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Goodness-of-�t Tests for high-dimensional Gaussian linearmodelsNovember 13, 2007Abstra
tLet (Y, (Xi)i∈I) be a zero mean Gaussian ve
tor and V be a subset of I. Suppose we aregiven n i.i.d. repli
ations of the ve
tor (Y, X). We propose a new test for testing that Y isindependent of (Xi)i∈I\V 
onditionally to (Xi)i∈V against the general alternative that it isnot. This pro
edure does not depend on any prior information on the 
ovarian
e of X or thevarian
e of Y and applies in a high-dimensional setting. It straightforwardly extends to testthe neighbourhood of a Gaussian graphi
al model. The pro
edure is based on a model ofGaussian regression with random Gaussian 
ovariates. We give non asymptoti
 propertiesof the test and we prove that it is rate optimal (up to a possible log(n) fa
tor) over various
lasses of alternatives under some additional assumptions. Besides, it allows us to derivenon asymptoti
 minimax rates of testing in this setting. Finally, we 
arry out a simulationstudy in order to evaluate the performan
e of our pro
edure.1 Introdu
tionWe 
onsider the following regression model
Y =

∑

i∈I
θiXi + ǫ (1)where θ is an unknown ve
tor of R

I . The ve
tor X follows a zero mean Gaussian distributionwith non singular 
ovarian
e matrix Σ and ǫ is a zero mean Gaussian random variable indepen-dent of X . We note p the 
ardinal of I and var(Y ) the varian
e of Y . Straightforwardly, thevarian
e of ǫ 
orresponds to the 
onditional varian
e of Y given X , var(Y |X).The variable sele
tion problem for this model in a high-dimensional setting has re
ently at-tra
ted a lot of attention. A large number of papers are now devoted to the design of newalgorithms and estimators whi
h are 
omputationally feasible and are proven to 
onverge; see forinstan
e the works of Meinshausen and Bühlmann (2006), Candès and Tao (2007), Zhao and Yu(2006), Zou and Hastie (2005), or Bühlmann and Kalis
h (2007). Our issue is the natural testing
ounterpart of this variable sele
tion problem: we aim at de�ning a 
omputationally feasibletesting pro
edure whi
h a
hieves an optimal rate in some sense.We are given n i.i.d. repli
ations of the ve
tor (Y,X). Let us respe
tively note Y and Xi theve
tors of the n observations of Y and Xi for any i ∈ I. Let V be a subset of I, then XV refersto the set {Xi, i ∈ V } and θV stands for the sequen
e (θi)i∈V . The �rst purpose of this paper isto propose a test of the null hypothesis �θI\V = 0� against the general alternative �θI\V 6= 0�1



under no prior knowledge of the 
ovarian
e of X , the varian
e of ǫ, nor the varian
e of Y . Notethat the property �θI\V = 0� is equivalent to �Y is independent of XI\V 
onditionally to XV �.Moreover, we want to be able to 
onsider the di�
ult 
ase of tests in a high-dimensional setting:the number of 
ovariates p is possibly mu
h larger than the number of observations n. Su
hsituations arise in many statisti
al appli
ations like in genomi
s or biomedi
al imaging. Froma theoreti
al point of view, our se
ond purpose is to derive non asymptoti
 minimax rates oftesting for this model over various alternatives.1.1 Appli
ation to Gaussian Graphi
al Models (GGM)Our work was originally motivated by the following question: let (Zj)j∈J be a random ve
torwhi
h follows a zero mean Gaussian distribution whose 
ovarian
e matrix Σ′ is non singular.We observe n i.i.d. repli
ations of this ve
tor Z and we are given a graph G = (Γ, E) where
Γ = {1, . . . |J |} and E is a set of edges in Γ × Γ. How 
an we test that Z is an undire
tedGaussian graphi
al model (GGM) with respe
t to the graph G?The random ve
tor Z is a GGM with respe
t to the graph G = (Γ, E) if for any 
ouple
(i, j) whi
h is not 
ontained in the edge set E, Zi and Zj are independent, given the remainingvariables. See Lauritzen (1996) for de�nitions and main properties of GGM. Interest in thesemodels has grown as they allow the des
ription of dependen
e stru
ture in high-dimensionaldata. As su
h, they are widely used in spatial statisti
s (Cressie, 1993; Rue and Held, 2005)or probabilisti
 expert systems (Cowell et al., 1999). More re
ently, they have been applied tothe analysis of mi
roarray data. The 
hallenge is to infer the network regulating the expressionof the genes using only a small sample of data, see for instan
e S
häfer and Strimmer (2005),Kishino and Waddell (2000) or Wille et al. (2004). This issue has motivated the resear
h for newestimation pro
edures to handle GGM in a high-dimensional setting.It is beyond the s
ope of this paper to give an exhaustive review of these. Many of thesegraph estimation methods are based on multiple testing pro
edures, see for instan
e S
häfer andStrimmer (2005) or Wille and Bühlmann (2006). Other methods are based on variable sele
tionfor high-dimensional data we previously mentioned. For instan
e, Meinshausen and Bühlmann(2006) proposed a 
omputationally feasible model sele
tion algorithm using Lasso penalisation.Huang et al. (2006) and Yuan and Lin (2007) extend this method to infer dire
tly the inverse
ovarian
e matrix Σ′−1 by minimizing the log-likehood penalised by the l1 norm.While the issue of graph and 
ovarian
e estimation is extensively studied, it seems that theproblem of hypothesis testing of GGM in a high-dimensional setting has not yet raised mu
hinterest. We believe that this issue is signi�
ant for two reasons: �rst, when 
onsidering a generegulation network, the biologists often have a previous knowledge of the graph and may wantto test if the mi
roarray data mat
h with their model. Se
ond, when applying an estimationmethod in a high-dimensional setting, it 
ould be useful to test the estimated graph as some ofthese methods reveal too 
onservative.Admittedly, some of the previously mentioned estimation methods are based on multipletesting. However, as they are 
onstru
ted for an estimation purpose, most of them do not takeinto a

ount some previous knowledge about the graph. This is for instan
e the 
ase for theapproa
hes of Drton and Perlman (2007) and S
häfer and Strimmer (2005). Some of the otherexisting pro
edures 
annot be applied in a high-dimensional setting (|J | ≥ n). Finally, most ofthem la
k theoreti
al justi�
ation in a non asymptoti
 way.In a subsequent paper (Verzelen and Villers, 2007) we de�ne a test of graph based on thepresent work. It bene�ts the ability of handling high dimensional GGM and has minimax prop-erties. Besides we show numeri
al eviden
e of its e�
ien
y; see Verzelen and Villers (2007) formore details. In this arti
le, we shall only present the idea underlying our approa
h.2



For any j ∈ J , we note N(j) the set of neighbours of j in the graph G. Testing that Z isa GGM with respe
t to G is equivalent to testing that the random variable Zj 
onditionnallyto (Zl)l∈N(j) is independent of (Zl)l∈J\(N(j)∪{j}) for any j ∈ J . As Z follows a Gaussiandistribution, the distribution of Zj 
onditionally to the other variables de
omposes as follows:
Zj =

∑

k∈J\{j}
θkZk + ǫj ,where ǫj is normal and independent of (Zk)k∈J\{j}. Then, the statement of 
onditional inde-penden
y is equivalent to θJ\{j}∪N(j) = 0. This approa
h based on 
onditional regression is alsoused for estimation by Meinshausen and Bühlmann (2006).1.2 Conne
tion with tests in �xed design regressionOur work is dire
tly inspired by the testing pro
edure of Baraud et al. (2003) in �xed designregression framework. Contrary to model (1), the problem of hypothesis testing in �xed designregression has been extensively studied. This is why we will use the results in this framework asa ben
hmark for the theoreti
al bounds in our model (1). Let us de�ne this se
ond regressionmodel:

Yi = fi + σǫi, i ∈ {1, . . . , N}, (2)where f is an unknown ve
tor of R
N , σ some unknown positive number, and the ǫi's a sequen
eof i.i.d. standard Gaussian random variables. The problem at hand is testing that f belongs toa linear subspa
e of R

N against the alternative that it does not. We refer to Baraud et al. (2003)for a short review of non parametri
 tests in this framework. Besides, we are interested in theperforman
e of the pro
edures from a minimax perspe
tive. To our knowledge, there has beenno results in model (1). On the other hand, there are numerous papers on this issue in the �xeddesign regression model. First, we refer to the seminal work of Ingster (1993,a,b,
) whi
h givesasymptoti
 minimax rates over non parametri
 alternatives. Our work is 
losely related to theresults of Baraud (2002) where he gives non asymptoti
 minimax rates of testing over ellipsoidsor sparse signals. Throughout the paper, we highlight the link between the minimax rates in�xed and in random design.1.3 Prin
iple of our testing pro
edureLet us brie�y des
ribe the idea underlying our testing pro
edure. Let m be a subset of I \V . Werespe
tively de�ne SV and SV ∪m as the linear subspa
es of R
I su
h that θI\V = 0, respe
tively

θI\(V ∪m) = 0. We note d and Dm for the 
ardinalities of V and m and Nm refers to Nm =
n− d−Dm. If Nm > 0, we de�ne the Fisher statisti
 φm by

φm(Y,X) :=
Nm‖ΠV ∪mY − ΠVY‖2

n

Dm‖Y − ΠV ∪mY‖2
n

, (3)where ΠV refers to the orthogonal proje
tion onto the spa
e generated by the ve
tors (Xi)i∈Vand ‖.‖n is the 
anoni
al norm in R
n.Let us 
onsider a �nite 
olle
tion M of non empty subsets of I \ V su
h that for ea
h

m ∈ M, Nm > 0. Our testing pro
edure 
onsists of doing a Fisher test for ea
h m ∈ M. We3



de�ne {αm,m ∈ M} a suitable 
olle
tion of numbers in ]0, 1[ (whi
h possibly depends on X).For ea
h m ∈ M, we do the Fisher test φm of level αm of:
H0 : θ ∈ SV against the alternative H1,m : θ ∈ SV ∪m \ SVand we de
ide to reje
t the null hypothesis if one of those Fisher tests does.The main advantage of our pro
edure is that it is very �exible in the 
hoi
es of the model

m ∈ M and in the 
hoi
es of the weights {αm}. Consequently, if we 
hoose a suitable 
olle
tion
M, the test is powerful over a large 
lass of alternatives as shown in Se
tions 3, 4, and 5.Finally, let us mention that our pro
edure easily extends to the 
ase where the expe
tationof the random ve
tor (Y,X) is unknown. Let X and Y denote the proje
tions of X and Y ontothe unit ve
tor 1. Then, one only has to apply the pro
edure to (Y − Y,X − X) and to repla
e
d by d+ 1. The properties of the test remain un
hanged and one 
an adapt all the proofs to thepri
e of more te
hni
alities.1.4 Minimax rates of testingIn order to examine the quality of our tests, we will 
ompare their performan
e with the minimaxrates of testing. That is why we now de�ne pre
isely what we mean by the (α, δ)-minimax rateof testing over a set Θ. We write R

I for R
I endowed with the eu
lidean norm

‖θ‖2 := θtΣθ = var(∑
i∈I

θiXi

)
. (4)As ǫ and X are independent, we derive from the de�nition of ‖.‖2 that var(Y ) = ‖θ‖2 +var(Y |X). Thus, if we have ‖θ‖ vary, either the quantity var(Y ) or var(Y |X) has to vary. In thesequel, we suppose that var(Y ) is �xed. We brie�y justify this 
hoi
e in Se
tion 4.2. Consequently,if ‖θ‖2 is in
reasing, then var(Y |X) has to de
rease so that the sum remains 
onstant. Let αbe a number in ]0; 1[ and let δ be a number in ]0; 1 − α[ (typi
ally small). For a given ve
tor θ,matrix Σ and var(Y ), we denote Pθ the joint distribution of (Y,X). For the sake of simpli
ity,we do not emphasize the dependen
e of Pθ on var(Y ) or Σ. Let ψα be a test of level α of thehypothesis "θ = 0" against the hypothesis "θ ∈ Θ\0". In our framework, it is natural to measurethe performan
e of ψα using the quantity ρ (ψα,Θ, δ, var(Y ),Σ) de�ned by:

ρ (ψα,Θ, δ, var(Y ),Σ) := inf

{
ρ > 0, inf

{
Pθ(ψα = 1), θ ∈ Θ and ‖θ‖2var(Y ) − ‖θ‖2

≥ ρ2

}
≥ 1 − δ

}
,where the quantity

rs/n(θ) :=
‖θ‖2var(Y ) − ‖θ‖2

(5)appears naturally as it 
orresponds to the ratio ‖θ‖2/var(Y |X) whi
h is the quantity of informa-tion brought by X (i.e. the signal) over the 
onditional varian
e of Y (i.e. the noise). We aimat des
ribing the quantity
inf
ψα

ρ (ψα,Θ, δ, var(Y ),Σ) := ρ (Θ, α, δ, var(Y ),Σ) , (6)where the in�mum is taken over all the level-α tests ψα. We 
all this quantity the (α, δ)-minimaxrate of testing over Θ. 4



A dual notion of this ρ fun
tion is the fun
tion βΣ. For any Θ ⊂ R
I and α ∈]0, 1[, we denote

βΣ(Θ) the quantity
βΣ (Θ) := inf

ψα

sup
θ∈Θ

Pθ [ψα = 0] ,where the in�mum is taken over all level-α tests ψα and where we re
all that Σ refers to the
ovarian
e matrix of X .1.5 Organization of the PaperWe present the pro
edure in Se
tion 2. In Se
tion 3, we give a general theorem whi
h 
hara
ter-izes a set of ve
tors θ over whi
h the test is powerful in a non asymptoti
 setting. In Se
tion 4and 5, we apply our pro
edure to de�ne tests and study their optimality for two di�erent 
lassesof alternatives. More pre
isely, in Se
tion 4 we test 0 against the 
lass of θ whose 
omponentsequal 0, ex
ept at most k of them (k is supposed small). We de�ne a test whi
h under mild
onditions a
hieves the minimax rate of testing. When the 
ovariates are independent, it isinteresting to note that the minimax rates exhibits the same ranges in our statisti
al model (1)and in �xed design regression model (2). In se
tion 5, we de�ne two pro
edures whi
h a
hievethe simultaneous minimax rates of testing over large 
lasses of ellipsoids (to sometimes the pri
eof a log(p) fa
tor). Besides, we show that the problem of adaptation over 
lasses of ellipsoids isimpossible without a loss in e�
ien
y. This was previously pointed out by Spokoiny (1996) in�xed design regression framework. The simulation studies are presented in Se
tion 6. Finally,Se
tions 7 and 8 
ontain the proofs.Let us now introdu
e some notations that will be used throughout the paper. For x, y ∈ R,we set
x ∧ y := inf{x, y}, x ∨ y := sup{x, y}.For any u ∈ R, F̄D,N (u) denotes the probability for a Fisher variable with D and N degrees offreedom to be larger than u.2 The Testing pro
edureIn this se
tion, we adapt the testing pro
edure of Baraud et al. (2003) in our random designmodel (1).2.1 Des
ription of the pro
edureLet us �rst �x some level α ∈]0, 1[. Throughout this paper, we suppose that n ≥ d + 2. Letus 
onsider a �nite 
olle
tion M of non empty subsets of I \ V su
h that for all m ∈ M,

