 0) > 1 — 0 for all 0 € E,(R) such that

(25)

oo

ilog (”_/2>
161> - 2 2 a0 1 n/2
__OF___ - Pl R T L (2
var (V) — 02 = | 1<y | YT T R

if n < 2p, or

9] ilog (%) log (2(,,,1)

ad )
— > inf 2 R?
var(Y) — 07 = °F [1=ifpor |t T n + n A n

if n > 2p.

a2R2 A \/ilog(p)]_

All in all, for large values of n, the rate of testing is of the order sup;,,, —

We will show in next subsection that the minimax rate of testing for an ellipsoid is of order:

i
sup |a?R* A i .
1<i<p n

Besides, we will show in Proposition 14 that a loss in y/loglogp is unavoidable if one considers
the simultaneous minimax rates of testing over a family of nested ellipsoids. We do not know
if the term /log(p) is optimal for testing simultaneously against all the ellipsoids &,(R) for all
sequences (a;) and all R > 0. When n is smaller than 2p, we obtain comparable results except
that we are unable to consider alternatives in large dimensions.

We now turn to define a procedure of the form (7) in order to test simultaneously that § = 0
against 6 belongs to any of the £/(R). For this, we introduce the following collection of models
M and weights a,:

e If n < 2p, we take the set M to be Umy, where k belongs to {27, >0} n{1,...,[n/2]}
and all the weights «a;,, are chosen to be «o/|M|.

e If n > 2p, we take the set M to be Umy, where k belongs to ({Qj,j > 0} n{1,... ,p}) U{p},

Qm, equals /2 and for any k in the model between 1 and p — 1, ayy, is chosen to be

a/(2(IM] = 1)).

Proposition 10. Let us assume that

o 1o () vis (1)) -

and that R?> > \/loglogn/n. For any s > 0, The test procedure T,, defined by (7) with Procedure

Py and with a class of models given just above satisfies:

]P)O(T(J/>O)Zl_av
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and Pg (To, > 0) > 1 — 0 for any 0 € EL(R) such that

4s/(1+4s)

116112 2/(114s) ( Voglogn 9 _9s  loglogn
s s) ([ V575 it =Tt =B
var(y) o = (@ | F " TR /)T = (29)

if n < 2p or

o] .
() - o = () (

if n > 2p. Co(a,d) is a constant which only depends on « and §.

n n n

4s/(1+4s)
R2/(1+4s) <vloglogp) I loglogp‘| /\ @) (29)

Again, we retrieve similar results to those of Corollary 2 in Baraud et al. (2003) in the
fixed design regression framework. For s > 1/4 and n < 2p, the rate of testing is of order

(m)“s/““s)

i . We show in the next subsection that this logarithmic factor is due to the

adaptative property of the test. If s < 1/4, the rate is of order n=2*. When n > 2p, the rate is

4s/(144s)
of order (7”0%30”) A (4), and we mention at the end of the next subsection that it
is optimal.
Here again, it is possible to define these tests with Procedure P, in order to improve the
power of the test (see Section 6 for numerical results).

5.2 Minimax lower bounds

We first establish the (o, §)-minimax rate of testing over an ellipsoid when the variance of Y and
the covariance matrix of X are known.

Proposition 11. Let us set the sequence (a;)1<i<p+1 and the positive number R. We introduce

pon(R) = [P}, NaiR?], (30)

sup
1<i<p

where pin is defined by (16), then for any non singular covariance matriz X we have

161} 2
9 a Y T N 1Allo Z Z 6;
ﬂz ({ €& (R) V?LI‘(Y) — He”g pa,n(R)
where the quantity var(Y) is fized. If o + 8§ < 47% then

2= s [ﬁ NG R
' 1<i<p | M

This lower bound is once more analogous to the one in the fixed design regression framework.
Contrary to the lower bounds in previous section, this bound does not depend on the covariance
of the covariates. We now look for an upper bound of the minimax rate of testing over a given
ellipsoid. First, we need to define the quantity D* as:

D* :inf{l <i<palR*< ﬁ}

n

with the convention that inf @ = p.
We get the corresponding upper bound only if D* is not too large compared to n, as shown
by the following proposition.
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Proposition 12. Let us assume that n > 20log (é) V 41 log (%) If R? > % and D* < n/2, the
test Gm e o defined by (10) satisfies

Po [dmpe.a = 1] < & and Py [¢m o = 0] <6

for all 0 € E,(R) such that

19]2 Vi,
9 G, 8) sup | Aa2R],
var () — o = Croled) swp |

where Cho(a, ) is a constant which only depends on o and §.

If n > 2D*, the rates of testing on an ellipsoid are analogous to the rates on an ellipsoid in
fixed design regression framework (see for instance Baraud (2002)). If D* is large and n is small,
the bounds in Proposition 11 and 12 do not coincide. In this case, we do not know if this comes
from the fact that the test in Proposition 12 does not depend on the knowledge of var(Y') or if
one of the bounds in Proposition 11 and 12 is not sharp.

We are now interested in computing lower bounds of rate of testing simultaneously over a
family of ellipsoids, in order to compare them with rates obtained in Section 5.1. First, we need
a lower bound for the minimax simultaneous rate of testing over nested linear spaces. We recall
that for any D € {1,...,p}, Sm,, stands for the linear spaces of vectors  such that only their D
first coordinates are possibly non zero.

Proposition 13. For D > 2, let us set

_ 1 loglog(D + 1)v/D
Phm = ——— (1 Alog(1 + 2n?)) ( ) :

2/log(2) n (81)

Then, the following lower bound holds

| | o] 2
- = >
br {9 € Smop) var(Y') — ||6]/2 "D %

1<D<p
if for all D between 1 and p, rp < pp.n

Using this Proposition, it is possible to get a lower bound for the simultaneous rate of testing
over a family of nested ellipsoids.

Proposition 14. We fiz a sequence (a;)1<i<p+1. For each R > 0, let us set

ﬁi,R,n = Sup [ﬁQD,n A (RQGQD)] . (32)
1<D<p

where pp ., is given by (31). Then, for any non singular covariance matriz ¥ of the vector X,

0 2
Ps <U {9 € &u(R), #”_HHHQ < ﬁ?z,R,n}) > 0.

R>0

This Proposition shows that the problem of adaptation is impossible in this setting: it is
impossible to define a test which is simultaneously minimax over a class of nested ellipsoids (for
R > 0). This is also the case in fixed design as proved by Spokoiny (1996) for the case of Besov
bodies. The loss of a term of the order \/loglogp/n is unavoidable.
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As a special case of Proposition 14, it is possible to compute a lower bound for the simulta-
neous minimax rate over £ (R) where R describes the positive numbers. After calculation, we
find that the lower bound is of the order:

(loglogp) T /\ vploglogp

n n

This shows that the power of the test T, obtained in (29) for n > 2p is optimal when R? >
Vioglogn/n. However, when n < 2p and s < 1/4, we do not know if the rate n=2% is optimal or
not.

To conclude, when n > 2p the test T, defined in Proposition 10 is rate optimal over the
classes of ellipsoids £.(R). On the other hand, the test T, defined in Proposition 9 is not rate
optimal simultaneously over all the ellipsoids &£,(R) and suffers a loss of a /logp factor even
when n > 2p.

6 Simulations studies

The purpose of this simulation study is threefold. First, we illustrate the theoretical results
established in previous sections. Second, we show that our procedure is easy to implement for
different choices of collections M and is computationally feasible even when p is large. Our third
purpose is to compare the efficiency of Procedures P; and P». Indeed, for a given collection M,
we know from Section 2.3 that the test (7) based on Procedure P, is more powerful than the
corresponding test based on P;. However, the computation of the quantity ¢x o is possibly time
consuming and we therefore want to know if the benefit in power is worth the computational
burden.

To our knowledge, when the number of covariates p is larger than the number of observations
n there is no test with which we can compare our procedure.

6.1 Simulation experiments

We consider the regression model (1) with Z = {1,...,p} and test the null hypothesis 6 = 0",
which is equivalent to “Y is independent of X", at level o = 5%. Let (X;)1<i<p be a collection
of p Gaussian variables with unit variance. The random variable is defined as follows: Y =

P_,0;,X; + ¢ where ¢ is a zero mean gaussian variable with variance 1 — ||#||? independent of
X.

We consider two simulation experiments described below.

1. First simulation experiment: The correlation between X; and X; is a constant c for any
i # j. Besides, in this experiment the parameter 6 is chosen such that only one of its
components is possibly non zero. This corresponds to the situation considered in Section
4. First, the number of covariates p is fixed equal to 30 and the number of observations n
is taken equal to 10 and 15. We choose for ¢ three different values 0, 0.1, and 0.8, allowing
thus to compare the procedure for independent, weakly and highly correlated covariates.
We estimate the level of the test by taking §; = 0 and the power by taking for 6, the values
0.8 and 0.9. Theses choices of 6 lead to a small and a large signal /noise ratio r,/,, defined
in (5) and equal in this experiment to 62/(1 — 6?). Second, we examine the behavior of
the tests when p increases and when the covariates are highly correlated: p equals 100 and
500, n equals 10 and 15, 6, is set to 0 and 0.8, and ¢ is chosen to be 0.8.
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2. Second simulation experiment: The covariates (X;)i<i<p are independent. The number
of covariates p equals 500 and the number of observations n equals 50 and 100. We set
for any ¢ € {1,...,p}, ; = Ri~%. We estimate the level of the test by taking R =
0 and the power by taking for (R,s) the value (0.2,0.5), which corresponds to a slow
decrease of the (0;)1<i<p- It was pointed out in the beginning of Section 5 that |6;|* equals
var(Y| X, ,) — var(Y|X,,,). Thus, |0;|> represents the benefit in term of conditional
variance brought by the variable X;.

We use our testing procedure defined in (7) with different collections M and different choices
fo the weights {a,, m € M}.

The collections M: we define three classes. Let us set .J,, , = p A [5], where [z] denotes the
integer part of x and let us define:

M= (i 1<i<p}
M2 = {mk (1,2, ), 1< X < np}}
M= {mp=(1,2,...,k), k¢ {2J 320 n{l,.... Jupt}

We evaluate the performance of our testing procedure with M = M?! in the first simulation
experiment, and M = M? and M? in the second simulation experiment. The cardinality
of these three collections is smaller than p, and the computational complexity of the testing
procedures is at most linear in p.

The collections {am, m € M}: We consider Procedures Py and P, defined in section 2. When
we are using the procedure P, the ay,’s equal o/| M| where | M| denotes the cardinality of the
collection M . The quantity gx  that occurs in the procedure P, is computed by simulation.
We use 1000 simulations for the estimation of gx . In the sequel we note Ty p, the test (7)
with collection M* and Procedure P;.

In the first experiment, when p is large we also consider two other tests:

1. The test ¢g1} o (10) of the hypothesis §; = 0 against the alternative ¢; # 0. This test
corresponds to the single test when we know which coordinate is non zero.

2. The test ¢q9), Of 02 = 0 against 5 # 0. This test corresponds to a single test where
the model under the alternative is wrong. Adapting the proof of Proposition 7, we know
that this test is approximately minimax on ©[1, p] if the correlation between the covariates
is constant and large. There is nothing special about the number 2, we could use any i
between 2 and p.

Contrary to our procedures, these two tests are based on a deep knowledge of 6 or var(X). We
only use them as a benchmark to evaluate the performance of our procedure. We aim at showing
that our test with Procedure P, is more powerful than ¢(9, o and is close to the test ¢y -

We estimate the level and the power of the testing procedures with 1000 simulations. For
each simulation, we simulate the gaussian vector (X, ..., X,) and then simulate the variable ¥’
as described in the two simulation experiments.

6.2 Results of the simulation

The results of the first simulation experiment for ¢ = 0 are given in Table 1. As expected, the
power of the tests increases with the number of observations n and with the signal/noise ratio
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Null hypothesis is true, 8; =0

n | TMl’Pl TMl’P2
10 0.043 0.045
15 0.044 0.049

Null hypothesis is false

01 =0.8, 7,/ = 178 01 =0.9, 7,/ = 4.26
n | Ty Tarrr, n | Tper Tarrr,
10| 048 048 10 086 086
15| 081 081 15| 099 099

Table 1: First simulation study, independent case: p = 30, ¢ = 0. Percentages of rejection and
value of the signal/noise ratio r,, .

rs/n- If the signal/noise ratio is large enough, we obtain powerful tests even if the number of
covariates p is larger than the number of obervations.

In Table 2 we present results of the first simulation experiment for §; = 0.8 when ¢ varies.
Let us first compare the results for independent, weakly and highly correlated covariates when
using Procedure P;. The level and the power of the test for weakly correlated covariates are
similar to the level and the power obtained in the independent case. Hence, we recover the
remark following Proposition 6: when the correlation coefficient between the covariates is small,
the minimax rate is of the same order as in the independent case. The test for highly correlated
covariates is more powerful than the test for independent covariates, recovering thus the remark
following Theorem 5: the worst case from a minimax rate perspective is the case where the co-
variates are independent. Let us now compare Procedures P; and P». In the case of independent
or weakly correlated covariates, they give similar results. For highly correlated covariates, the
power of Ty p, is much larger than the one of Ty p,.

In Table 3 we present results of the multiple testing procedure and of the two tests ¢y , and
¢{2},o when ¢ = 0.8 and the number of covariates p is large. For p = 500 and n = 15, one test
takes less than one second with Procedure P; and less than 30 seconds with Procedure P,. As
expected, because the collection of models M! depends on p, Procedure P; is too conservative
when p increases. For p = 100, the power of the test based on Procedure P; is similar to the
power of the test @2y o, while when p is larger, Ty p, is less powerful than ¢yoy . Procedure
P; is therefore recommanded in case of a large number of highly correlated covariates. The test
based on Procedure P, is indeed more powerful than ¢(s o, and its power is close to the one
of ¢11},o- We recall that this last test is based on the knowledge of the non-zero component of
f contrary to ours. In practice, we advise to use Procedure P, if the number of covariates p is
large, as Procedure P; becomes too conservative, especially if the covariates are correlated.

The results of the second simulation experiment are given in Table 4. As expected, Procedure
P, improves the power of the test and the test T3 p, has the greatest power. In this setting,
one should prefer the collection M3 to M?2. This was previously pointed out in Section 5 from a
theoretical point of view. Although Ty p, is conservative, it is a good compromise for practical
issues: it is very easy and fast to implement and its performances are good.
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c=0
n_| Taop Taop
10| 0.043  0.045
15| 0.044  0.049
c=0.8
n_| Taop Taop
10| 0.018 0.045
15| 0.019  0.052
c=0
n_| Taop Trop
10 048 048
15| 081 081
c=038
n_| Taop Taop
10 064 077
15| 089 094

Null hypothesis is true, 8; = 0

Null hypothesis is false, §; = 0.8

c=0.1
n_| Tavrp Tap,
10 0042  0.04
15| 0.058  0.06
c=0.1
n_ | Tvre Tar,
10 049 049
15| 081  0.82

Table 2: First simulation study, independent and dependent case. p = 30 Percentages of rejection.