1 ≤ Dm ≤ n − d − 1. Most of the notations used in this de�nition were de�ned in Se
tion 1.3.We introdu
e the following test of level α. We reje
t H0:"θ ∈ SV " when the statisti

Tα := sup

m∈M

{
φm(Y,X) − F̄−1

Dm,Nm
(αm(X))

} (7)is positive, where the 
olle
tion of weights {αm(X),m ∈ M} is 
hosen a

ording to one of thetwo following pro
edures: 5



P1 : The αm 's do not depend on X and satisfy the equality :
∑

m∈M
αm = α . (8)

P2 : For all m ∈ M, αm(X) = qX,α, the α-quantile of the distribution of the random variable
inf
m∈M

F̄Dm,Nm

(‖ΠV ∪m(ǫ) − ΠV (ǫ)‖2
n/Dm

‖ǫ − ΠV ∪m(ǫ)‖2
n/Nm

) (9)
onditionally to X.Note that it is easy to 
ompute the quantity qX,α. Let Z be a standard Gaussian randomve
tor of size n independent of X. As ǫ is independent of X, the distribution of (9) 
onditionallyto X is the same as the distribution of
inf
m∈M

F̄Dm,Nm

(‖ΠV ∪m(Z) − ΠV (Z)‖2/Dm

‖Z − ΠV ∪m(Z)‖2/Nm

)
onditionally to X. Thus, we 
an easily work out its quantile using Monte-Carlo method.It is 
lear that the 
omputational 
omplexity of the pro
edure is linear with respe
t to thesize of the 
olle
tion of models M even when using Pro
edure P2. Consequently, when we applyour pro
edure to high-dimensional data as in Se
tion 6 or in Verzelen and Villers (2007), wefavour 
olle
tions M whose size is linear with respe
t to the number of 
ovariates p.2.2 Behavior of the test under the null hypothesisThe test asso
iated with Pro
edure P1 
orresponds to a Bonferroni test and is of size less than
α by arguing as follows: let θ be an element of SV (de�ned in Se
tion 1.3),

Pθ(Tα > 0) ≤
∑

m∈M
Pθ

(
φm(X,Y) − F̄−1

Dm,Nm
(αm) > 0

)
,where φm(X,Y) is de�ned in (3). We now de�ne the test statisti
 φm,αm(X,Y) as

φm,αm(X,Y) = φm(X,Y) − F̄−1
Dm,Nm

(αm). (10)The test is reje
ted if φm,αm(X,Y) is positive. As θ belongs to SV , ΠV ∪mY−ΠVY = ΠV ∪mǫ−
ΠV ǫ and Y − ΠV ∪mY = ǫ − ΠV ∪mǫ. Then, the quantity φm(X,Y) is equal to

φm(X,Y) =
Nm‖ΠV ∪mǫ − ΠV ǫ‖2

n

Dm‖ǫ − ΠV ∪mǫ‖2
n

.Be
ause ǫ is independent of X, the distribution of φm(X,Y) 
onditionally to X is a Fisherdistribution with Dm and Nm degrees of freedom. As a 
onsequen
e, φm,αm(X,Y) is a Fishertest with Dm and Nm degrees of freedom. It follows that:
Pθ(Tα > 0) ≤

∑

m∈M
αm ≤ α.Pro
edure P1 is therefore 
onservative. 6



The test asso
iated with Pro
edure P2 has the property to be of size exa
tly α. More pre
isely,for any θ ∈ SV , we have that
Pθ(Tα > 0|X) = α X a.s. .The result follows from the fa
t that qX,α satis�es

Pθ

(
sup
m∈M

{
Nm‖ΠV ∪m(ǫ) − ΠV (ǫ)‖2

n

Dm‖ǫ − ΠV ∪m(ǫ)‖2
n

− F̄−1
Dm,Nm

(qX,α)

}
> 0

∣∣∣∣X
)

= α,and that for any θ ∈ SV , ΠV ∪mY − ΠVY = ΠV ∪mǫ − ΠV ǫ and Y − ΠV ∪mY = ǫ − ΠV ∪mǫ.2.3 Comparison of Pro
edures P1 and P2We show in this se
tion that the test (7) with Pro
edure P2 is more powerful than the 
orre-sponding test de�ned with Pro
edure P1 with weights αm = α/|M|. We respe
tively refer to T 1
αand T 2

α for these two tests asso
iated with Pro
edure P1 and P2. More pre
isely, let us provethat
∀θ /∈ SV , Pθ

(
T 2
α(X,Y) > 0

∣∣X
)
≥ Pθ

(
T 1
α(X,Y) > 0 |X

)
X a.s. . (11)In fa
t this previous inequality is straighforward when 
onsidering the de�nitions of T 1

α and T 2
α:

T 1
α(X,Y) = sup

m∈M

{
φm(X,Y) − F̄−1

Dm,Nm
(α/|M|)

}

T 2
α(X,Y) = sup

m∈M

{
φm(X,Y) − F̄−1

Dm,Nm
(qX,α)

}Conditionally on X, the size of T 1
α is smaller than α, whereas the size T 2

α is exa
tly α. As a
onsequen
e qX,α ≥ α/|M| as the statisti
s T 1
α and T 2

α di�er only through these quantities. Thus,
T 2
α(X,Y) ≥ T 1

α(X,Y), (X,Y) almost surely and the result (11) follows.The 
hoi
e of Pro
edure P1 allows to avoid the 
omputation of the quantile qX,α and possiblypermits to give a Bayesian �avor to the 
hoi
e of the weights. On the other hand, Pro
edure
P2 is more powerful than the 
orresponding test with Pro
edure P1. This will be illustratedin Se
tion 6. In the next three se
tions we study the power and rates of testing of Tα withPro
edure P1.3 Power of the TestIn this se
tion, we aim at des
ribing a set of ve
tors θ in R

I over whi
h the test de�ned inSe
tion 2 with Pro
edure P1 is powerful. We note that sin
e Pro
edure P2 is more powerful thanPro
edure P1 with αm = α/|M|, the test with Pro
edure P2 will also be powerful on this setof θ.Let α and δ be two numbers in ]0, 1[, and let {αm,m ∈ M} be weights su
h that∑m∈M αm ≤ α.We introdu
e some quantities that depend on αm, δ, Dm, and Nm. We set L = log
(

1
δ

) and forany m ∈ M, we de�ne Lm = log
(

1
αm

), km = 2 exp(4Lm/Nm), and lm =
(
1 + 2

√
L
Nm

+ 2 L
Nm

).Under the following 
ondition, km and lm behave like 
onstants:
(HM) For all m ∈ M, αm ≥ exp(−Nm/10) and δ ≥ exp(−Nm/21).7



For typi
al 
hoi
es of the 
olle
tions M and {αm,m ∈ M}, these 
onditions are ful�lled. InSe
tions 4 and 5, we dis
uss these assumptions for various settings. Let us now turn to the mainresult.Theorem 1. Let Tα be the test pro
edure de�ned by (7). We assume that n > d + 2. Then
Pθ(Tα > 0) ≥ 1 − δ for all θ belonging to the set

FM(δ) :=

{
θ ∈ R

I , ∃m ∈ M :
var(Y |XV ) − var(Y |XV ∪m)var(Y |XV ∪m)

≥ ∆(m)

}
,where

∆(m) :=

4lm

√
Dm log

(
1

αmδ

)(
1 +

√
Dm

Nm

)
+ log

(
1

αmδ

) [
8 ∨ kmlm

(
1 + 2Dm

Nm

)]

(n− d)
(
1 − 1/2 ∨ 2

√
2L
Nm

) . (12)Under the hypothesis HM, for any m ∈ M,
∆(m) ≤

C1

√
Dm log

(
1

αmδ

)(
1 +

√
Dm

Nm

)
+ C2

(
1 + 2Dm

Nm

)
log
(

1
αmδ

)

n− d
, (13)where C1 and C2 are universal 
onstants.This result is similar to Theorem 1 in Baraud et al. (2003) in �xed design regression frameworkand the same 
omment also holds: the test Tα under pro
edure P1 has a power 
omparable tothe best of the tests among the family {φm,α,m ∈ M}. Indeed, let us assume for instan
ethat V = {0} and that the αm are 
hosen to be equal to α/|M|. The test Tα de�ned by (7)is equivalent to doing several tests of θ = 0 against θ ∈ Sm at level αm for m ∈ M and itreje
ts the null hypothesis if one of those tests does. From Theorem 1, we know that under thehypothesis HM this test has a power greater than 1 − δ over the set of ve
tors θ belonging to⋃

m∈M F ′
m(δ, αm) where

F ′
m(δ, αm) =

{
θ ∈ Θ,

var(Y ) − var(Y |Xm)var(Y |Xm)
≥ C′

1(Dm, Nm)

n

(√

Dm log

(
1

αmδ

)
+ log

(
1

αmδ

))}
. (14)Besides, C′

1(Dm, Nm) behaves like a 
onstant if the ratio Dm/Nm is bounded. Let us 
omparethis result with the set of θ over whi
h the Fisher test φm,α at level α has a power greaterthan 1 − δ. Applying Theorem 1, we know that it 
ontains F ′
m(δ, α). Moreover, the followingProposition shows that this set is not mu
h larger than F ′

m(δ, α):Proposition 2. Let δ ∈]0, 1 − α[ and
t(α, δ) :=

√
log
(
1 + 8 (1 − α− δ)

2
)[

1 ∧
√

log
(
1 + 8 (1 − α− δ)

2
)
/(2 log 2)

]
.If var(Y ) − var(Y |Xm)var(Y |Xm)

≤ t(α, δ)

√
Dm

n
,then Pθ (φm > 0) ≤ 1 − δ. 8



The proof is postponed to Se
tion 8 and is based on a lower bound of the minimax rate oftesting.
F ′
m(δ, α) and F ′

m(δ, αm) de�ned in (14) di�er from the fa
t that log(1/α) is repla
ed by
log(1/αm). For the main appli
ations that we will study in se
tion 4, 5, and 6, the di�eren
e
log (1/αm) − log (1/α) is of order k log(ep/k) where k is a �small� integer of the order log(n) or
log logn. Thus, for ea
h δ ∈]0, 1 − α[, the test based on Tα has a power greater than 1 − δ overa 
lass of ve
tors whi
h is 
lose to ⋃m∈M F ′

m(δ, α). It follows that for ea
h θ 6= 0 the power ofthis test under Pθ is 
omparable to the best of the tests among the family {φm,α,m ∈ M}.In the next two se
tions, we use this theorem to establish rates of testing against di�erenttypes of alternatives. First, we give an upper bound for the rate of testing θ = 0 against a 
lassof θ for whi
h a lot of 
omponents are equal to 0. In Se
tion 5, we study the rates of testingand simultaneous rates of testing θ = 0 against 
lasses of ellipsoids. For the sake of simpli
ity,we will only 
onsider the 
ase V = {0}. Nevertheless, the pro
edure Tα de�ned in (7) appliesin the same way when one 
onsiders more 
omplex null hypothesis and the rates of testing areun
hanged ex
ept that we have to repla
e n by n− d and var(Y ) by var(Y |XV ).4 Dete
ting non-zero 
oordinatesLet us �x a number k between 1 and p. In this se
tion, we are interested in testing θ = 0 againstthe 
lass of θ with a most k non zero 
omponents. This typi
ally 
orresponds to the situationen
ountered when 
onsidering tests of neighbourhood for large sparse graphs. As the graphis assumed to be sparse, only a small number of neighbours are missing under the alternativehypothesis.For ea
h pair of integers (k, p) with k ≤ p, let M(k, p) be the 
lass of all subsets of I =
{1, . . . , p} of 
ardinality k. The set Θ[k, p] stands for the subset of θ ∈ R

I , su
h that at most k
oordinates of θ are non-zero.First, we de�ne a test Tα of the form (7) with Pro
edure P1, and we derive an upper bound forthe rate of testing of Tα against the alternative θ ∈ Θ[k, p]. Then, we show that this pro
edureis rate optimal when all the 
ovariates are independent. Finally, we study the optimality of thetest when k = 1 for some examples of matri
es Σ.4.1 Rate of testing of T
αProposition 3. We 
onsider the set of models M = M(k, p). We use the test Tα under Pro
e-dure P1 and we take the weights αm all equal to α/|M|. Let us suppose that n satis�es:

n ≥ k +

[
10

[
log

(
1

α

)
+ k log

(ep
k

)]
∨ 21 log (1/δ)

]
.Let us set the quantity

ρ′2k,n,p :=
C3k log

(
ep
k

)
+ C4

[√
k log

(
1
αδ

)
∨ log

(
1
αδ

)]

n
, (15)where C3 and C4 are universal 
onstants. For any θ in Θ[k, p], su
h that ‖θ‖2var(Y )−‖θ‖2 ≥ ρ′2k,n,p,

Pθ (Tα > 0) ≥ 1 − δ.This Proposition follows easily from Theorem 1 and its proof is given in Se
tion 7. Let usnote that this upper bound does not dire
tly depend on the 
ovarian
e matrix of the ve
tor X .We will further dis
uss this result after deriving lower bounds for the minimax rate of testing inthis setting. 9