Null hypothesis is true, 8; =0

p =100 p =500
n | Topop, Tarp, Pfita  P0ha n | Tovop, Tarp, Pfita  Pha
10 0.01 0.056 0.051 0.050 10 0.009 0.044 0.040 0.043
15 0.016 0.053 0.047 0.050 15 0.011 0.040 0.042 0.039
Null hypothesis is false, §; = 0.8

p = 100 » = 500
n | Tvop, Tamrip, Ofiva  902ha n | Tvop, Tamrip, dfiva  90ha
10 0.60 0.77 0.91 0.62 10 0.52 0.76 0.91 0.63
15 0.85 0.92 0.99 0.82 15 0.77 0.94 0.99 0.83

Table 3: First simulation study, dependent case: ¢ = 0.8. Percentages of rejection.
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Null hypothesis is true, R =0

n TM2,P1 T/\/lszo2 TM3,P1 T/\,[37p2
50 0.013 0.052 0.036 0.059
100 0.009 0.059 0.042 0.059

Null hypothesis is false, R =0.2,s = 0.5

n TM2,P1 :Zj./\/[27p2 1—‘_/\/137131 :Zj./\/[37p2
50 0.17 0.33 0.31 0.38
100 0.42 0.66 0.62 0.69

Table 4: Second simulation study. Percentages of rejection.

7 Proofs of Theorem 1, Proposition 3, 7, 9, 10, and 12
7.1 Proof of Theorem 1

This proof follows the same approach as the proof of Theorem 1 in Baraud et al. (2003). The
main differences and difficulties come from the fact that the design is now random.

Using the definition of T}, we notice that Py(T, < 0) < inf,,erq Pp(m) where

NmHHVUmY — H\/YHQ ——1
P =P L <F m) | - 33
p(m) = By (Mgt m R < FL (o) 3

First, we derive the distribution of the test statistic ¢,,(X,Y) under Py, then we give an upper
bound for Ps(m) and finally we shall gather the results in order to find a subset of RZ over which
the power of Ty, is larger than §.

The distribution of Y conditionally to the set of variables (X ) is of the form

Y = Z gyUmXi_’_eVUm’ (34)

ieVum

where the vector VY™ is a constant and €”“™ is a zero mean gaussian variable independent

of Xy um, whose variance is var(Y|Xyum). As a consequence, ||[Y — Iyu,Y||? is exactly
HH(VUm)LeVU’”H%, where Il )1 denotes the orthogonal projection along the space gener-
ated by (Xi)ievum-

Using the same decomposition of Y one simplifies the numerator of ¢,,(X,Y):

2
MyomY =T Y2 = [ > 679" (X5 — Ty Xs) + Ty numye” ™

ieVum

3

n

where Ily 1y, is the orthogonal projection onto the intersection between the space generated
by (X;)ievum and the orthogonal of the space generated by (X;):cv .

For any i € m, let us consider the conditional distribution of X; with respect to Xy,

X;=> 0"X;+e). (35)
Jjev
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Vi . . . .
where 6;* are constants and € is a zero-mean normal gaussian random variable whose variance
is var(X;|Xv) and which is independent of Xy,. This enables us to express

X, —IIyX; = HVLH(VUm)eq‘L/v foralliem .
Therefore, we decompose ¢,,(X,Y) in

Nm||HVJ~F‘|(VUm) (Zvem glVUmelV + evum) ||31
T

Om (Xa Y) =

(36)
Dy, HH(VUm)

Let us define the random variable Zy(nl,) and ZT(,%) where ZT(,}) refers to the numerator of (36)

divided by N,, and Zy(f,) to the denominator divided by D,,. We now prove that ZT(,}) and ZT(,%)
are independent.

The variables (e}/)jem are o (Xyym)-measurable as linear combinations of elements in Xy .
Moreover, €”Y™ follows a zero mean normal distribution with covariance matrix var(Y| Xy um )1
and is independent of Xy .,. As a consequence, conditionally to Xy um, Zy(nl,) and Zg) are inde-
pendent by Cochran’s Theorem as they correspond to projections onto two sets orthogonal from
each other. Additionally, 7(3) is independent of Xy ,,. Indeed, almost surely conditionally to
Xvum, Zf,%)/var(Y|XVUm) follows a x? distribution with IV,,, degrees of freedom. This distribu-
tion does not depend on Xy ,,. As Z,(,p and Z,(,%) are independent conditionally to Xy ,, and

as Zy(nz,) is independent of Xv U, Zf(rp and ZT(,%) are independent.

As e}/ is a linear combination of the columns of Xy ym,, ZT(,}) follows a non-central x? distri-
bution conditionally to Xy m,:

2
Vum 1%
9 szem 9]' H(VUm)nVLej H

ZW Xy im) ~ var(Y | Xvum =1 D
(Z3 [ Xvim) ~ var(Y[Xvum)x var(Y | Xvum) 7

Let us derive the distribution of the non-central parameter. First, we simplify the projection

term as e}/ is a linear combinations of elements of Xy .

v v v v
H(VUm)ﬁVLej = HVUmej - H\/Gj =1l € .
Let us define nfn as

Vum V
var (EjEm 07 e )
KR, ‘=

m var(Y | Xvum)

As the variable EjEm Hyume}/ is independent of Xy, and as almost surely the dimension of

the vector space generated by Xy is d, we are able to derive the distribution of the non-central
parameter:

2
\4 \4
H E jem GJ HvLGj

var(Y | Xvum)

~ ﬁfnxz(n —d).

To sum up, let us express simply the distribution of ZT(,}). Let U,V and W be three independent
random variables which respectively follow a x? distribution with n — d degrees of freedom, a
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standard normal distribution and a x? distribution with D,,, — 1 degrees of freedom. Then,

ZW < var(Y [ Xvom) {(nm\/ﬁ + V)2 + W} . (37)

In fact, 2, easily simplifies in a quotient of conditional variances. Let us first express var(Y|Xy)
in term of var(Y|X,,uv) using the decomposition (34) of Y.

var(Y|Xy) = var Z 09" X, + €U | Xy
JjeEVUmM

= var Z Hyuij |Xv | + var (€VUm | Xv)
jeVvuUm

= var | > 0/U"X; Xy | +var (Y [Xvum) (38)

jeVvVUm

as €”Y™ is independent of Xy-,,. Now using the definition of e}/ in (35), it turns out that

var Z HJVUMXJ|XV = var Z Hyuij|XV

JEVUmM jeEM

= var E 0y e} | Xv
JjEM

= var| Y 6/, (39)

JjEM
as the (e}/)jem are independent of Xy,. Gathering formulae (38) and (39), we get

/izn _ Var(Y|Xv) - Var(Y|XVUm). (40)
‘ var(Y | Xvum)

As we know the distribution of ¢,,(X,Y) under the distribution Py, we are now in position
to work out precise upper bounds for Py(m).

Nm —=—1
Po(m) = P <D_Z$)<FDM,Nm(am)Zg)>
1 D4
= Po| ——— | v F V2@ 70\ > ). i
0<var(Y|XVUm) <Nm D Ny (@) 2 m | =0 (41)

Let us call Z,, the random variable defined by

1 D, — 1
Iy = ——— | ZF VZ® — z( )
e (w2 - 2

It is possible to control the quantity Py(m) by bounding the deviations of Z,,.
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Lemma 15. For any = > 0, the random variable Z,, defined above satisfies the inequality:
Po(Zm — E(Zim) > e + 24/Umz) < exp(—x), (42)

where ¢, and vy, refer to:

2D, ——1
Cm = N—mFD”mWN"m (Oém),
D? 2
Um = Dy + (n—d) (262, + ki) + N_m (FD}W,,Nm (am)) .