4.2 Minimax lower bounds for independent 
ovariatesIn the statisti
al framework 
onsidered here, the problem of giving minimax rates of testing un-der no prior knowledge of the 
ovarian
e of X and of var(Y ) is open. That is why we shall onlyderive lower bounds when var(Y ) and the 
ovarian
e matrix of X are known. In this se
tion,we give non asymptoti
 lower bounds for the (α, δ)-minimax rate of testing over the set Θ[k, p]when the 
ovarian
e matrix of X is the identity matrix. As these bounds 
oin
ide with the upperbound obtained in Se
tion 4.1, this will show that our test Tα is rate optimal.In order to simplify the notations, we set η = 2(1 − α − δ) and L(η) = log(1+2η2)
2 . We �rstgive a lower bound for the (α, δ)-minimax rate of dete
tion of all p non-zero 
oordinates, as wewill need it later.Proposition 4. Let us suppose that var(Y ) is known. Let us set ρ2

p,n su
h that:
ρ2
p,n(η) :=

√
2

[
√
L(η) ∧ L(η)√

log(2)

] √
p

n
. (16)Then for all ρ < ρp,n(η),

βΣ

({
θ ∈ Θ[p, p],

‖θ‖2var(Y ) − ‖θ‖2
= ρ2

})
≥ δ,where we re
all that Σ is the 
ovarian
e matrix of X.We now turn to the lower bound for the (α, δ)-minimax rate of testing against θ ∈ Θ[k, p].Theorem 5. Let us set ρ2

k,p,n su
h that
ρ2
k,p,n :=

k(L(η) ∧ 1)

n
log

(
1 +

p

k2
+

√
2
p

k2

)
. (17)Moreover, we suppose that the 
ovarian
e of X is the identity matrix I. Then, for all ρ < ρk,n,p,

βI

({
θ ∈ Θ[k, p],

‖θ‖2var(Y ) − ‖θ‖2
= ρ2

})
≥ δ.where the quantity var(Y ) is known.If α+ δ ≤ 53%, then one has

ρ2
k,n,p ≥

k

2n
log

(
1 +

p

k2
∨
√

p

k2

)
.This result implies the lower bound

ρ (Θ[k, p], α, δ, var(Y ), I)) ≥ ρ2
k,p,n.The proof is given in Se
tion 8. To the pri
e of more te
hni
ity, it is possible to prove thatthe lower bound still holds if the variables (Xi) are assumed independent with known varian
espossibly di�erent. This theorem re
overs approximately the lower bounds for the minimax ratesof testing in signal dete
tion framework obtained by Baraud (2002). The main di�eren
e lies inthe fa
t that we suppose var(Y ) known whi
h in the signal dete
tion framework translates in thefa
t that we would know the quantity ‖f‖2 + σ2.We are now in position to 
ompare the results of Proposition 3 and Theorem 5. We distinguishbetween the values of k. 10



• When k ≤ pγ for some γ < 1/2, if n is large enough to satisfy the assumption of Proposi-tion 3, the quantities ρ2
k,n,p and ρ′2k,n,p are both of the order k log(p)

n times a 
onstant (whi
hdepends on γ, α, and δ). This shows that the lower bound given in Theorem 5 is sharp.Additionally, in this 
ase, the pro
edure Tα de�ned in Proposition 3 follows approximatelythe minimax rate of testing. We re
all that our pro
edure Tα does not depend on theknowledge of var(Y ) and 
orr(X). In appli
ations, this 
hoi
e of a small k typi
ally 
orre-sponds to testing a Gaussian graphi
al model with respe
t to a graph G, when the numberof nodes is large and the graph is supposed to be sparse.
• When √

p ≤ k ≤ p, the lower bound and the upper bound do not 
oin
ide anymore.Nevertheless, if n ≥ (1 + γ)p for some γ > 0, Theorem 1 shows that the test φI,α de�nedin (10) has power greater than δ over the ve
tors θ whi
h satisfy
‖θ‖2var(Y ) − ‖θ‖2

≥ C(γ, α, δ)

√
p

n
. (18)This upper bound and the lower bound do not depend on k. Here again, the lower boundobtained in Theorem 5 is sharp and the test φI,α de�ned previously is rate optimal. Thefa
t that the rate of testing stabilizes around √

p/n for k >
√
p also appears in signaldete
tion and there is a dis
ussion of this phenomenon in Baraud (2002).

• When k <
√
p and k is 
lose to √

p, the lower bound and the upper bound given byProposition 3 di�er from at most a log(p) fa
tor. For instan
e, if k is of order √p/ log p,the lower bound in Theorem 5 is of order √
p log log p/ log p and the upper bound is oforder √p. We do not know if any of this bound is sharp and if the minimax rates of testing
oin
ide when var(Y ) is �xed and when it is not �xed.All in all, the minimax rates of testing exhibit the same range of rates in our framework as insignal dete
tion (Baraud, 2002) when the 
ovariates are independent. Moreover, our result showsthat the minimax rate of testing is slower when the (Xi)i∈I are independent than for any formof dependen
e. Indeed, the upper bounds obtained in Proposition 3 and in (18) do not dependon the 
ovarian
e of X . Then, a natural question arises: is the test statisti
 Tα rate optimalfor other 
orrelation of X? We will partially answer this question only when testing against thealternative θ ∈ Θ[1, p].4.3 Minimax rates for dependent 
ovariatesIn this se
tion, we look for the minimax rate of testing θ = 0 against θ ∈ Θ[1, p] when the
ovariates Xi are no longer independent. We know that this rate is between the orders 1

n ,whi
h is the minimax rate of testing when we know whi
h 
oordinate is non-zero, and log(p)
n , theminimax rate of testing for independent 
ovariates.Proposition 6. Let us suppose that there exists a positive number c su
h that for any i 6= j,

|
orr(Xi, Xj)| ≤ c.We de�ne ρ2
1,p,n,c as

ρ2
1,p,n,c :=

1

n

[
log(1 + η2p) ∧ 1

c
log
(
1 + η2

)]
. (19)11



Then for any ρ < ρ1,p,n,c,
βΣ

({
θ ∈ Θ[1, p],

‖θ‖2var(Y ) − ‖θ‖2
= ρ2

})
≥ δ,where Σ refers to the 
ovarian
e matrix of X.Remark: If the 
orrelation between the 
ovariates is smaller than 1/ log(p), then the minimaxrate of testing is of the same order as in the independent 
ase. If the 
orrelation between the
ovariates is larger, we show in the following Proposition that under some additional assumption,the rate is faster.Proposition 7. Let us suppose that the 
orrelation between Xi and Xj is exa
tly c > 0 for any

i 6= j. Moreover n satis�es the following 
ondition:
n ≥

[
C5

(
1 + log

(
2p

α

))]
∨
[
C6 log

(
1

δ

)] (20)If α < 60% and δ < 60% the test Tα de�ned by
Tα =

[
sup

2≤i≤p
φ{i},α/(2(p−1))

]
∨ φ{1},α/2satis�es

P0 (Tα > 0) ≤ α and Pθ (Tα > 0) ≥ 1 − δ,for any θ in Θ[1, p] su
h that
‖θ‖2var(Y ) − ‖θ‖2

≥ ρ′21,n,p,c,where
ρ′21,n,p,c :=

C7

n

(
log

(
2p

αδ

)∧ 1

c
log

(
2

αδ

))
, (21)and C5, C6, and C7 are universal 
onstants.Consequently, when the 
orrelation between Xi and Xj is a positive 
onstant c, the minimaxrate of testing is of order log(p)∧(1/c)

n . When the 
orrelation 
oe�
ient c is small, the minimax rateof testing 
oin
ides with the independent 
ase, and when c is larger those rates di�er. Therefore,the test Tα de�ned in Proposition 3 is not rate optimal when the 
orrelation is known and islarge. Indeed, when the 
orrelation between the 
ovariates is large, all the tests statisti
s φm,αmde�ning Tα are highly 
orrelated. The 
hoi
e of the weights αm in Pro
edure P1 
orresponds toa Bonferroni pro
edure. The loss due to a Bonferroni pro
edure is pre
isely large when the testsare positively 
orrelated.This example shows the limits of Pro
edure P1. However, it is not very realisti
 to supposethat the 
ovariates have a 
onstant 
orrelation, for instan
e when one 
onsiders a GGM. Indeed,we expe
t that the 
orrelation between two 
ovariates is large if they are neighbours in the graphand smaller if they are far (w.r.t. the graph distan
e). That is why we derive lower bounds of therate of testing for other kind of 
orrelation matri
es often used to model stationary pro
esses.Proposition 8. Let X1, . . . , Xp form a stationary pro
ess on the one dimensional torus. Morepre
isely, the 
orrelation between Xi and Xj is a fun
tion of |i − j|p where |.|p refers to thetoroidal distan
e de�ned by:
|i− j|p := (|i− j|) ∧ (p− |i− j|)12



Σ1(w) and Σ2(t) respe
tively refer to the 
orrelation matrix of X su
h that
orr(Xi, Xj) = exp(−w|i− j|p) where w > 0,
orr(Xi, Xj) = (1 + |i− j|p)−t where t > 0.Let us set ρ2
1,p,n,Σ1

(w) and ρ2
1,p,n,Σ2

(t) su
h that:
ρ2
1,p,n,Σ1

(w) :=
1

n
log

(
1 + 2pη2 1 − e−w

1 + e−w

)

ρ2
1,p,n,Σ2

(t) :=






1
n log

(
1 + 2p(t−1)η2

t+1

) if t > 1

1
n log

(
1 + 2pη2

1+2 log(p−1)

) if t = 1
1
n log

(
1 + pt21−t(1 − t)η2

) if 0 < t < 1.Then, for any ρ2 ≤ ρ2
1,p,n,Σ1

(w),
βΣ1(w)

({
θ ∈ Θ[1, p],

‖θ‖2var(Y ) − ‖θ‖2
= ρ2

})
≥ δ,and for any ρ ≤ ρ2

1,p,n,Σ2
(t),
βΣ2(t)

({
θ ∈ Θ[1, p],

‖θ‖2var(Y ) − ‖θ‖2
= ρ2

})
≥ δ.All in all, these lower bounds are of order log p

n . As a 
onsequen
e, for any of these 
orrela-tion models the minimax rate of testing is of the same order as the minimax rate of testing forindependent 
ovariates. This means, that our test Tα de�ned in Proposition 3 is rate-optimalfor these 
orrelations matri
es.To 
on
lude, when k ≤ pγ (for γ ≤ 1/2), the test Tα de�ned in Proposition 3 is approximately
(α, δ)-minimax against the alternative θ ∈ Θ[k, p], when neither var(Y ) nor the 
ovarian
e matrixof X is �xed. Indeed, the rate of testing of Tα 
oin
ide (up to a 
onstant) with the followingquantity:

ρ (Θ[k, p], α, δ) := supvar(Y )>0,Σ>0

ρ (Θ[k, p], α, δ, var(Y ),Σ) ,where the supremum is taken over all positive var(Y ) and every positive de�nite matrix Σ. When
k ≥ √

p and when n ≥ (1 + γ)p (for γ > 0), the test de�ned in (18) has the same behavior.However, our pro
edure does not adapt to Σ: for some 
orrelation matri
es (as for instan
e inProposition 7), Tα with Pro
edure P1 is not rate optimal. Nevertheless, we believe and this willbe illustrated in Se
tion 6 that Pro
edure P2 slightly improves the power of the test in pra
ti
e.5 Rates of testing on �ellipsoids� and adaptationIn this se
tion, we de�ne tests Tα of the form (7) in order to test simultaneously θ = 0 against θbelongs to some 
lasses of ellipsoids. We will study their rates and show that they are optimalat sometimes the pri
e of a log p fa
tor. In this se
tion, I is supposed again to be {1, . . . , p}.In the sequel for any non in
reasing sequen
e (ai)1≤i≤p+1 su
h that a1 = 1 and ap+1 = 0 andany R > 0, we de�ne the ellipsoid Ea(R) by
Ea(R) :=

{
θ ∈ R

I ,
p∑

i=1

var(Y |Xmi−1) − var(Y |Xmi)

a2
i

≤ R2var(Y |X)

}
, (22)13



where for any 1 ≤ i ≤ p, mi refers to the set {1, . . . , i} and m0 = ∅.Let us explain why we 
all this set an ellipsoid. For instan
e, let us suppose that the (Xi) areindependent identi
ally distributed with varian
e one. In this 
ase, the di�eren
e var(Y |Xmi−1)−var(Y |Xmi) equals |θi|2 and the de�nition of Ea(R) translates in
Ea(R) =

{
θ ∈ R

I ,
p∑

i=1

|θi|2
a2
i

≤ R2var(Y |X)

}
.The main di�eren
e between this de�nition and the 
lassi
al de�nition of an ellipsoid in the�xed design regression framework (as for instan
e in Baraud (2002)) is the presen
e of theterm var(Y |X). We added this quantity in order to be able to derive lower bounds of theminimax rate. If the Xi are not i.i.d. with unit varian
e, it is always possible to 
reate asequen
e X ′

i of i.i.d. standard gaussian variables by orthogonalizing the Xi using Gram-S
hmidtpro
ess. If we 
all θ′ the ve
tor in R
I su
h that Xθ = X ′θ′, it is straightforward to show thatvar(Y |Xmi−1) − var(Y |Xmi) = |θ′i|2. We 
an then express Ea(R) using the 
oordinates of θ′ aspreviously:

Ea(R) =

{
θ ∈ R

I ,
p∑

i=1

|θ′i|2
a2
i

≤ R2var(Y |X)

}
.The main advantage of de�nition (22) is that it does not depend on the 
ovarian
e of X .In the sequel we also 
onsider the spe
ial 
ase of ellipsoids with polynomial de
ay,

E ′
s(R) :=

{
θ ∈ R

I ,
p∑

i=1

var(Y |Xmi−1) − var(Y |Xmi)

i−2svar(Y |X)
≤ R2

}
, (23)where s > 0 and R > 0. First, we de�ne two tests pro
edures of the form (7) and evaluate theirpower respe
tively on the ellipsoids Ea(R) and on the ellipsoids E ′

s(R). Then, we give some lowerbounds for the (α, δ)-simultaneous minimax rates of testing. Extensions to more general lp ballswith 0 < p < 2 are possible to the pri
e of more te
hni
alities by adapting the results of Se
tion4 in Baraud (2002).These alternatives 
orrespond to the situation where we are given an order of relevan
e on the
ovariates that are not in the null hypothesis. This order 
ould either be provided by a previousknowledge of the model or by a model sele
tion algorithm su
h as LARS (least angle regression)introdu
ed by Efron et al. (2004). We apply this last method to build a 
olle
tion of models forour testing pro
edure (7) in Verzelen and Villers (2007).5.1 Simultaneous Rates of testing of T
α
over 
lasses of ellipsoidsFirst, we de�ne a test of the form (7) in order to test θ = 0 against θ belongs to any of theellipsoids Ea(R). For any x > 0, [x] denotes the integer part of x.The 
lass of models M and the weights αm depend on n and p:

• If n < 2p, we take the set M to be ∪1≤k≤[n/2]mk and all the weights αm are equal to
α/|M|.