We now apply this lemma choosing z = L,
P, (Zm > E(Zm) + el + 2\/me) <.
Therefore, Py(T, < 0) < § if for some m € M,

E(Zm) + emL + 23/vmL < 0. (43)

It is straightforward to compute the expectation of Z,,:
E(Zp) = —k2,(n —d) = Do+ D Fpr . (am).
Using this last equality, condition (43) is equivalent to the following inequality:
w2,(n—d) = Doy (o, (m) = 1) + L +2y/ Lo, (44)

Thanks to the definition of v,, in Lemma 15, we now bound the term 2v/Luv,,. If k2, > 2, then

__ L
2y/Tom < 2y/LDp + 262,3/2L(n —d) + 2F . . (@) Diny/ —

On the other hand, if k2, < 2, we obtain an alternative upper bound using the inequality
2uv < 4u? +v? /4,

L

2VLom < 2y/LDm+ (n—d)r%/2+8L+2Fp n (n)Dim o

Gathering these two inequalities, whatever the value of x2,,

2L - L
2/ Loy < 2y/LDy, + (n — d)K2, (1/2 v 2,/m> + 2FD;7Nm(ozm)Dm1/N— +8L.  (45)

Combining the upper bound (45) with condition (44) enables to give a condition in term of x2,.
Indeed, Py(m) < 0 if

Dol o () [N + 2N L + 2L +2y/Dn L — Dy + 8L

N
§ -0 (1 (2va /)

To bound F;;Wm(am), we use Lemma 1 in Baraud et al. (2003):

(46)

2
Km,
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Lemma 16. Let u €]0,1[ and F;N(u) be the 1 — u quantile of a Fisher random variable with
D and N degrees of freedom. Then we have

—1 D 1
< — —
DFp n(u) < D+2\/D (1 N)log <u>
D

Gathering inequalities (46) and (47), Py(m) < ¢ if
A+ B
K2, 2 Ty (48)
(n—a)(1-(3v2yZ))
where
D,, 1 L L | L L
A = 2\/Dm<1+N—m)10g<a—m> 1+2 N—m+2N—m +2Dm[ N—m+N—m +2v/D,, L,
Dy \ Nm 4 1 [ L L

By factorizing and bounding the last two terms of A, we get
L L D,, D,, | L
2Dy, (V] — + — 2D, L = 2v/D,L|1 — — =
l\/ N, W ( i \/Nm " \/Nm \/Nm>

1424/ L +2L
Np, No |

1+ Din
N,

IN

2v/D,, L

It follows that

A < 2@<1+\/§::> <1+2\/sz+2Nim> VI + V]
< 4y/Dplm <1+ \/%> log <$>] . (49)

Using the inequality exp(u) — 1 < wexp(u) which holds for all « > 0, we derive that
D, 1 4 1 [ L L
1 2D,
1 — 8V kmlm [ 14+ —— . 50
< s () (5 vinin (1 52)) o0

Combining inequalities (48), (49), and (50) we obtain the condition (12). Under assumption
Hu, Ly, < Ny, /10 for all m € M and L < N,,,/21. The terms L/Ny,, Ly, /Ny, ki, and [, are
bounded by a constant and the second part of the theorem follows easily.

B

IN

+ 8L

A
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7.2 Proof of Lemma 15

We prove this deviation inequality thanks to Laplace method. First of all, one has to upper
bound the Laplace transform of the variable

Do ~ =T ()T — ((f;m«/ﬁ+ V)2 + W) ,

where we recall that T', U, V', and W are independent random variables which follow respectively
a x?2 distribution with N,, degrees of freedom, a x2 distribution with n — d degrees of freedom,
a standard normal distribution and a x? distribution with D,, — 1 degree of freedom. To keep

—
= Fp, n,, (am).

2 1 zlna =y’
E {exp (—t (ﬁm\/ﬁ—i— V) )} = /exp (—t (Kmlzlln-a + y)2) W exp (—%) dzxdy

1 142t D2
V142t {1 + 2t[k2, + 1]}

by standard Gaussian computation. After multiplication by the Laplace transform of
and W, we get:

the formulae as short as possible, \,, will refer to

)

Dy, 71
Nop, FD'nnN'm (am)T

(1 + 2t)Nm/2

Elexp (tZm)] = .
(P (12m)] (1 + 2t[k2, + 1])(n=d)/2 (1 — 2\ ) /2

Clearly, the expectation of Z,, is
E(Zm) = AN — (52,(n — d) + Dy,).
One then obtains ¥,,(¢) the log-Laplace transform of Z,,, — E(Z,,):

N, 142t n
V() = Tlog<1—2u >_

D, —d
=~ log(l+2t) - ”T log (1 +

; d log (1 + 2t[k2, + 1]) — tE(Zy,)

2tK2,
1+2t

) — % log(1 — 2t\,,) — tE(Z,,).

Using the inequality log(1+u) > u—u?/2 which holds for all u > 0, we derive that for any t > 0,

U(t) < Dpt>+(n—d)|— ] +tr2 + i

= 142t (14 2t)2
2t2K2, n t2Kd
142t (142t)2

No,

IA

Dpt? + (n —d) [ } - % log(1 — 2t\n) — tAm N
2 2 4 Nm
< 2 [Dm+ (n—d)(265, + k)| — - log(1 — 2tAn,) — tAm N,

For any 0 < u < 1/2, it holds that —u — 1/2log(1 — 2u) < 1ﬁ22u (compare the power series).
As a consequence, for any 0 <t < %,

A2 2
Up(t) < Dy + (n—d) (262, +rp)] + Nin =55
t2
< ——— (Dy, — d)(2K2 )+ N2 ). 1
S Ty (Dm ot (0= d) @+ wn) + Nk (51)
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We now refer to Birgé and Massart (1998), where it is proved that if

log (E [¢/7]) < ﬁ

then for any positive x,

]P’(ZZcx—i—\/%) <e "

Applying this property to the upper bound (51) and replacing A,, by its value enable to prove
(42).

7.3 Proof of Proposition 3

We first recall the classical upper bound for the binomial coefficient (see for instance (2.9) in
Massart, (2007)).

log [ M(k, p)| = log () < klog (%) '

As a consequence, log(1/a.,) < log(1/a) + klog (). The assumption on n in Proposition 3
therefore implies hypothesis Hxq applied to this class of models. Thus, we are in position to
apply the second result of Theorem 1. Moreover, the assumption on n implies that n > 11k and
Dy, /Ny, is thus smaller than 1/10 for any model m in M(k, p). Formula (13) in Theorem 1 then
translates into

Am) < (1+VOT)Cr (y/k210g () + \/klogn(%)) 1+ 1.2Cs (Klog (2) + log (L)) |

and it follows that Proposition 3 holds.

7.4 Proof of Proposition 7

We fix the constant C5 to be 10V 2C where C} is defined below and Cs to be 21. This choice of
constants allows the procedure Ty, to satisfy Hypothesis Hxq. An argument similar to the proof
of Proposition 3 allows to show easily that there exists a universal constant C% such that if we
set

Ch (1 I 2 A
p112 _ 3 (Og(p)+ Og(aé)) — %10g <2_p> , (52)
n n ad
then ﬁ)ﬂfz}”e”g > pZ implies that Py (T, > 0) > 1 — . Here, the factor 2 in the logarithm

comes from the fact that some weights a,, equal a/(2p).
Let p? and A2 be two positive numbers such that WZ))—V = p? and let § € O[1,p] such
that [|0]|*> = A\%. As corr(Xy, X;) = c for any i in {2...p},

var(Y) — var(Y|Xy) < c)?
var(Y|X1) T var(Y) — A2’

We now apply Theorem 1 to ¢} /2 under Hyy. There exists a universal constant C} such that
Po (¢g1},0/2 >0) > 14 if



This last condition is equivalent to

A2 c; 2
> 1 — . 53
var(Y) — nc"‘CCilOg(%) 0g<a5> (53)

Let us assume that ¢ > log( ) / log (2p) As n >2C) log( ) (hypothesis (20) and definition
of Cs), nc > 2C) log (a ). As a consequence, condition (53) is implied by:

20" 2
p* > ——tlog (5) : (54)

Let us define C7 as the supremum of C% and 2C). Combining (52) and (54) allows to conclude
that Py (T, > 0) >1—4 if

Cy 2p 2
2> ZLllog | = —log
F= (Og(aé)/\c asd
If ¢ is smaller than log () /log (—g) this last result also holds by (52).

7.5 Proof of Proposition 9

First, we have to check that the test T, satisfies condition H. As the dimension of each model
is smaller than n/2, for any model m in M, N,, is larger than n/2. Moreover, for any model
m in M, a, is larger than a/(2|M|) and | M| is smaller than n/2. As a consequence, the first
condition of H, is implied by the inequality:

n > 20log (g) . (55)

Hypothesis (24) implies that n/2 > 20 1og(%). Besides, for any n > 0 it holds that n/2 >
20log (%). Combining these two lower bounds enables to obtain (55). The second condition of
Haq holds if n > 421og (%) which is a consequence of hypothesis (24).

Let us first consider the case n < 2p. Let us apply Theorem 1 under hypothesis Haq to Ty
Py (To > 0) > 1 — 0 for all § € © such that

var(Y) — var (Y| X,)

3i 1,... 2 Cl 56
ZE{ ’ ’[n/ ]}7 V&Y(Y|Xmi) - 5 n ’ ( )
where C{ is universal constant (equals 2C; V 4C53).
Let @ be an element of £,(R) which satisfies
ilog ([n/Q]) +log ([ /2])
101 > (1 + C5) (var(Y[Xyn,) — var(Y]X)) + (1 + Cg)var(Y]X)
ilo [n/2] lo [n/2]

Using hypothesis (24), we show that, for any ¢ between 1 and [n/2], o Bf g< - ) <1.

It is then straighforward to check that 6 satisfies (56).
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As 6 belongs to the set &,(R)

3

P ovar(Y| X, ,) — var(Y| X, )
var(Y Xm,i —var(YV|X = a? var(Y|X) bj—1 3J
(Y] Xom,) — var(Y|X) 21 ; a2, var(V]X)

< aivar(Y|X)R?.

As a consequence if 6 belong to £,(R) and satifies

then Py(T, < 0) < 4. Gathering this condition for any ¢ between 1 and [n/2] allows to conclude
that if 0 satifies

& iog (35)\ 1
— 1 >(1 ! inf 2 RP4+— — ° Zlog | <= 58
varvy oz = AT | B e 4 °g<a5) - (58

then Py(T, < 0) < 6.

Let us now turn to the case n > 2p. Let us consider T, as the supremum of p — 1 tests of
level a/2(p — 1) and one test of level a/2. By considering the p — 1 firsts tests, we obtain as in
the previous case that Py(T, < 0) < ¢ if

ilo ((P—l)/Q)
B — > (14 CY) inf a? (R?+ P\ o + 1 log
var(Y) —||6]|2 — 1<i<(p-1) | " n n

(p _a?ﬂ)

On the other hand, using the last test statistic ¢z 4/2, Po(To < 0) <4 if

[ \/Plog (%) +log (%)

var(¥) — O] = °° n

Gathering these two conditions allows to prove (26).

7.6 Proof of Proposition 10

The approach behind this proof is similar to the one for Proposition 9. First, we check that our
class of models M and weights «,, satisfy hypothesis H4 as in the previous proof.

Let us give a sharper upper bound on |M]:
(M| < 1+ log(n/2Ap)/log(2) < log(n A 2p)/log(2). (59)

We deduce from (59) that there exists a constant C(a, d) only depending on « and § such that
for all m € M,

log (ﬁ) < C(a, d)loglog(n A p).
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First, let us consider the case n < 2p. We apply Theorem 1 under the assumption Haq. As
in the proof of Proposition 9, we obtain that Py(T, > 0) > 1 —§ if

g Viloglogn)  logl
9]l > C'(a, ) i R2(i+1)-% + iloglogn?)  loglogn 7
var(Y) — ||6]|2 i€{27,5>0}N{1,....[n/2]} n n

where C’(a, §) is a constant which only depends on a and §. It is worth noting that R%i=2° <

Viloglogn
" B2\ 201449
s
vt <\/loglogn)

Under the assumption on R, ¢* is larger than one. Let us distinguish between two cases. If there
exists ¢’ in {27,7 > 0} N{1,...,[n/2]} such that i* <4, one can take i’ < 2¢* and then

(Rgi_Qs n \/iloglogn> 2\/i’1og10gn

n n

if and only if

‘ inf
i€{27,5203{1,....[n/2]}

n

4s/(1+4s)
< oV/2R2/(1+45) <vloglogn) (60)

Else, we take i’ € {27,7 > 0} N {1,...,[n/2]} such that n/4 < i’ <n/2. Since i’ < (i* An/2) we
obtain that

Jiloglogn 2
inf <R2i‘23 + w) < 2R%'"% < 2R? (ﬁ) : (61)

i€{29,5>0}n{1,...,[n/2]} n 2

Gathering inequalities (60) and (61) allows to prove (28).

We now turn to the case n > 2p. As in the proof of Proposition 9, we divide the proof into
two parts: first we give an upper bound of the power for the |[M| — 1 first tests which define
T, and then we give an upper bound for the last test ¢z ,/2. Combining these two inequalities
allows us to prove (29).

7.7 Proof of Proposition 12

We first note that the assumption about R? implies that D* > 2. As N,, is larger than n/2, it is

straightforward to show that this test satisfies condition Haq. As a consequence, we can apply

the second part of Theorem 1. Py(T* < 0) < ¢ for any 6 such that

var(Y) — var(Y| X, .. ) , vV D*

> C5(a, 0) , (62)
var(Y| X, . ) n

where C4(a,d) only depends on « and §. Now, we use the same sketch as in the proof of
Proposition 9. For any 6 € £,(R), condition (62) is equivalent to:

VD~

1012 > (var(Y | X,.) — var(Y]X)) (1 + O, 5)@) +var(Y |X)Cy (e 6) == (63)
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Moreover, as 6 belongs to £,(R)

var(Y| X, . ) — var(Y|X) < ah. R*var(Y]X) < a.var(Y|X)R?.
As v/ D*/n is smaller than one, condition (63) is implied by

[l

W > (1+ Ch(a,d)) (aQD*R2 + g) .

As a%,. R? is smaller than ¥2° which is smaller sup, ;,, [% A afRQ}, it turns out that Py(TF =

0) < 6 for any 6 belonging to &,(R) such that

9] , Vi s
> 91 4+ CY(a,4) sup | AG2R
var(yy — g = 20 T Cale,0)) sup | 2n A

8 Proofs of Theorem 5, Proposition 2, 4, 6, 8, 11, 13, and
14

8.1 Proof of Theorem 5

This proof follows the general method for obtaining lower bounds described in Section 7.1 in
Baraud (2002). We first remind the reader of the main arguments of the approach applied to
our model. Let p be some positive number and p, be some probability measure on

2
Olk,p. p] = {9 € Ok, p), ﬁH—IHIIQ _ p}.

We define P, = [Pgdsu,(0) and @, the set of level-o tests of the hypothesis "¢ = 0". Then,

Br(Ok,p,pl) > inf P, [¢o=0]

G0 EP
> 1—a— sup |]P’/Lp (A) —Py(A)]
A, Po(A)<a
1
> l-a- §||Pup - Pollrv, (64)

where ||[P,, — Po|l7v denotes the total variation norm between the probabilities P, and Py. If
we suppose that P, is absolutely continuous with respect to Pg, we can upper bound the norm
in total variation between these two probabilities as follows. We define

dP,
L,,(Y,X)= W{O”(Y,X).