• If n ≥ 2p, we take the set M to be ∪1≤k≤pmk. αmp equals α/2 and for any k between 1and p− 1, αmk
is 
hosen to be α/(2(p− 1)).Proposition 9. Let us assume that

n ≥ 42

(
log

(
40

α

)
∨ log

(
1

δ

)) (24)14



For any ellipsoid Ea(R), the test Tα de�ned by (7) with Pro
edure P1 and with the 
lass of modelsgiven just above satis�es
P0 (Tα ≤ 0) ≥ 1 − α,and Pθ (Tα > 0) ≥ 1 − δ for all θ ∈ Ea(R) su
h that

‖θ‖2var(Y ) − ‖θ‖2
≥ C8



 inf
1≤i≤[n/2]



a
2
i+1R

2 +

√
i log

(
n/2
αδ

)

n



+
1

n
log

(
n/2

αδ

)


 (25)if n < 2p, or
‖θ‖2var(Y ) − ‖θ‖2

≥ C8



 inf
1≤i≤p−1



a
2
i+1R

2 +

√
i log

(
2(p−1)
αδ

)

n



+
log
(

2(p−1)
αδ

)

n




∧




√
p log

(
2
αδ

)
+ log

(
2
αδ

)

n



 (26)if n ≥ 2p.All in all, for large values of n, the rate of testing is of the order sup1≤i≤p

[
a2
iR

2 ∧
√
i log(p)

n

].We will show in next subse
tion that the minimax rate of testing for an ellipsoid is of order:
sup

1≤i≤p

[
a2
iR

2 ∧
√
i

n

]
.Besides, we will show in Proposition 14 that a loss in √

log log p is unavoidable if one 
onsidersthe simultaneous minimax rates of testing over a family of nested ellipsoids. We do not knowif the term √
log(p) is optimal for testing simultaneously against all the ellipsoids Ea(R) for allsequen
es (ai) and all R > 0. When n is smaller than 2p, we obtain 
omparable results ex
eptthat we are unable to 
onsider alternatives in large dimensions.We now turn to de�ne a pro
edure of the form (7) in order to test simultaneously that θ = 0against θ belongs to any of the E ′

s(R). For this, we introdu
e the following 
olle
tion of models
M and weights αm:

• If n < 2p, we take the set M to be ∪mk where k belongs to {2j, j ≥ 0
}
∩ {1, . . . , [n/2]}and all the weights αm are 
hosen to be α/|M|.

• If n ≥ 2p, we take the set M to be ∪mk where k belongs to ({2j, j ≥ 0
}
∩ {1, . . . , p}

)
∪{p},

αmp equals α/2 and for any k in the model between 1 and p − 1, αmk
is 
hosen to be

α/(2(|M| − 1)).Proposition 10. Let us assume that
n ≥ 42

(
log

(
40

α

)
∨ log

(
1

δ

)) (27)and that R2 ≥
√

log logn/n. For any s > 0, The test pro
edure Tα de�ned by (7) with Pro
edure
P1 and with a 
lass of models given just above satis�es:

P0 (Tα > 0) ≥ 1 − α,15



and Pθ (Tα > 0) ≥ 1 − δ for any θ ∈ E ′
s(R) su
h that

‖θ‖2var(Y ) − ‖θ‖2
≥ C9 (α, δ)

[
R2/(1+4s)

(√
log logn

n

)4s/(1+4s)

+R2 (n/2)
−2s

+
log logn

n

] (28)if n < 2p or
‖θ‖2var(Y ) − ‖θ‖2

≥ C9 (α, δ)

([
R2/(1+4s)

(√
log log p

n

)4s/(1+4s)

+
log log p

n

]
∧ √

p

n

) (29)if n ≥ 2p. C9(α, δ) is a 
onstant whi
h only depends on α and δ.Again, we retrieve similar results to those of Corollary 2 in Baraud et al. (2003) in the�xed design regression framework. For s > 1/4 and n < 2p, the rate of testing is of order(√
log log n
n

)4s/(1+4s). We show in the next subse
tion that this logarithmi
 fa
tor is due to theadaptative property of the test. If s ≤ 1/4, the rate is of order n−2s. When n ≥ 2p, the rate isof order (√
log log p
n

)4s/(1+4s)

∧
(√

p

n

), and we mention at the end of the next subse
tion that itis optimal.Here again, it is possible to de�ne these tests with Pro
edure P2 in order to improve thepower of the test (see Se
tion 6 for numeri
al results).5.2 Minimax lower boundsWe �rst establish the (α, δ)-minimax rate of testing over an ellipsoid when the varian
e of Y andthe 
ovarian
e matrix of X are known.Proposition 11. Let us set the sequen
e (ai)1≤i≤p+1 and the positive number R. We introdu
e
ρ2
a,n(R) := sup

1≤i≤p

[
ρ2
i,n ∧ a2

iR
2
]
, (30)where ρ2

i,n is de�ned by (16), then for any non singular 
ovarian
e matrix Σ we have
βΣ

({
θ ∈ Ea(R),

‖θ‖2var(Y ) − ‖θ‖2
≥ ρ2

a,n(R)

})
≥ δ,where the quantity var(Y ) is �xed. If α+ δ ≤ 47% then

ρ2
a,n(R) ≥ sup

1≤i≤p

[√
i

n
∧ a2

iR
2

]
.This lower bound is on
e more analogous to the one in the �xed design regression framework.Contrary to the lower bounds in previous se
tion, this bound does not depend on the 
ovarian
eof the 
ovariates. We now look for an upper bound of the minimax rate of testing over a givenellipsoid. First, we need to de�ne the quantity D∗ as:

D∗ = inf

{
1 ≤ i ≤ p, a2

iR
2 ≤

√
i

n

}with the 
onvention that inf ∅ = p.We get the 
orresponding upper bound only if D∗ is not too large 
ompared to n, as shownby the following proposition. 16



Proposition 12. Let us assume that n ≥ 20 log
(

1
α

)
∨ 41 log

(
2
δ

). If R2 > 1
n and D∗ ≤ n/2, thetest φmD∗ ,α de�ned by (10) satis�es

P0 [φmD∗ ,α = 1] ≤ α and Pθ [φmD∗ ,α = 0] ≤ δfor all θ ∈ Ea(R) su
h that
‖θ‖2var(Y ) − ‖θ‖2

≥ C10(α, δ) sup
1≤i≤d

[√
i

n
∧ a2

iR

]
,where C10(α, δ) is a 
onstant whi
h only depends on α and δ.If n ≥ 2D∗, the rates of testing on an ellipsoid are analogous to the rates on an ellipsoid in�xed design regression framework (see for instan
e Baraud (2002)). If D∗ is large and n is small,the bounds in Proposition 11 and 12 do not 
oin
ide. In this 
ase, we do not know if this 
omesfrom the fa
t that the test in Proposition 12 does not depend on the knowledge of var(Y ) or ifone of the bounds in Proposition 11 and 12 is not sharp.We are now interested in 
omputing lower bounds of rate of testing simultaneously over afamily of ellipsoids, in order to 
ompare them with rates obtained in Se
tion 5.1. First, we needa lower bound for the minimax simultaneous rate of testing over nested linear spa
es. We re
allthat for any D ∈ {1, . . . , p}, SmD stands for the linear spa
es of ve
tors θ su
h that only their D�rst 
oordinates are possibly non zero.Proposition 13. For D ≥ 2, let us set

ρ̄2
D,n :=

1

2
√

log(2)

(
1 ∧ log(1 + 2η2)

)
√

log log(D + 1)
√
D

n
. (31)Then, the following lower bound holds

βI




⋃

1≤D≤p

{
θ ∈ SmD ,

‖θ‖2var(Y ) − ‖θ‖2
= r2D

}

 ≥ δ,if for all D between 1 and p, rD ≤ ρ̄D,nUsing this Proposition, it is possible to get a lower bound for the simultaneous rate of testingover a family of nested ellipsoids.Proposition 14. We �x a sequen
e (ai)1≤i≤p+1. For ea
h R > 0, let us set
ρ̄2
a,R,n = sup

1≤D≤p

[
ρ̄2
D,n ∧ (R2a2

D)
]
. (32)where ρ̄D,n is given by (31). Then, for any non singular 
ovarian
e matrix Σ of the ve
tor X,

βΣ

(
⋃

R>0

{
θ ∈ Ea(R),

‖θ‖2var(Y ) − ‖θ‖2
≤ ρ̄2

a,R,n

})
≥ δ.This Proposition shows that the problem of adaptation is impossible in this setting: it isimpossible to de�ne a test whi
h is simultaneously minimax over a 
lass of nested ellipsoids (for

R > 0). This is also the 
ase in �xed design as proved by Spokoiny (1996) for the 
ase of Besovbodies. The loss of a term of the order √log log p/n is unavoidable.17



As a spe
ial 
ase of Proposition 14, it is possible to 
ompute a lower bound for the simulta-neous minimax rate over Es(R) where R des
ribes the positive numbers. After 
al
ulation, we�nd that the lower bound is of the order:
(

log log p

n

) 4s
1+4s ∧ √

p log log p

n
.This shows that the power of the test Tα obtained in (29) for n ≥ 2p is optimal when R2 ≥√

log logn/n. However, when n < 2p and s ≤ 1/4, we do not know if the rate n−2s is optimal ornot.To 
on
lude, when n ≥ 2p the test Tα de�ned in Proposition 10 is rate optimal over the
lasses of ellipsoids E ′
s(R). On the other hand, the test Tα de�ned in Proposition 9 is not rateoptimal simultaneously over all the ellipsoids Ea(R) and su�ers a loss of a √

log p fa
tor evenwhen n ≥ 2p.6 Simulations studiesThe purpose of this simulation study is threefold. First, we illustrate the theoreti
al resultsestablished in previous se
tions. Se
ond, we show that our pro
edure is easy to implement fordi�erent 
hoi
es of 
olle
tions M and is 
omputationally feasible even when p is large. Our thirdpurpose is to 
ompare the e�
ien
y of Pro
edures P1 and P2. Indeed, for a given 
olle
tion M,we know from Se
tion 2.3 that the test (7) based on Pro
edure P2 is more powerful than the
orresponding test based on P1. However, the 
omputation of the quantity qX,α is possibly time
onsuming and we therefore want to know if the bene�t in power is worth the 
omputationalburden.To our knowledge, when the number of 
ovariates p is larger than the number of observations
n there is no test with whi
h we 
an 
ompare our pro
edure.6.1 Simulation experimentsWe 
onsider the regression model (1) with I = {1, . . . , p} and test the null hypothesis ′′θ = 0′′,whi
h is equivalent to �Y is independent of X�, at level α = 5%. Let (Xi)16i6p be a 
olle
tionof p Gaussian variables with unit varian
e. The random variable is de�ned as follows: Y =∑p

i=1 θiXi + ε where ε is a zero mean gaussian variable with varian
e 1 − ‖θ‖2 independent of
X . We 
onsider two simulation experiments des
ribed below.1. First simulation experiment: The 
orrelation between Xi and Xj is a 
onstant c for any

i 6= j. Besides, in this experiment the parameter θ is 
hosen su
h that only one of its
omponents is possibly non zero. This 
orresponds to the situation 
onsidered in Se
tion4. First, the number of 
ovariates p is �xed equal to 30 and the number of observations nis taken equal to 10 and 15. We 
hoose for c three di�erent values 0, 0.1, and 0.8, allowingthus to 
ompare the pro
edure for independent, weakly and highly 
orrelated 
ovariates.We estimate the level of the test by taking θ1 = 0 and the power by taking for θ1 the values
0.8 and 0.9. Theses 
hoi
es of θ lead to a small and a large signal/noise ratio rs/n de�nedin (5) and equal in this experiment to θ21/(1 − θ21). Se
ond, we examine the behavior ofthe tests when p in
reases and when the 
ovariates are highly 
orrelated: p equals 100 and
500, n equals 10 and 15, θ1 is set to 0 and 0.8, and c is 
hosen to be 0.8.18



2. Se
ond simulation experiment: The 
ovariates (Xi)16i6p are independent. The numberof 
ovariates p equals 500 and the number of observations n equals 50 and 100. We setfor any i ∈ {1, . . . , p}, θi = Ri−s. We estimate the level of the test by taking R =
0 and the power by taking for (R, s) the value (0.2, 0.5), whi
h 
orresponds to a slowde
rease of the (θi)16i6p. It was pointed out in the beginning of Se
tion 5 that |θi|2 equalsvar(Y |Xmi−1) − var(Y |Xmi). Thus, |θi|2 represents the bene�t in term of 
onditionalvarian
e brought by the variable Xi.We use our testing pro
edure de�ned in (7) with di�erent 
olle
tions M and di�erent 
hoi
esfo the weights {αm,m ∈ M}.The 
olle
tions M: we de�ne three 
lasses. Let us set Jn,p = p ∧ [n2 ], where [x] denotes theinteger part of x and let us de�ne:

M1 := {i, 1 6 i 6 p}
M2 := {mk = (1, 2, . . . , k), 1 6 k 6 Jn,p}}
M3 := {mk = (1, 2, . . . , k), k ∈ {2j, j ≥ 0} ∩ {1, . . . , Jn,p}}We evaluate the performan
e of our testing pro
edure with M = M1 in the �rst simulationexperiment, and M = M2 and M3 in the se
ond simulation experiment. The 
ardinalityof these three 
olle
tions is smaller than p, and the 
omputational 
omplexity of the testingpro
edures is at most linear in p.The 
olle
tions {αm,m ∈ M}: We 
onsider Pro
edures P1 and P2 de�ned in se
tion 2. Whenwe are using the pro
edure P1, the αm's equal α/|M| where |M| denotes the 
ardinality of the
olle
tion M . The quantity qX,α that o

urs in the pro
edure P2 is 
omputed by simulation.We use 1000 simulations for the estimation of qX,α. In the sequel we note TMi,Pj

the test (7)with 
olle
tion Mi and Pro
edure Pj .In the �rst experiment, when p is large we also 
onsider two other tests:1. The test φ{1},α (10) of the hypothesis θ1 = 0 against the alternative θ1 6= 0. This test
orresponds to the single test when we know whi
h 
oordinate is non zero.2. The test φ{2},α of θ2 = 0 against θ2 6= 0. This test 
orresponds to a single test wherethe model under the alternative is wrong. Adapting the proof of Proposition 7, we knowthat this test is approximately minimax on Θ[1, p] if the 
orrelation between the 
ovariatesis 
onstant and large. There is nothing spe
ial about the number 2, we 
ould use any ibetween 2 and p.Contrary to our pro
edures, these two tests are based on a deep knowledge of θ or var(X). Weonly use them as a ben
hmark to evaluate the performan
e of our pro
edure. We aim at showingthat our test with Pro
edure P2 is more powerful than φ{2},α and is 
lose to the test φ{1},α.We estimate the level and the power of the testing pro
edures with 1000 simulations. Forea
h simulation, we simulate the gaussian ve
tor (X1, . . . , Xp) and then simulate the variable Yas des
ribed in the two simulation experiments.6.2 Results of the simulationThe results of the �rst simulation experiment for c = 0 are given in Table 1. As expe
ted, thepower of the tests in
reases with the number of observations n and with the signal/noise ratio19



Null hypothesis is true, θ1 = 0

n TM1,P1
TM1,P210 0.043 0.04515 0.044 0.049Null hypothesis is false

θ1 = 0.8, rs/n = 1.78
n TM1,P1

TM1,P210 0.48 0.4815 0.81 0.81 θ1 = 0.9, rs/n = 4.26
n TM1,P1

TM1,P210 0.86 0.8615 0.99 0.99Table 1: First simulation study, independent 
ase: p = 30, c = 0. Per
entages of reje
tion andvalue of the signal/noise ratio rs/n.
rs/n. If the signal/noise ratio is large enough, we obtain powerful tests even if the number of
ovariates p is larger than the number of obervations.In Table 2 we present results of the �rst simulation experiment for θ1 = 0.8 when c varies.Let us �rst 
ompare the results for independent, weakly and highly 
orrelated 
ovariates whenusing Pro
edure P1. The level and the power of the test for weakly 
orrelated 
ovariates aresimilar to the level and the power obtained in the independent 
ase. Hen
e, we re
over theremark following Proposition 6: when the 
orrelation 
oe�
ient between the 
ovariates is small,the minimax rate is of the same order as in the independent 
ase. The test for highly 
orrelated
ovariates is more powerful than the test for independent 
ovariates, re
overing thus the remarkfollowing Theorem 5: the worst 
ase from a minimax rate perspe
tive is the 
ase where the 
o-variates are independent. Let us now 
ompare Pro
edures P1 and P2. In the 
ase of independentor weakly 
orrelated 
ovariates, they give similar results. For highly 
orrelated 
ovariates, thepower of TM1,P2

is mu
h larger than the one of TM1,P1
.In Table 3 we present results of the multiple testing pro
edure and of the two tests φ{1},α and

φ{2},α when c = 0.8 and the number of 
ovariates p is large. For p = 500 and n = 15, one testtakes less than one se
ond with Pro
edure P1 and less than 30 se
onds with Pro
edure P2. Asexpe
ted, be
ause the 
olle
tion of models M1 depends on p, Pro
edure P1 is too 
onservativewhen p in
reases. For p = 100, the power of the test based on Pro
edure P1 is similar to thepower of the test φ{2},α, while when p is larger, TM1,P1
is less powerful than φ{2},α. Pro
edure

P2 is therefore re
ommanded in 
ase of a large number of highly 
orrelated 
ovariates. The testbased on Pro
edure P2 is indeed more powerful than φ{2},α, and its power is 
lose to the oneof φ{1},α. We re
all that this last test is based on the knowledge of the non-zero 
omponent of
θ 
ontrary to ours. In pra
ti
e, we advise to use Pro
edure P2 if the number of 
ovariates p islarge, as Pro
edure P1 be
omes too 
onservative, espe
ially if the 
ovariates are 
orrelated.The results of the se
ond simulation experiment are given in Table 4. As expe
ted, Pro
edure
P2 improves the power of the test and the test TM3,P2

has the greatest power. In this setting,one should prefer the 
olle
tion M3 to M2. This was previously pointed out in Se
tion 5 from atheoreti
al point of view. Although TM3,P1
is 
onservative, it is a good 
ompromise for pra
ti
alissues: it is very easy and fast to implement and its performan
es are good.

20



Null hypothesis is true, θ1 = 0

c = 0
n TM1,P1

TM1,P210 0.043 0.04515 0.044 0.049 c = 0.1
n TM1,P1

TM1,P210 0.042 0.0415 0.058 0.06
c = 0.8

n TM1,P1
TM1,P210 0.018 0.04515 0.019 0.052 Null hypothesis is false, θ1 = 0.8

c = 0
n TM1,P1

TM1,P210 0.48 0.4815 0.81 0.81 c = 0.1
n TM1,P1

TM1,P210 0.49 0.4915 0.81 0.82
c = 0.8

n TM1,P1
TM1,P210 0.64 0.7715 0.89 0.94Table 2: First simulation study, independent and dependent 
ase. p = 30 Per
entages of reje
tion.

Null hypothesis is true, θ1 = 0

p = 100
n TM1,P1

TM1,P2
φ{1},α φ{2},α10 0.01 0.056 0.051 0.05015 0.016 0.053 0.047 0.050 p = 500

n TM1,P1
TM1,P2

φ{1},α φ{2},α10 0.009 0.044 0.040 0.04315 0.011 0.040 0.042 0.039Null hypothesis is false, θ1 = 0.8

p = 100
n TM1,P1

TM1,P2
φ{1},α φ{2},α10 0.60 0.77 0.91 0.6215 0.85 0.92 0.99 0.82 p = 500

n TM1,P1
TM1,P2

φ{1},α φ{2},α10 0.52 0.76 0.91 0.6315 0.77 0.94 0.99 0.83Table 3: First simulation study, dependent 
ase: c = 0.8. Per
entages of reje
tion.
21



Null hypothesis is true, R = 0

n TM2,P1
TM2,P2

TM3,P1
TM3,P250 0.013 0.052 0.036 0.059100 0.009 0.059 0.042 0.059Null hypothesis is false, R = 0.2, s = 0.5

n TM2,P1
TM2,P2

TM3,P1
TM3,P250 0.17 0.33 0.31 0.38100 0.42 0.66 0.62 0.69Table 4: Se
ond simulation study. Per
entages of reje
tion.7 Proofs of Theorem 1, Proposition 3, 7, 9, 10, and 127.1 Proof of Theorem 1This proof follows the same approa
h as the proof of Theorem 1 in Baraud et al. (2003). Themain di�eren
es and di�
ulties 
ome from the fa
t that the design is now random.Using the de�nition of Tα, we noti
e that Pθ(Tα ≤ 0) ≤ infm∈M Pθ(m) where

Pθ(m) = Pθ

(
Nm‖ΠV ∪mY − ΠVY‖2

n

Dm‖Y − ΠV ∪mY‖2
n

≤ F
−1

Dm,Nm
(αm)

)
. (33)First, we derive the distribution of the test statisti
 φm(X,Y) under Pθ, then we give an upperbound for Pθ(m) and �nally we shall gather the results in order to �nd a subset of R

I over whi
hthe power of Tα is larger than δ.The distribution of Y 
onditionally to the set of variables (XV ∪m) is of the form
Y =

∑

i∈V ∪m
θV ∪m
i Xi + ǫV ∪m, (34)where the ve
tor θV ∪m is a 
onstant and ǫV ∪m is a zero mean gaussian variable independentof XV ∪m, whose varian
e is var(Y |XV ∪m). As a 
onsequen
e, ‖Y − ΠV ∪mY‖2

n is exa
tly
‖Π(V ∪m)⊥ǫ

V ∪m‖2
n, where Π(V ∪m)⊥ denotes the orthogonal proje
tion along the spa
e gener-ated by (Xi)i∈V ∪m.Using the same de
omposition of Y one simpli�es the numerator of φm(X,Y):

‖ΠV ∪mY − ΠVY‖2
n =

∥∥∥∥∥
∑

i∈V ∪m
θV ∪m
i (Xi − ΠVXi) + ΠV ⊥∩(V ∪m)ǫ

V ∪m

∥∥∥∥∥

2

n

,where ΠV ⊥∩(V ∪m) is the orthogonal proje
tion onto the interse
tion between the spa
e generatedby (Xi)i∈V ∪m and the orthogonal of the spa
e generated by (Xi)i∈V .For any i ∈ m, let us 
onsider the 
onditional distribution of Xi with respe
t to XV ,
Xi =

∑

j∈V
θV,ij Xj + ǫ

V
i . (35)22



where θV,ij are 
onstants and ǫ
V
i is a zero-mean normal gaussian random variable whose varian
eis var(Xi|XV ) and whi
h is independent of XV . This enables us to express

Xi − ΠVXi = ΠV ⊥∩(V ∪m)ǫ
V
i , for all i ∈ m .Therefore, we de
ompose φm(X,Y) in

φm(X,Y) =
Nm‖ΠV ⊥∩(V ∪m)

(∑
i∈m θ

V ∪m
i ǫ

V
i + ǫ

V ∪m) ‖2
n

Dm‖Π(V ∪m)⊥ǫ
V ∪m‖2

n

. (36)Let us de�ne the random variable Z(1)
m and Z

(2)
m where Z(1)

m refers to the numerator of (36)divided by Nm and Z(2)
m to the denominator divided by Dm. We now prove that Z(1)

m and Z(2)
mare independent.The variables (ǫVj )j∈m are σ (XV ∪m)-measurable as linear 
ombinations of elements in XV ∪m.Moreover, ǫV ∪m follows a zero mean normal distribution with 
ovarian
e matrix var(Y |XV ∪m)Inand is independent of XV ∪m. As a 
onsequen
e, 
onditionally to XV ∪m, Z(1)

m and Z(2)
m are inde-pendent by Co
hran's Theorem as they 
orrespond to proje
tions onto two sets orthogonal fromea
h other. Additionally, Z(2)

m is independent of XV ∪m. Indeed, almost surely 
onditionally to
XV ∪m, Z(2)

m /var(Y |XV ∪m) follows a χ2 distribution with Nm degrees of freedom. This distribu-tion does not depend on XV ∪m. As Z(1)
m and Z(2)

m are independent 
onditionally to XV ∪m andas Z(2)
m is independent of XV ∪m, Z(1)

m and Z(2)
m are independent.As ǫ

V
j is a linear 
ombination of the 
olumns of XV ∪m, Z(1)

m follows a non-
entral χ2 distri-bution 
onditionally to XV ∪m:
(Z(1)

m |XV ∪m) ∼ var(Y |XV ∪m)χ2





∥∥∥
∑
j∈m θ

V ∪m
j Π(V ∪m)∩V ⊥ǫ

V
j

∥∥∥
2

nvar(Y |XV ∪m)
, Dm



 .Let us derive the distribution of the non-
entral parameter. First, we simplify the proje
tionterm as ǫ
V
j is a linear 
ombinations of elements of XV ∪m.

Π(V ∪m)∩V ⊥ǫ
V
j = ΠV ∪mǫ

V
j − ΠV ǫ

V
j = ΠV ⊥ǫ

V
j .Let us de�ne κ2

m as
κ2
m :=

var(∑j∈m θ
V ∪m
j ǫVj

)var(Y |XV ∪m)
.As the variable ∑j∈m θ

V ∪m
j ǫ

V
j is independent of XV , and as almost surely the dimension ofthe ve
tor spa
e generated by XV is d, we are able to derive the distribution of the non-
entralparameter:

∥∥∥
∑

j∈m θ
V
j ΠV ⊥ǫ

V
j

∥∥∥
2

nvar(Y |XV ∪m)
∼ κ2

mχ
2(n− d).To sum up, let us express simply the distribution of Z(1)

m . Let U, V and W be three independentrandom variables whi
h respe
tively follow a χ2 distribution with n − d degrees of freedom, a23



standard normal distribution and a χ2 distribution with Dm − 1 degrees of freedom. Then,
Z(1)
m ∼ var(Y |XV ∪m)

[(
κm

√
U + V

)2

+W

]
. (37)In fa
t, κ2

m easily simpli�es in a quotient of 
onditional varian
es. Let us �rst express var(Y |XV )in term of var(Y |Xm∪V ) using the de
omposition (34) of Y .var(Y |XV ) = var ∑

j∈V ∪m
θV ∪m
j Xj + ǫV ∪m |XV





= var ∑

j∈V ∪m
θV ∪m
j Xj |XV



+ var (ǫV ∪m |XV

)

= var ∑

j∈V ∪m
θV ∪m
j Xj |XV



+ var (Y |XV ∪m ) , (38)as ǫV ∪m is independent of XV ∪m. Now using the de�nition of ǫVj in (35), it turns out thatvar ∑

j∈V ∪m
θV ∪m
j Xj |XV



 = var∑
j∈m

θV ∪m
j Xj |XV





= var∑
j∈m

θV ∪m
j ǫVj |XV





= var∑
j∈m

θV ∪m
j ǫVj



 , (39)as the (ǫVj )j∈m are independent of XV . Gathering formulae (38) and (39), we get
κ2
m =

var(Y |XV ) − var(Y |XV ∪m)var(Y |XV ∪m)
. (40)As we know the distribution of φm(X,Y) under the distribution Pθ, we are now in positionto work out pre
ise upper bounds for Pθ(m).