Then, we get the upper bound

nm—ww::ﬂ%wxwmwxm

IN

(EO [Lip(Y,X)} - 1)1/2.
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Thus, we deduce from (64) that
1 1/2
Br(©lk,p,pl) 21— a5 (Bo [12,(v.%)] =1)
If we find a number p* = p*(n) such that

log (Eo [ L2, (Y. X)) < L(n). (65)

then for any p < p*,

Br(O[k,p,p]) >1—a— g =4.

To apply this method, we first have to define a suitable prior u, on ©[k,p, p|. Let m be some
random variable uniformly distributed over M(k, p) and for each m € M(k, p), let €™ = (€7") jem
be a sequence of independent Rademacher random variables. We assume that for all m € M(k, p),
€™ and m are independent. Let p be given and p, be the distribution of the random variable

~ -
0 = Zjem )\ej e; where

o var(Y)p?
k(1+p?)’

and where (e;);jez is the orthonormal family of vectors of RZ defined by

(ej); =11if i = j and (e;); = 0 otherwise.

Straightforwardly, 41, is supported by ©[k, p, p]. For any m in M(k,p) and any vector (¢7")jem
with values in {—1;1}, let piym,¢m , be the dirac measure on 3°, . A(T"e;. For any m in M(k, p),
ttm,p denotes the distribution of the random variable Zjem ACj"e; where ((7") is a sequence of
independent Rademacher random variables. These definitions easily imply

1 1
LH’p (Y7X) = m Z L,Uf'm,p (Y7X) = 2k p) Z Z LNnL.(”Lp(Y7X)'
k) meM(k,p) K meM(kp) ¢me{—1,1}*

We aim at bounding the quantity IEO(Lip) and obtaining an inequality of the form (65). First,

we work out Lum,gm,ﬁ

./
1 1Yl X%k
Ly o (Y,X) = —_— exp (— =
Hm.cmp (1 _ va)\r2(ky) ) 2 var(Y)(var(Y) — A\2k)
<Y, X, > < X, X >
A m_> 0T TR 42 mem _ > TR R T 66
A G ) e D G ey e | |0 (60

jem J.j'em

where < . >, refers to the canonical inner product in R".
Let us fix m; and my in M(k,p) and two vectors ¢! and (? respectively associated to m;
o (Y X)L, (Y X)). First, we

decompose the set m; Umg into four sets (which possibly are empty): mi \ ma, ma \ m1, ms,
and my, where mgz and my are defined by:

and mso. We aim at computing the quantity Eg (Lu

ms = {jeEminml} =}
my = {jEmlﬂmngl:—g?}.
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For the sake of simplicity, we reorder the elements of m; Ums from 1 to |my Umg| such that
the first elements belong to mq \ mq, then to ms \ m; and so on. Moreover, we define the vector
¢ € RImUmzl guch that ¢; = ¢j if j € my and ¢; = (7 if j € my \ m1. Using these notations, we
compute the expectation of L,,, ¢1 ,(Y, X)L, ¢2 ,(Y,X).

n/2
1
— —n/2
IE;0 (Lﬂfmly(l’p (va)Lumg,,:z’p(YaX)) - <var(Y)(1 - Va)\s(;;))2> |A| ’ (67)

where |.| refers to the determinant and A is a symmetric square matrix of size [m; Umsg|+ 1 such
that:

var(y)+A%k . ,
V?LI‘(Y)(\(I)?,%(Y)_Azk) if j=1
AlL,g] = —Wm if (j—1)€miAmy
e (-Dems

where mqAmg refers to (m; Ums) \ (m1 N'mg). For any i > 1 and j > 1, A satisfies

N e + 0y if (i—1,j—1) € (my \ ma) x my
N et 6 i (i- 1,5~ 1) € (ma\ ma) X (ma \ ma Ums)
Alijli=q Ngisiss i (i—1,j—1) € (ma \ m1) x ma :
NS 6, i (i—1,5— 1) € [ms x ma] U [ma x my]
0 else,

where §; ; is the indicator function of ¢ = j.
After some linear transformation on the lines of the matrix A, it is possible to express its
determinant into
Al = var(Y) + A%k
4] = var(Y)(var(Y) — A2k

where 1|, Um,| is the identity matrix of size |m; Uma|. C'is a symmetric matrix of size [m; Uma|
such that for any (¢, j)

) |I|m1UM2| + C| )

and D is a block symmetric matrix defined by

Mk —A\?var(y) _22 A2

varz(v)—-k2  varz(yY)-ik2 var(Y)+xZk  var(y)—-x%k
—X2var(y) N Y% —\?

D= varz(Y)—itk2  var2(yY)—XM*k2  var(Y)+A2k  var(y)—XA2k
) -2 —\? —2)\? 0

var(Yg+>\2k var(yY)+Azk var(Y)+X2k

A -2 0 202

var(Y)—Xx2k var(Y)—X2k var(yY)—x2k

Each block corresponds to one of the four previously defined subsets of m; Umsa (i.e. my \ ma,
mg \ m1, ms, and my). The matrix D is of rank at most four. By computing its non-zero
eigenvalues, it is then straightforward to derive the determinant of A

[var(Y) — A(2|mg| — |m1 N m2|)}2
var(Y)(var(Y) — A%k)?

Al =
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Gathering this equality with (67) yields

1
Eq (LMmL(l‘p(Y’ X)Lum%gzw (Yv X)) = 1 N2 (2[mg|—|miNmal) (68)
B var(y)

Then, we take the expectation with respect to ¢!, ¢2, m; and ms. When m; and msy are
fixed the expression (68) depends on ¢! and ¢? only towards the cardinality of ms. As ¢! and ¢?
correspond to independent Rademacher variables, the random variable 2|mg| — |m1 Nma| follows
the distribution of Z, a sum of |m; N ms| independent rademacher variables and

Eo(L (Y, X)Ly, ,(Y,X)) = Eo

Hmy,p

1 n
Tovar(y)

When Z is non-positive, this expression is smaller than one. On the other hand, when 7 is

non negative:
I 1
1_ Xz _ = exp|nlog 1_ Xz
Var(y) Var(y)

- vy T
var(y)
./
var(y)

IN

exp

[z ]
var(y)
1— Xk [’

var(y)

< exp

as log(1 + z) < x and as Z is smaller than k. We define an event A such that {Z > 0} C A C

{Z > 0} and P(A) = % This is always possible as the random variable Z is symmetric. As a

consequence, on the event A¢, the quantity (69) is smaller or equal to one. All in all, we bound
(69) by:

X2z
var(y)
X2k )

1
Eo(Ly,, ,(Y. X)Ly, (Y, X)) < 5 +Eo |Lacxp [n
~ var(y)

(70)

where 1, is the indicator function of the event A. We now apply Holder’s inequality with a
parameter v €]0; 1], which will be fixed later.

v

Xz n Xz

var(y . var(y
Eo |14 exp n% < PA)'"7 |Egexp [ — ﬁ

~ var(y) ~ var(y)

IN

1—v |m1nNme|v
1 nA?
— h{ —————~ . 71
(2) [ <v<var<Y> - A%))] T
Gathering inequalities (70) and (71) yields

1 1 1—v 1 n\2 |minNmalv
2 < Z Z _— ..
Eo [L“p (Y,X)} <5t (2> )2 Z cosh <v(var(Y) — /\Qk)) .
k7 my,maeM(k,p)
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Following the approach of Baraud (2002) in Section 7.2, we note that if m; and mo are
taken uniformly and indepently in M(k,p), then |mq N mg| is distributed as a Hypergeometric
distribution with parameters p, k, and k/p. Thus, we derive that

o(s) s (h (ﬁ)) (72

where T is a random variable distributed according to a Hypergeometric distribution with pa-
rameters p, k and k/p. We know from Aldous (1985, p.173) that T has the same distribution as
the random variable E(W|B,) where W is binomial random variable of parameters k, k/p and
B, some suitable o-algebra. By a convexity argument, we then upper bound (72).

i+ (5) 2 (o G m) )

+(3) (14 (com (U(Var(f,f_ m))v 1))
1—v A2 v

#(5) o pos (14 (o (S =om) 1))

To get the upper bound on the total variation distance appearing in (64), we aim at con-
straining this last expression to be smaller than 1 + n2. This is equivalent to the following
inequality:

Eo |L2,(Y.X)] <

Eo [L2,(Y,X)]

IA

k

1
2
1
2

2V exp |klo 1+ﬁ cosh Xk v—1 <1+ 27 (73)
P & P vk(var(Y) — A\2k) - K
We now choose v = % A 1. If v is strictly smaller than one, then (73) is equivalent to:
k nA%k Y log(1 + 2n?)
k1 1+ — h -1 < == 74
ou 145 (o (G ) 1)) < o

Tt is straightforward to show that this last inequality also implies (73) if v equals one. We now
suppose that
nA?
v(var(Y) — A2k)

& |

< log ((1+u)' + (1+u)%—1>, (75)

where u = Pﬁk@. Using the classical equality cosh [log(1 4+ z + v2z + 2?)] = 1 + = with 2 =
(14 u)v — 1, we deduce that inequality (75) implies (74) because
k
klog <1 + —u)
p

klog (1 + ]Eo (COSh (vk(var?;jk— )\Qk)>v - 1>) )

k
< —u<L(n).
p
For any # > 1 and any = > 0, it holds that (1 +x)” > 1+ Bz. As % > 1, condition (75) is

implied by:
Ak < kv 1 - U L [2u
var(Y) — A2k — n ©8 v v |’
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One then combines the previous inequality with the definitions of u and v to obtain the upper
bound

Ak k ( L(n) p(log(2) V L(n)) 2p(log(2) V L(n))
var(Y) — Nk = n <10g(2) A 1) log (1 + 12 +\/ 32 ) '

For any x positive and any u between 0 and 1, log(1+ ux) > ulog(1+ ). As a consequence, the
previous inequality is implied by:

2
Var()/)\)ili)\% < % (lfg(g) A 1) ([£(n) Viog(2)] A1) log <1 + % + z_§>
= g(ﬁ(n)M)log <1+ %‘f’ %) .

To resume, if we take p? smaller than this last quantity, then

B (©fk,p,p]) =6 .
To prove the second part of the theorem, one has to observe that o + § < 53% implies that
L(n) = 3.
8.2 Proof of Proposition 4

Let us first assume that the covariance matrix of X is the identity. We argue as in the proof
of Theorem 5 taking k = p. The sketch of the proof remains unchanged except that we slightly
modify the last part. Inequality (74) becomes

pulog <cosh <Up (Var@jp_ vp)» < L(y),

where we recall that v = % A1l. For all z € R, cosh(x) < exp(xz?/2). Consequently, the

previous inequality is implied by

AZp /D
_ry L/ v
var(Y) — A2p — 2vL () n’

and the result follows easily.

If we no longer assume that the covariance matrix ¥ is the identity, we orthogonalize the
sequence X; using Gram-Schmidt process. Applying the previous argument to this new sequence
of covariates allows to conclude.

8.3 Proof of Proposition 2

Let us apply proposition 4. For any p < s(a,d)—vg" there exists some 6 € S, such that

%)”jll@l? = p? and Py(T},, < 0) > 6. Here, s(a,d) refers to some function only depending on
a and 0. In the proof of Theorem 1, we have shown in (36) and following equalities that the
VAL(Y) VALY |[Xm) |t

Var(y | xX.) - €
9’ be an element of S,, such that k2, = p?. As a consequence, the distribution of ¢,, under Py

is the same as its distribution under Py, and therefore

distribution of the test statistic ¢,, only depends on the quantity k2, =

Py (T), <0) > 0.
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8.4 Proof of Proposition 6

This lower bound for dependent gaussian covariates is proved through the same approach as
Theorem 5. We define the measure j, as in that proof. Under the hypothesis Hy, Y is indepen-
dent of X. We note X the covariance matrix of X and Eq 5. stands for the distribution of (Y, X)
under Hy in order to emphasize the dependence on X.

First, one has to upper bound the quantity Eg » [Ll%p (Y, X)} . For the sake of simplicity, we
make the hypothesis that every covariate X; has variance 1. If this is not the case, we only have
to rescale these variables. The quantity corr(i, j) refers to the correlation between X; and X;.
As we only consider the case k = 1, the set of models m in M(1,p) is in correspondance with
the set {1,...,p}.

var(Y) "
—corr(i, NCIZ )
When i and j are fixed, we upper bound the expectation of this quantity with respect to ¢!
and ¢2 by

B (L (0 X000, (- 0) = (o

11 var(Y
Eoss (Lo, (Y, X)Ly, , (Y, X)) < 5 4 < (Y)

2 \var(Y) — |corr(i,j)|)\2> . o

If ¢ # j, |corr(i, j)| is smaller than ¢ and if ¢ = j, corr(i,7) is exactly one. As a consequence,
taking the expectation of (76) with respect to i and j yields the upper bound

Eo.x (L,%p(Y,X)) < %+% G) (%)n + p;I <var‘(/?:)(}:)c)\2>n> . (77)

Recall that we want to constrain this quantity (77) to be smaller than 1+ n?. In particular,
this holds if the two following inequalities hold:

1 var(Y) " 1 9
N < - 78
s(mmae) < (7%)

p—1 var(Y) " p—1 9
< — . 79
D (var(Y) —cA? - p +n (79)
One then uses the inequality log(ﬁ) < 1% which holds for any positive x smaller than one.
Condition (78) holds if
A2 1

— < “log(1 2 80
Var(Y) _ )\2 — n Og( +p77 ) ) ( )

whereas condition (79) is implied by
cA\? 1 P 4
_— < 1 1+ — .
var(Y)—c/\QnOg( +p—1n>

As c is smaller than one and _£5 is larger than 1, this last inequality holds if

B G (81)
var(Y) — A2 = nc & -

Gathering conditions (80) and (81) allows to conclude and to obtain the desired lower bound
(19).
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8.5 Proof of Proposition 8

The sketch of the proof and the notations are analogous to the one in Proposition 6. The upper
bound (76) still holds:

11
Eos (Lo, (Y, X)Ly, (Y, X)) < 5 4 5 <

var(Y) >n
var(Y) — |corr(i, j)|\2 )

Using the stationarity of the covariance function, we derive from (76) the following upper bound:

11 var(Y) "
Eos (L2, (Y,X)) <=+ —
0. ( e (Y )) =gt 2p ; (var(Y) — )\2|c0rr(0,i)|) ’

where corr(0, ) equals corr(X1, X;11). As previously, we want to constrain this quantity to be
smaller than 1 + n%. In particular, this is implied if for any i between 0 and p — 1:

( var(Y) )n N 2pm?|corr (i, 0)]
var(Y') — X?[corr(3,0)| ) = S22 M corr(i, 0)]

Using the inequality log(1 + u) < w, it is straighforward to show that this previous inequality
holds if

A\? 1 2pn?|corr(0, )]
3 - < - log | 1+ 1 . |-
var(Y') — A2|corr(4,0)| — n|corr(s,0)] S P, |eorr(i, 0)]

As |corr (4, 0)| is smaller than one for any ¢ between 0 and p—1, it follows that Eq 5 (Lip (Y, X))
is smaller than 1 4 n? if

p—1 2 .
1 2 y
PR (HM)
i=0 nfcorr(i, 0)] > izo |corr(i, 0)]

We now apply the convexity inequality log(1l + ux) > ulog(1 + ) which holds for any positive z
and any u between 0 and 1 to obtain the condition

1 2p1n?
n > i |corr(z,0)]

It turns out we only have to upper bound the sum of |corr(i,0)| for the different types of
correlation:

.