Pθ(m) = Pθ

(
Nm
Dm

Z(1)
m ≤ F

−1

Dm,Nm
(αm)Z(2)

m

)

= Pθ

(
1var(Y |XV ∪m)

(
Dm

Nm
F

−1

Dm,Nm
(αm)Z(2)

m − Z(1)
m

)
≥ 0

)
. (41)Let us 
all Zm the random variable de�ned by

Zm :=
1var(Y |XV ∪m)

(
Dm

Nm
F

−1

Dm,Nm
(αm)Z(2)

m − Z(1)
m

)
.It is possible to 
ontrol the quantity Pθ(m) by bounding the deviations of Zm.24



Lemma 15. For any x > 0, the random variable Zm de�ned above satis�es the inequality:
Pθ(Zm − E(Zm) ≥ cmx+ 2

√
vmx) ≤ exp (−x) , (42)where cm and vm refer to:

cm :=
2Dm

Nm
F

−1

Dm,Nm
(αm),

vm := Dm + (n− d)
(
2κ2

m + κ4
m

)
+
D2
m

Nm

(
F

−1

Dm,Nm
(αm)

)2

.We now apply this lemma 
hoosing x = L,
Pθ

(
Zm ≥ E(Zm) + cmL+ 2

√
vmL

)
≤ δ.Therefore, Pθ(Tα ≤ 0) ≤ δ if for some m ∈ M,

E(Zm) + cmL+ 2
√
vmL ≤ 0. (43)It is straightforward to 
ompute the expe
tation of Zm:

E(Zm) = −κ2
m(n− d) −Dm +DmF

−1

Dm,Nm
(αm).Using this last equality, 
ondition (43) is equivalent to the following inequality:

κ2
m(n− d) ≥ Dm

(
F

−1

Dm,Nm
(αm) − 1

)
+ cmL+ 2

√
Lvm. (44)Thanks to the de�nition of vm in Lemma 15, we now bound the term 2

√
Lvm. If κ2

m ≥ 2, then
2
√
Lvm ≤ 2

√
LDm + 2κ2

m

√
2L(n− d) + 2F

−1

Dm,Nm
(αm)Dm

√
L

Nm
.On the other hand, if κ2

m ≤ 2, we obtain an alternative upper bound using the inequality
2uv ≤ 4u2 + v2/4,

2
√
Lvm ≤ 2

√
LDm + (n− d)κ2

m/2 + 8L+ 2F
−1

Dm,Nm
(αm)Dm

√
L

Nm
.Gathering these two inequalities, whatever the value of κ2

m,
2
√
Lvm ≤ 2

√
LDm + (n− d)κ2

m

(
1/2 ∨ 2

√
2L

n− d

)
+ 2F

−1

Dm,Nm
(αm)Dm

√
L

Nm
+ 8L. (45)Combining the upper bound (45) with 
ondition (44) enables to give a 
ondition in term of κ2

m.Indeed, Pθ(m) ≤ δ if
κ2
m ≥

Dm

Nm
F

−1

Dm,Nm
(αm)

[
Nm + 2

√
NmL+ 2L

]
+ 2

√
DmL−Dm + 8L

(n− d)
(
1 −

(
1
2 ∨ 2

√
2L
n−d

)) . (46)To bound F−1

Dm,Nm
(αm), we use Lemma 1 in Baraud et al. (2003):25



Lemma 16. Let u ∈]0, 1[ and F−1

D,N (u) be the 1 − u quantile of a Fisher random variable with
D and N degrees of freedom. Then we have

DF
−1

D,N (u) ≤ D + 2

√

D

(
1 +

D

N

)
log

(
1

u

)

+

(
1 + 2

D

N

)
N

2

[
exp

(
4

N
log

(
1

u

))
− 1

]
. (47)Gathering inequalities (46) and (47), Pθ(m) ≤ δ if

κ2
m ≥ A+B

(n− d)
(
1 −

(
1
2 ∨ 2

√
2L
n−d

)) , (48)where
A := 2

√

Dm

(
1 +

Dm

Nm

)
log

(
1

αm

)[
1 + 2

√
L

Nm
+ 2

L

Nm

]
+ 2Dm

[√
L

Nm
+

L

Nm

]
+ 2
√
DmL,

B :=

(
1 + 2

Dm

Nm

)
Nm
2

[
exp

(
4

N
log

(
1

αm

))
− 1

](
1 + 2

√
L

Nm
+ 2

L

Nm

)
+ 8L.By fa
torizing and bounding the last two terms of A, we get

2Dm

[√
L

Nm
+

L

Nm

]
+ 2
√
DmL = 2

√
DmL

(
1 +

√
Dm

Nm
+

√
Dm

Nm

√
L

Nm

)

≤ 2
√
DmL

[
1 +

√
Dm

Nm

][
1 + 2

√
L

Nm
+ 2

L

Nm

]
.It follows that

A ≤ 2
√
Dm

(
1 +

√
Dm

Nm

)(
1 + 2

√
L

Nm
+ 2

L

Nm

)[√
L+

√
Lm

]

≤ 4
√
Dmlm

(
1 +

√
Dm

Nm

)[√

log

(
1

αmδ

)]
. (49)Using the inequality exp(u) − 1 ≤ u exp(u) whi
h holds for all u > 0, we derive that

B ≤ 2

(
1 + 2

Dm

Nm

)
log

(
1

αm

)
exp

[
4

Nm
log

(
1

αm

)][
1 + 2

√
L

Nm
+ 2

L

Nm

]
+ 8L

≤ log

(
1

αmδ

)(
8 ∨ kmlm

(
1 +

2Dm

Nm

))
. (50)Combining inequalities (48), (49), and (50) we obtain the 
ondition (12). Under assumption

HM, Lm ≤ Nm/10 for all m ∈ M and L ≤ Nm/21. The terms L/Nm, Lm/Nm, km, and lm arebounded by a 
onstant and the se
ond part of the theorem follows easily.26



7.2 Proof of Lemma 15We prove this deviation inequality thanks to Lapla
e method. First of all, one has to upperbound the Lapla
e transform of the variable
Zm ∼ Dm

Nm
F

−1

Dm,Nm
(αm)T −

(
(κm

√
U + V )2 +W

)
,where we re
all that T , U , V , andW are independent random variables whi
h follow respe
tivelya χ2 distribution with Nm degrees of freedom, a χ2 distribution with n− d degrees of freedom,a standard normal distribution and a χ2 distribution with Dm − 1 degree of freedom. To keepthe formulae as short as possible, λm will refer to Dm

Nm
F

−1

Dm,Nm
(αm).

E

[
exp

(
−t
(
κm

√
U + V

)2
)]

=

∫
exp

(
−t (κm‖x‖n−d + y)

2
) 1

(2π)(n−d+1)/2
exp

(
−
‖x‖2

n−d − y2

2

)
dxdy

=
1√

1 + 2t

[
1 + 2t

1 + 2t[κ2
m + 1]

](n−d)/2
,by standard Gaussian 
omputation. After multipli
ation by the Lapla
e transform of Dm

Nm
F

−1

Dm,Nm
(αm)Tand W , we get:

E [exp (tZm)] =
(1 + 2t)Nm/2

(1 + 2t[κ2
m + 1])(n−d)/2 (1 − 2tλm)

Nm/2
.Clearly, the expe
tation of Zm is

E(Zm) = λmNm − (κ2
m(n− d) +Dm).One then obtains Ψm(t) the log-Lapla
e transform of Zm − E(Zm):

Ψm(t) =
Nm
2

log

(
1 + 2t

1 − 2tλm

)
− n− d

2
log
(
1 + 2t[κ2

m + 1]
)
− tE(Zm)

= −Dm

2
log(1 + 2t) − n− d

2
log

(
1 +

2tκ2
m

1 + 2t

)
− Nm

2
log(1 − 2tλm) − tE(Zm).Using the inequality log(1+u) ≥ u−u2/2 whi
h holds for all u > 0, we derive that for any t ≥ 0,

Ψm(t) ≤ Dmt
2 + (n− d)

[
− tκ2

m

1 + 2t
+ tκ2

m +
t2κ4

m

(1 + 2t)2

]
− Nm

2
log(1 − 2tλm) − tλmNm

≤ Dmt
2 + (n− d)

[
2t2κ2

m

1 + 2t
+

t2κ4
m

(1 + 2t)2

]
− Nm

2
log(1 − 2tλm) − tλmNm

≤ t2
[
Dm + (n− d)(2κ2

m + κ4
m)
]
− Nm

2
log(1 − 2tλm) − tλmNm.For any 0 ≤ u ≤ 1/2, it holds that −u− 1/2 log(1 − 2u) ≤ u2

1−2u (
ompare the power series).As a 
onsequen
e, for any 0 ≤ t ≤ λm

2 ,
Ψm(t) ≤ t2

[
Dm + (n− d)(2κ2

m + κ4
m)
]
+Nm

λ2
mt

2

1 − 2tλm

≤ t2

1 − 2λmt

(
Dm + (n− d)(2κ2

m + κ4
m) +Nmλ

2
m

)
. (51)27



We now refer to Birgé and Massart (1998), where it is proved that if
log
(
E
[
etZ
])

≤ vt2

2(1 − ct)
,then for any positive x,

P

(
Z ≥ cx+

√
2vx

)
≤ e−x.Applying this property to the upper bound (51) and repla
ing λm by its value enable to prove(42).7.3 Proof of Proposition 3We �rst re
all the 
lassi
al upper bound for the binomial 
oe�
ient (see for instan
e (2.9) inMassart (2007)).

log |M(k, p)| = log (pk) ≤ k log
(ep
k

)
.As a 
onsequen
e, log(1/αm) ≤ log(1/α) + k log

(
ep
k

). The assumption on n in Proposition 3therefore implies hypothesis HM applied to this 
lass of models. Thus, we are in position toapply the se
ond result of Theorem 1. Moreover, the assumption on n implies that n ≥ 11k and
Dm/Nm is thus smaller than 1/10 for any model m in M(k, p). Formula (13) in Theorem 1 thentranslates into

△(m) ≤
(1 +

√
0.1)C1

(√
k2 log

(
ep
k

)
+
√
k log

(
1
αδ

))
+ 1.2C2

(
k log

(
ep
k

)
+ log

(
1
αδ

))

n
,and it follows that Proposition 3 holds.7.4 Proof of Proposition 7We �x the 
onstant C5 to be 10∨ 2C′

4 where C′
4 is de�ned below and C6 to be 21. This 
hoi
e of
onstants allows the pro
edure Tα to satisfy Hypothesis HM. An argument similar to the proofof Proposition 3 allows to show easily that there exists a universal 
onstant C′

3 su
h that if weset
ρ′21 =

C′
3

(
log(p) + log

(
2
αδ

))

n
=
C′

3

n
log

(
2p

αδ

)
, (52)then ‖θ‖2var(Y )−‖θ‖2 ≥ ρ′21 implies that Pθ (Tα > 0) ≥ 1 − δ. Here, the fa
tor 2 in the logarithm
omes from the fa
t that some weights αm equal α/(2p).Let ρ2 and λ2 be two positive numbers su
h that λ2var(Y )−λ2 = ρ2 and let θ ∈ Θ[1, p] su
hthat ‖θ‖2 = λ2. As 
orr(X1, Xi) = c for any i in {2 . . . p},var(Y ) − var(Y |X1)var(Y |X1)

≥ cλ2var(Y ) − cλ2
.We now apply Theorem 1 to φ{1},α/2 under HM. There exists a universal 
onstant C′

4 su
h that
Pθ

(
φ{1},α/2 > 0

)
≥ 1 − δ if

cλ2var(Y ) − cλ2
≥ C′

4

n
log

(
2

αδ

)
.28



This last 
ondition is equivalent to
λ2var(Y )

≥ C′
4

nc+ cC′
4 log

(
2
αδ

) log

(
2

αδ

)
. (53)Let us assume that c ≥ log

(
2
αδ

)
/ log

(
2p
αδ

). As n ≥ 2C′
4 log

(
2p
αδ

) (hypothesis (20) and de�nitionof C5), nc ≥ 2C′
4 log

(
2
αδ

). As a 
onsequen
e, 
ondition (53) is implied by:
ρ2 ≥ 2C′

4

nc
log

(
2

αδ

)
. (54)Let us de�ne C7 as the supremum of C′

3 and 2C′
4. Combining (52) and (54) allows to 
on
ludethat Pθ (Tα > 0) ≥ 1 − δ if

ρ2 ≥ C7

n

(
log

(
2p

αδ

)∧ 1

c
log

(
2

αδ

))
.If c is smaller than log

(
2
αδ

)
/ log

(
2p
αδ

), this last result also holds by (52).7.5 Proof of Proposition 9First, we have to 
he
k that the test Tα satis�es 
ondition HM. As the dimension of ea
h modelis smaller than n/2, for any model m in M, Nm is larger than n/2. Moreover, for any model
m in M, αm is larger than α/(2|M|) and |M| is smaller than n/2. As a 
onsequen
e, the �rst
ondition of HM is implied by the inequality:

n ≥ 20 log
(n
α

)
. (55)Hypothesis (24) implies that n/2 ≥ 20 log

(
40
α

). Besides, for any n > 0 it holds that n/2 ≥
20 log

(
n
40

). Combining these two lower bounds enables to obtain (55). The se
ond 
ondition of
HM holds if n ≥ 42 log

(
1
δ

) whi
h is a 
onsequen
e of hypothesis (24).Let us �rst 
onsider the 
ase n < 2p. Let us apply Theorem 1 under hypothesis HM to Tα.
Pθ (Tα > 0) ≥ 1 − δ for all θ ∈ Θ su
h that

∃i ∈ {1, . . . , [n/2]}, var(Y ) − var (Y |Xmi)var (Y |Xmi)
≥ C′

5

√
i log

(
[n/2]
αδ

)
+ log

(
[n/2]
αδ

)

n
, (56)where C′

5 is universal 
onstant (equals 2C1 ∨ 4C2).Let θ be an element of Ea(R) whi
h satis�es
‖θ‖2 ≥ (1 + C′

5) (var(Y |Xmi) − var(Y |X)) + (1 + C′
5)var(Y |X)

√
i log

(
[n/2]
αδ

)
+ log

(
[n/2]
αδ

)

n
.Using hypothesis (24), we show that, for any i between 1 and [n/2], q

i log( [n/2]
αδ )+log

“
[n/2]

αδ

”

n ≤ 1.It is then straighforward to 
he
k that θ satis�es (56).29



As θ belongs to the set Ea(R),var(Y |Xmi) − var(Y |X) = a2
i+1var(Y |X)

p∑

j=i+1

var(Y |Xmj−1) − var(Y |Xmj )

a2
i+1var(Y |X)

≤ a2
i+1var(Y |X)R2.As a 
onsequen
e if θ belong to Ea(R) and sati�es

‖θ‖2 ≥ (1 + C′
5)var(Y |X)







a
2
i+1R

2 +

√
i log

(
[n/2]
αδ

)

n



+
1

n
log

(
[n/2]

αδ

)


 , (57)then Pθ(Tα ≤ 0) ≤ δ. Gathering this 
ondition for any i between 1 and [n/2] allows to 
on
ludethat if θ sati�es
‖θ‖2var(Y ) − ‖θ‖2

≥ (1 + C′
5)



 inf
1≤i≤[n/2]



a
2
i+1R

2 +

√
i log

(
n/2
αδ

)

n



+
1

n
log

(
n/2

αδ

)


 , (58)then Pθ(Tα ≤ 0) ≤ δ.Let us now turn to the 
ase n ≥ 2p. Let us 
onsider Tα as the supremum of p − 1 tests oflevel α/2(p− 1) and one test of level α/2. By 
onsidering the p− 1 �rsts tests, we obtain as inthe previous 
ase that Pθ(Tα ≤ 0) ≤ δ if
‖θ‖2var(Y ) − ‖θ‖2

≥ (1 + C′
5)



 inf
1≤i≤(p−1)



a
2
i+1R

2 +

√
i log

(
(p−1)/2
αδ

)

n



+
1

n
log

(
(p− 1)/2

αδ

)


 .On the other hand, using the last test statisti
 φI,α/2, Pθ(Tα ≤ 0) ≤ δ if
‖θ‖2var(Y ) − ‖θ‖2

≥ C′
5

√
p log

(
2
αδ

)
+ log

(
2
αδ

)

n
.Gathering these two 
onditions allows to prove (26).7.6 Proof of Proposition 10The approa
h behind this proof is similar to the one for Proposition 9. First, we 
he
k that our
lass of models M and weights αm satisfy hypothesis HM as in the previous proof.Let us give a sharper upper bound on |M|:

|M| ≤ 1 + log(n/2 ∧ p)/ log(2) ≤ log(n ∧ 2p)/ log(2). (59)We dedu
e from (59) that there exists a 
onstant C(α, δ) only depending on α and δ su
h thatfor all m ∈ M,
log

(
1

αmδ

)
≤ C(α, δ) log log(n ∧ p).30



First, let us 
onsider the 
ase n < 2p. We apply Theorem 1 under the assumption HM. Asin the proof of Proposition 9, we obtain that Pθ(Tα > 0) ≥ 1 − δ if
‖θ‖2var(Y ) − ‖θ‖2

≥ C′(α, δ)

[
inf

i∈{2j ,j≥0}∩{1,...,[n/2]}

(
R2(i+ 1)−2s +

√
i log logn

n

)
+

log logn

n

]
,where C′(α, δ) is a 
onstant whi
h only depends on α and δ. It is worth noting that R2i−2s ≤√

i log logn
n if and only if

i ≥ i∗ =

(
R2n√

log logn

)2/(1+4s)Under the assumption on R, i∗ is larger than one. Let us distinguish between two 
ases. If thereexists i′ in {2j, j ≥ 0} ∩ {1, . . . , [n/2]} su
h that i∗ ≤ i′, one 
an take i′ ≤ 2i∗ and then
inf

i∈{2j ,j≥0}∩{1,...,[n/2]}

(
R2i−2s +

√
i log logn

n

)
≤ 2

√
i′ log logn

n

≤ 2
√

2R2/(1+4s)

(√
log logn

n

)4s/(1+4s)

.(60)Else, we take i′ ∈ {2j, j ≥ 0} ∩ {1, . . . , [n/2]} su
h that n/4 ≤ i′ ≤ n/2. Sin
e i′ ≤ (i∗ ∧ n/2) weobtain that
inf

i∈{2j ,j≥0}∩{1,...,[n/2]}

(
R2i−2s +

√
i log logn

n

)
≤ 2R2i′−2s ≤ 2R2

(n
2

)−2s

. (61)Gathering inequalities (60) and (61) allows to prove (28).We now turn to the 
ase n ≥ 2p. As in the proof of Proposition 9, we divide the proof intotwo parts: �rst we give an upper bound of the power for the |M| − 1 �rst tests whi
h de�ne
Tα and then we give an upper bound for the last test φI,α/2. Combining these two inequalitiesallows us to prove (29).7.7 Proof of Proposition 12We �rst note that the assumption about R2 implies that D∗ ≥ 2. As Nm is larger than n/2, it isstraightforward to show that this test satis�es 
ondition HM. As a 
onsequen
e, we 
an applythe se
ond part of Theorem 1. Pθ(T

∗
α ≤ 0) ≤ δ for any θ su
h thatvar(Y ) − var(Y |XmD∗ )var(Y |XmD∗ )

≥ C′
2(α, δ)

√
D∗

n
, (62)where C′

2(α, δ) only depends on α and δ. Now, we use the same sket
h as in the proof ofProposition 9. For any θ ∈ Ea(R), 
ondition (62) is equivalent to:
‖θ‖2 ≥ (var(Y |XmD∗ ) − var(Y |X))

(
1 + C′

2(α, δ)

√
D∗

n

)
+ var(Y |X)C′

2(α, δ)

√
D∗

n
. (63)31



Moreover, as θ belongs to Ea(R),var(Y |XmD∗ ) − var(Y |X) ≤ a2
D∗+1R

2var(Y |X) ≤ a2
D∗var(Y |X)R2.As √D∗/n is smaller than one, 
ondition (63) is implied by

‖θ‖2var(Y ) − ‖θ‖2
≥ (1 + C′

2(α, δ))

(
a2
D∗R2 +

√
D∗

n

)
.As a2

D∗R2 is smaller than √
D∗

n whi
h is smaller sup1≤i≤p

[√
i
n ∧ a2

iR
2
], it turns out that Pθ(T

∗
α =

0) ≤ δ for any θ belonging to Ea(R) su
h that
‖θ‖2var(Y ) − ‖θ‖2

≥ 2(1 + C′
2(α, δ)) sup

1≤i≤p

[√
i

n
∧ a2

iR
2

]
.8 Proofs of Theorem 5, Proposition 2, 4, 6, 8, 11, 13, and148.1 Proof of Theorem 5This proof follows the general method for obtaining lower bounds des
ribed in Se
tion 7.1 inBaraud (2002). We �rst remind the reader of the main arguments of the approa
h applied toour model. Let ρ be some positive number and µρ be some probability measure on

Θ[k, p, ρ] =

{
θ ∈ Θ[k, p],

‖θ‖2var(Y ) − ‖θ‖2
= ρ

}
.We de�ne Pµρ =

∫
Pθdµρ(θ) and Φα the set of level-α tests of the hypothesis "θ = 0". Then,
βI(Θ[k, p, ρ]) ≥ inf

φα∈Φα

Pµρ [φα = 0]

≥ 1 − α− sup
A, P0(A)≤α

|Pµρ(A) − P0(A)|

≥ 1 − α− 1

2
‖Pµρ − P0‖TV , (64)where ‖Pµρ − P0‖TV denotes the total variation norm between the probabilities Pµρ and P0. Ifwe suppose that Pµρ is absolutely 
ontinuous with respe
t to P0, we 
an upper bound the normin total variation between these two probabilities as follows. We de�ne

Lµρ(Y,X) =
dPµρdP0

(Y,X).Then, we get the upper bound
‖Pµρ − P0‖TV =

∫
|Lµρ(Y,X) − 1|dP0(Y,X)

≤
(
E0

[
L2
µρ

(Y,X)
]
− 1
)1/2

.32



Thus, we dedu
e from (64) that
βI(Θ[k, p, ρ]) ≥ 1 − α− 1

2

(
E0

[
L2
µρ

(Y,X)
]
− 1
)1/2

.If we �nd a number ρ∗ = ρ∗(η) su
h that
log
(
E0

[
L2
µρ∗

(Y,X)
])

≤ L(η), (65)then for any ρ ≤ ρ∗,
βI(Θ[k, p, ρ]) ≥ 1 − α− η

2
= δ.To apply this method, we �rst have to de�ne a suitable prior µρ on Θ[k, p, ρ]. Let m̂ be somerandom variable uniformly distributed overM(k, p) and for ea
h m ∈ M(k, p), let ǫm = (ǫmj )j∈mbe a sequen
e of independent Radema
her random variables. We assume that for allm ∈ M(k, p),

ǫm and m̂ are independent. Let ρ be given and µρ be the distribution of the random variable
θ̂ =

∑
j∈ bm λǫ

bm
j ej where

λ2 :=
var(Y )ρ2

k(1 + ρ2)
,and where (ej)j∈I is the orthonormal family of ve
tors of R

I de�ned by
(ej)i = 1 if i = j and (ei)j = 0 otherwise.Straightforwardly, µρ is supported by Θ[k, p, ρ]. For anym inM(k, p) and any ve
tor (ζmj )j∈mwith values in {−1; 1}, let µm,ζm,ρ be the dira
 measure on∑j∈m λζ

m
j ej. For any m in M(k, p),

µm,ρ denotes the distribution of the random variable ∑j∈m λζ
m
j ej where (ζmj ) is a sequen
e ofindependent Radema
her random variables. These de�nitions easily imply

Lµρ(Y,X) =
1

(pk)

∑

m∈M(k,p)

Lµm,ρ(Y,X) =
1

2k (pk)

∑

m∈M(k,p)

∑

ζm∈{−1,1}k

Lµm,ζmρ
(Y,X).We aim at bounding the quantity E0(L

2
µρ

) and obtaining an inequality of the form (65). First,we work out Lµm,ζm,ρ
:

Lµm,ζm,ρ
(Y,X) =




(

1

1 − λ2kvar(Y )

)n/2
exp

(
−‖Y‖2

n

2

λ2kvar(Y )(var(Y ) − λ2k)

+ λ
∑

j∈m
ζmj

< Y,Xj >nvar(Y ) − λ2k
− λ2

∑

j,j′∈m
ζmj ζ

m
j′

< Xj ,Xj′ >n
2(var(Y ) − λ2k)







 , (66)where < . >n refers to the 
anoni
al inner produ
t in R
n.Let us �x m1 and m2 in M(k, p) and two ve
tors ζ1 and ζ2 respe
tively asso
iated to m1and m2. We aim at 
omputing the quantity E0

(
Lµm1,ζ1,ρ

(Y,X)Lµm2,ζ2,ρ
(Y,X)

). First, wede
ompose the set m1 ∪m2 into four sets (whi
h possibly are empty): m1 \m2, m2 \m1, m3,and m4, where m3 and m4 are de�ned by:
m3 =

{
j ∈ m1 ∩m2|ζ1

j = ζ2
j

}

m4 =
{
j ∈ m1 ∩m2|ζ1

j = −ζ2
j

}
.33



For the sake of simpli
ity, we reorder the elements of m1 ∪m2 from 1 to |m1 ∪m2| su
h thatthe �rst elements belong to m1 \m2, then to m2 \m1 and so on. Moreover, we de�ne the ve
tor
ζ ∈ R

|m1∪m2| su
h that ζj = ζ1
j if j ∈ m1 and ζj = ζ2

j if j ∈ m2 \m1. Using these notations, we
ompute the expe
tation of Lm1,ζ1,ρ(Y,X)Lm2,ζ2,ρ(Y,X).
E0

(
Lµm1,ζ1,ρ

(Y,X)Lµm2,ζ2,ρ
(Y,X)

)
=

(
1var(Y )(1 − λ2kvar(Y ) )

2

)n/2
|A|−n/2 , (67)where |.| refers to the determinant and A is a symmetri
 square matrix of size |m1∪m2|+1 su
hthat:

A[1, j] :=






var(Y )+λ2kvar(Y )(var(Y )−λ2k) if j = 1

− λζj−1var(Y )−λ2k if (j − 1) ∈ m1△m2

−2
λζj−1var(Y )−λ2k if (j − 1) ∈ m3

0 if (j − 1) ∈ m4 ,where m1△m2 refers to (m1 ∪m2) \ (m1 ∩m2). For any i > 1 and j > 1, A satis�es
A[i, j] :=






λ2 ζi−1ζj−1var(Y )−λ2k + δi,j if (i− 1, j − 1) ∈ (m1 \m2) ×m1

λ2 ζi−1ζj−1var(Y )−λ2k + δi,j if (i− 1, j − 1) ∈ (m2 \m1) × (m2 \m1 ∪m3)

−λ2 ζi−1ζj−1var(Y )−λ2k if (i− 1, j − 1) ∈ (m2 \m1) ×m4

2λ2 ζi−1ζj−1var(Y )−λ2k + δi,j if (i− 1, j − 1) ∈ [m3 ×m3] ∪ [m4 ×m4]

0 else, ,where δi,j is the indi
ator fun
tion of i = j.After some linear transformation on the lines of the matrix A, it is possible to express itsdeterminant into
|A| =

var(Y ) + λ2kvar(Y )(var(Y ) − λ2k)

∣∣I|m1∪m2| + C
∣∣ ,where I|m1∪m2| is the identity matrix of size |m1∪m2|. C is a symmetri
 matrix of size |m1∪m2|su
h that for any (i, j),

C[i, j] = ζiζjD[i, j]and D is a blo
k symmetri
 matrix de�ned by
D :=





λ4kvar2(Y )−λ4k2

−λ2var(Y )var2(Y )−λ4k2
−λ2var(Y )+λ2k

λ2var(Y )−λ2k
−λ2var(Y )var2(Y )−λ4k2

λ4kvar2(Y )−λ4k2
−λ2var(Y )+λ2k

−λ2var(Y )−λ2k
−λ2var(Y )+λ2k

−λ2var(Y )+λ2k
−2λ2var(Y )+λ2k 0

λ2var(Y )−λ2k
−λ2var(Y )−λ2k 0 2λ2var(Y )−λ2k




.Ea
h blo
k 
orresponds to one of the four previously de�ned subsets of m1 ∪m2 (i.e. m1 \m2,

m2 \ m1, m3, and m4). The matrix D is of rank at most four. By 
omputing its non-zeroeigenvalues, it is then straightforward to derive the determinant of A
|A| =