_e v

T and condition

1. For corr(i, j) = exp(—w|i — j|p), the sum is clearly bounded by 1+ 2
(82) simplifies as

1 1—ev
2< Zlog (14 2pP——— ).
prs g (14290 =

2. if corr(i, j) = (1 + |i — j|,) " for ¢ strictly larger than one, then Zf:_ol |corr(i,0)| < 14 25
and condition (82) simplifies as

2p(t — 1)772) .

1
2< 2] 1
pr=5"% + t+1
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3. if corr(i,j) = (1 + | —j|p) then Zp |corr(i,0)] < 1+ 2log(p — 1) and condition (82)
simplifies as
1 2pn?
2< 21 1+—.
P8 +1+210g(p—1)

4. if corr(i,j) = (1 4 |i — j|,) " for 0 < t < 1, then

p—1

Lreois e 5 ()7 -] <75 6

=0

and condition (82) simplifies as
2 _ 1 tol—t 2
p Sglog(l—i—pQ (1—t)n°).

8.6 Proof of Proposition 11

For each dimension D between 1 and p, we define 72, = p% A a2 R?. Let us fix some D €
{1,...,p}. Since r% < a2, and since the aj’s are non increasing,

Z r(Y[ X, ,) — var(Y|Xy,)
a?
j=1 J

< var(Y|X)R?

for all 8 € S,,,,, such that W =r%. Indeed, ||0]* = ZD var(Y[ X, ) —var(Y|Xp,;)

and var(Y) — ||0]|? = var(Y|X). As a consequence,

P S Y QS PSP N L L1
2 Sar(Y) — [0 ar(y) - O

Since rp < pp,n, we deduce from Proposition 4 that

191>

B ({eega(ﬁf),m > 72, }) >4

The first result of Proposition 11 follows by gathering these lower bounds for all D between 1
and p.

Moreover, p?,, is defined in Proposition 4 as p7,, = [\/ ) A ‘ig’g ] LI+ 0 < 4T,

it is straighforward to show that p? > %

8.7 Proof of Proposition 13

We first need the following Lemma.

Lemma 17. We consider (I;);cy a partition of Z. For each j € J let p(j) = |I;|. For any
j € J, we define ©; as the set of § € RZ such that their support is included in I;. For any
sequence of positive weights k; such that

> k=1,

JET
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it holds that

161} 2
Br {96@’,72% >4,
jg Tvar(Y) — o)z
if for all j € T, 75 < ppiiy.n(n/\/kj), where the function py;) r is defined by (16).

_ Forall j >0 such that 277! —1 € Z (i.e. for all j <.J where J =log(p+1)/log(2) — 1), let
S; be the linear span of the e;’s for k € {27,...,2971 — 1}, Then, dim(S;) = 27 and S; C Sy,
for D = D(j) = 277! — 1. Tt is straighforward to show that

J J p
U Silroiy] € | Sy lrom] € | Smolro]
=0 D=1

Jj=0

_ ) _ 112 P
where SJ[TD(])] = {0 S Sj, W = TQD(j)} and SmD[rD] = {9 S SMDa ﬁ = TQD}

We now apply Lemma 17 with k; := (1/(j + 1)?)/R(p) where R(p) = Zli:o 1/(k+1)% to

show that
g ij 0 Sy —dN° 2 1) 5
' " var(YV) o2 7S )T

D=1
if for all those D = D(j)

log(1 +2n2/k;) \ VD
2 <y Jlog(1+2n2/k;) [ 1 )=
rp < y/log(1 + 2n?/k;) < A FTog 2 "

For D = D(j), this last quantity equals

o 2 /L. o 2 j/2
iog (L + 202/k) (1 AV g(j% / ’“”) D > o+ 2 + IPRG) (1 A %) )

It remains to check that (83) is larger than pp;) . Using j41 = log(D+1)/log(2) > log(D+1),

we get 27/2 > /D/2. Thanks to the convexity inequality log(1 4+ ux) > ulog(1+x), which holds
for any x > 0 and any u €]0, 1], we obtain

Viog(1+2n2(j + 1)2R(p))2’/2

Y

V/D/2 (n\/2R(p) A 1) \/1og [1+log*(D +1)]

(1v2) 1 1) \loglog(D +1) VD2,

> (1 A /log(1 + 2772)) Vioglog(D + VD ,

Y

as R(p) is larger than one for any p > 1. All in all, we get the lower bound

Viog(1 +2n2(5 + 1)2R(p)) (1 A —W) 22 > #g@) (1 Alog(1 + 21%)) /loglog(D + 1)v'D
= Db -

Thus, if for all 1 < D < p, r}, is smaller than p7, , it holds that

! 9 S ||0H2 .2 >5
(U oSy b)) 2
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8.8 Proof of Lemma 17

Using a similar approach to the proof of Theorem 5, we know that for each r; < p;(n/+/k;) there
exists some measure p; over

] , o _
03t i= {0 € 01 oy e =

such that
Bo [L2,(Y,X)] <1+n2/k; (84)

We now define a probability measure p = Zjej kju; over Ujej ©;[r;]. Ly, refers to the density
of P, with respect to IPg. Thus,

dpP

Lu(Y) =2 (Y, X) =Y kL, (Y,X),
dPy ,
JjET
and
Eo [L2(Y,X)] = 3 kikyEo [LM (Y.X)L, (Y, X)} .
Jij'ed

Using expression (68), it is straightforward to show that if j # j/, then
Eo [LM (Y. X)L, (Y,X)] -1

This follows from the fact that the sets ©; and ©; are orthogonal with respect to the inner
product (4). Thus,

Bo [Lu(Y, X)) = 14+ 0 k2 (Bo [L2 (Y. X)| = 1) < 1402
JjeTJ
thanks to (84). Using the argument (65) as in the proof of Theorem 5 allows to conclude.

8.9 Proof of Proposition 14

First of all, we only have to consider the case where the covariance matrix of X is the identity. If
this is not the case, one only has to apply Gram-Schmidt process to X and thus obtain a vector
X' and a new basis for © which is orthonormal. We refer to the beginning of Section 5 for more
details.

Like the previous bounds for ellipsoids, we adapt the approach of Section 6 in Baraud (2002).
We use the same notations as in proof of Proposition 11. Let D*(R) € {1,...,p} an integer
which achieves the supremum of p% A (R%a%) = 7%. As in proof of Proposition 11, for any
R >0,

H9||2 2 ||0H2 2
- o S = . ( 6 a E NV > D*(R .
{0 € Smoe var(Y') — [|0[]2 "o () b€ &alR) var(Y) — /0[] o)

When R varies, D*(R) describes {1,...,p}. Thus, we obtain

o) o
e =) = U0 S o = e
c U 965(R)$>r2
R>0 var(Y) — o]z T PR [

and the result follows from proposition 13.
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