[var(Y ) − λ2(2|m3| − |m1 ∩m2|)
]2var(Y )(var(Y ) − λ2k)2
.34



Gathering this equality with (67) yields
E0

(
Lµm1,ζ1,ρ

(Y,X)Lµm2,ζ2,ρ
(Y,X)

)
=



 1

1 − λ2(2|m3|−|m1∩m2|)var(Y )




n

. (68)Then, we take the expe
tation with respe
t to ζ1, ζ2, m1 and m2. When m1 and m2 are�xed the expression (68) depends on ζ1 and ζ2 only towards the 
ardinality of m3. As ζ1 and ζ2
orrespond to independent Radema
her variables, the random variable 2|m3|− |m1∩m2| followsthe distribution of Z, a sum of |m1 ∩m2| independent radema
her variables and
E0(Lµm1,ρ(Y,X)Lµm2,ρ(Y,X)) = E0

[
1

1 − λ2Zvar(Y )

]n
. (69)When Z is non-positive, this expression is smaller than one. On the other hand, when Z isnon negative:

[
1

1 − λ2Zvar(Y )

]n
= exp

(
n log

(
1

1 − λ2Zvar(Y )

))

≤ exp



n
λ2Zvar(Y )

1 − λ2Zvar(Y )





≤ exp



n
λ2Zvar(Y )

1 − λ2kvar(Y )



 ,as log(1 + x) ≤ x and as Z is smaller than k. We de�ne an event A su
h that {Z > 0} ⊂ A ⊂
{Z ≥ 0} and P(A) = 1

2 . This is always possible as the random variable Z is symmetri
. As a
onsequen
e, on the event A
c, the quantity (69) is smaller or equal to one. All in all, we bound(69) by:

E0(Lµm1,ρ(Y,X)Lµm2 ,ρ(Y,X)) ≤ 1

2
+ E0



1A exp



n
λ2Zvar(Y )

1 − λ2kvar(Y )







 , (70)where 1A is the indi
ator fun
tion of the event A. We now apply Hölder's inequality with aparameter v ∈]0; 1], whi
h will be �xed later.
E0



1A exp



n
λ2Zvar(Y )

1 − λ2kvar(Y )







 ≤ P(A)1−v



E0 exp



n
v

λ2Zvar(Y )

1 − λ2kvar(Y )








v

≤
(

1

2

)1−v [
cosh

(
nλ2

v(var(Y ) − λ2k)

)]|m1∩m2|v
. (71)Gathering inequalities (70) and (71) yields

E0

[
L2
µρ

(Y,X)
]
≤ 1

2
+

(
1

2

)1−v
1

(pk)
2

∑

m1,m2∈M(k,p)

cosh

(
nλ2

v(var(Y ) − λ2k)

)|m1∩m2|v
.35



Following the approa
h of Baraud (2002) in Se
tion 7.2, we note that if m1 and m2 aretaken uniformly and indepently in M(k, p), then |m1 ∩m2| is distributed as a Hypergeometri
distribution with parameters p, k, and k/p. Thus, we derive that
E0

[
L2
µρ

(Y,X)
]
≤ 1

2
+

(
1

2

)1−v
E

(
cosh

(
nλ2

v(var(Y ) − λ2k)

)vT) (72)where T is a random variable distributed a

ording to a Hypergeometri
 distribution with pa-rameters p, k and k/p. We know from Aldous (1985, p.173) that T has the same distribution asthe random variable E(W |Bp) where W is binomial random variable of parameters k, k/p and
Bp some suitable σ-algebra. By a 
onvexity argument, we then upper bound (72).

E0

[
L2
µρ

(Y,X)
]

≤ 1

2
+

(
1

2

)1−v
E

(
cosh

(
nλ2

v(var(Y ) − λ2k)

)vW)

=
1

2
+

(
1

2

)1−v (
1 +

k

p

(
cosh

(
nλ2

v(var(Y ) − λ2k)

)v
− 1

))k

=
1

2
+

(
1

2

)1−v
exp

[
k log

(
1 +

k

p

(
cosh

(
nλ2

v(var(Y ) − λ2k)

)v
− 1

))]
.To get the upper bound on the total variation distan
e appearing in (64), we aim at 
on-straining this last expression to be smaller than 1 + η2. This is equivalent to the followinginequality:

2v exp

[
k log

(
1 +

k

p

(
cosh

(
nλ2k

vk(var(Y ) − λ2k)

)v
− 1

))]
≤ 1 + 2η2 . (73)We now 
hoose v = L(η)

log(2) ∧ 1. If v is stri
tly smaller than one, then (73) is equivalent to:
k log

[
1 +

k

p

(
cosh

(
nλ2k

vk(var(Y ) − λ2k)

)v
− 1

)]
≤ log(1 + 2η2)

2
. (74)It is straightforward to show that this last inequality also implies (73) if v equals one. We nowsuppose that

nλ2

v(var(Y ) − λ2k)
≤ log

(
(1 + u)

1
v +

√
(1 + u)

2
v − 1

)
, (75)where u = pL(η)

k2 . Using the 
lassi
al equality cosh
[
log(1 + x+

√
2x+ x2)

]
= 1 + x with x =

(1 + u)
1
v − 1, we dedu
e that inequality (75) implies (74) be
ause

k log

(
1 +

k

p

(
cosh

(
nλ2k

vk(var(Y ) − λ2k)

)v
− 1

))
≤ k log

(
1 +

k

p
u

)

≤ k2

p
u ≤ L(η) .For any β ≥ 1 and any x > 0, it holds that (1 + x)β ≥ 1 + βx. As 1
v ≥ 1, 
ondition (75) isimplied by:

λ2kvar(Y ) − λ2k
≤ kv

n
log

(
1 +

u

v
+

√
2u

v

)
.36



One then 
ombines the previous inequality with the de�nitions of u and v to obtain the upperbound
λ2kvar(Y ) − λ2k

≤ k

n

( L(η)

log(2)
∧ 1

)
log

(
1 +

p(log(2) ∨ L(η))

k2
+

√
2p(log(2) ∨ L(η))

k2

)
.For any x positive and any u between 0 and 1, log(1+ux) ≥ u log(1+x). As a 
onsequen
e, theprevious inequality is implied by:

λ2kvar(Y ) − λ2k
≤ k

n

( L(η)

log(2)
∧ 1

)
([L(η) ∨ log(2)] ∧ 1) log

(
1 +

p

k2
+

√
2p

k2

)

=
k

n
(L(η) ∧ 1) log

(
1 +

p

k2
+

√
2p

k2

)
.To resume, if we take ρ2 smaller than this last quantity, then

βI (Θ[k, p, ρ]) ≥ δ .To prove the se
ond part of the theorem, one has to observe that α + δ ≤ 53% implies that
L(η) ≥ 1

2 .8.2 Proof of Proposition 4Let us �rst assume that the 
ovarian
e matrix of X is the identity. We argue as in the proofof Theorem 5 taking k = p. The sket
h of the proof remains un
hanged ex
ept that we slightlymodify the last part. Inequality (74) be
omes
pv log

(
cosh

(
nλ2p

vp(var(Y ) − λ2p)

))
≤ L(η),where we re
all that v = L(η)

log 2 ∧ 1. For all x ∈ R, cosh(x) ≤ exp(x2/2). Consequently, theprevious inequality is implied by
λ2pvar(Y ) − λ2p

≤
√

2vL(η)

√
p

n
,and the result follows easily.If we no longer assume that the 
ovarian
e matrix Σ is the identity, we orthogonalize thesequen
e Xi using Gram-S
hmidt pro
ess. Applying the previous argument to this new sequen
eof 
ovariates allows to 
on
lude.8.3 Proof of Proposition 2Let us apply proposition 4. For any ρ ≤ s(α, δ)

√
Dm

n there exists some θ ∈ Sm su
h that
‖θ‖2var(Y )−‖θ‖2 = ρ2 and Pθ(Tm ≤ 0) ≥ δ. Here, s(α, δ) refers to some fun
tion only depending on

α and δ. In the proof of Theorem 1, we have shown in (36) and following equalities that thedistribution of the test statisti
 φm only depends on the quantity κ2
m = var(Y )−var(Y |Xm)var(Y |Xm) . Let

θ′ be an element of Sm su
h that κ2
m = ρ2. As a 
onsequen
e, the distribution of φm under Pθ′is the same as its distribution under Pθ, and therefore

Pθ′ (Tm ≤ 0) ≥ δ.37



8.4 Proof of Proposition 6This lower bound for dependent gaussian 
ovariates is proved through the same approa
h asTheorem 5. We de�ne the measure µρ as in that proof. Under the hypothesis H0, Y is indepen-dent of X . We note Σ the 
ovarian
e matrix of X and E0,Σ stands for the distribution of (Y,X)under H0 in order to emphasize the dependen
e on Σ.First, one has to upper bound the quantity E0,Σ

[
L2
µρ

(Y,X)
]. For the sake of simpli
ity, wemake the hypothesis that every 
ovariate Xj has varian
e 1. If this is not the 
ase, we only haveto res
ale these variables. The quantity 
orr(i, j) refers to the 
orrelation between Xi and Xj.As we only 
onsider the 
ase k = 1, the set of models m in M(1, p) is in 
orrespondan
e withthe set {1, . . . , p}.

E0,Σ

(
Lµi,ζ1,ρ

(Y,X)Lµj,ζ2,ρ
(Y,X)

)
=

( var(Y )var(Y ) − 
orr(i, j)λ2ζ1ζ2

)n
.When i and j are �xed, we upper bound the expe
tation of this quantity with respe
t to ζ1and ζ2 by

E0,Σ

(
Lµi,ρ(Y,X)Lµj,ρ (Y,X)

)
≤ 1

2
+

1

2

( var(Y )var(Y ) − |
orr(i, j)|λ2

)n
. (76)If i 6= j, |
orr(i, j)| is smaller than c and if i = j, 
orr(i, j) is exa
tly one. As a 
onsequen
e,taking the expe
tation of (76) with respe
t to i and j yields the upper bound

E0,Σ

(
L2
µρ

(Y,X)
)
≤ 1

2
+

1

2

(
1

p

( var(Y )var(Y ) − λ2

)n
+
p− 1

p

( var(Y )var(Y ) − cλ2

)n)
. (77)Re
all that we want to 
onstrain this quantity (77) to be smaller than 1 + η2. In parti
ular,this holds if the two following inequalities hold:

1

p

( var(Y )var(Y ) − λ2

)n
≤ 1

p
+ η2 (78)

p− 1

p

( var(Y )var(Y ) − cλ2

)n
≤ p− 1

p
+ η2 . (79)One then uses the inequality log( 1

1−x ) ≤ x
1−x whi
h holds for any positive x smaller than one.Condition (78) holds if

λ2var(Y ) − λ2
≤ 1

n
log(1 + pη2) , (80)whereas 
ondition (79) is implied by

cλ2var(Y ) − cλ2
≤ 1

n
log

(
1 +

p

p− 1
η2

)
.As c is smaller than one and p

p−1 is larger than 1, this last inequality holds if
λ2var(Y ) − λ2

≤ 1

nc
log(1 + η2) . (81)Gathering 
onditions (80) and (81) allows to 
on
lude and to obtain the desired lower bound(19). 38



8.5 Proof of Proposition 8The sket
h of the proof and the notations are analogous to the one in Proposition 6. The upperbound (76) still holds:
E0,Σ

(
Lµi,ρ(Y,X)Lµj,ρ (Y,X)

)
≤ 1

2
+

1

2

( var(Y )var(Y ) − |
orr(i, j)|λ2

)n
.Using the stationarity of the 
ovarian
e fun
tion, we derive from (76) the following upper bound:

E0,Σ

(
L2
µρ

(Y,X)
)
≤ 1

2
+

1

2p

p−1∑

i=0

( var(Y )var(Y ) − λ2|
orr(0, i)|)n ,where 
orr(0, i) equals 
orr(X1, Xi+1). As previously, we want to 
onstrain this quantity to besmaller than 1 + η2. In parti
ular, this is implied if for any i between 0 and p− 1:
( var(Y )var(Y ) − λ2|
orr(i, 0)|

)n
≤ 1 +

2pη2|
orr(i, 0)|
∑p−1
i=0 |
orr(i, 0)|

.Using the inequality log(1 + u) ≤ u, it is straighforward to show that this previous inequalityholds if
λ2var(Y ) − λ2|
orr(i, 0)| ≤

1

n|
orr(i, 0)| log

(
1 +

2pη2|
orr(0, i)|
∑p−1

i=0 |
orr(i, 0)|

)
.As |
orr(i, 0)| is smaller than one for any i between 0 and p−1, it follows that E0,Σ

(
L2
µρ

(Y,X)
)is smaller than 1 + η2 if

ρ2 ≤
p−1∧

i=0

1

n|
orr(i, 0)| log

(
1 +

2pη2|
orr(0, i)|
∑p−1

i=0 |
orr(i, 0)|

)
.We now apply the 
onvexity inequality log(1 + ux) ≥ u log(1 + x) whi
h holds for any positive xand any u between 0 and 1 to obtain the 
ondition

ρ2 ≤ 1

n
log

(
1 +

2pη2

∑p−1
i=0 |
orr(i, 0)|

)
. (82)It turns out we only have to upper bound the sum of |
orr(i, 0)| for the di�erent types of
orrelation:1. For 
orr(i, j) = exp(−w|i− j|p), the sum is 
learly bounded by 1 + 2 e−w

1−e−w and 
ondition(82) simpli�es as
ρ2 ≤ 1

n
log

(
1 + 2pη2 1 − e−w

1 + e−w

)
.2. if 
orr(i, j) = (1 + |i− j|p)−t for t stri
tly larger than one, then∑p−1

i=0 |
orr(i, 0)| ≤ 1+ 2
t−1and 
ondition (82) simpli�es as

ρ2 ≤ 1

n
log

(
1 +

2p(t− 1)η2

t+ 1

)
.39



3. if 
orr(i, j) = (1 + |i− j|p)−1 then ∑p−1
i=0 |
orr(i, 0)| ≤ 1 + 2 log(p − 1) and 
ondition (82)simpli�es as

ρ2 ≤ 1

n
log

(
1 +

2pη2

1 + 2 log(p− 1)

)
.4. if 
orr(i, j) = (1 + |i− j|p)−t for 0 < t < 1, then

p−1∑

i=0

|
orr(i, 0)| ≤ 1 +
2

1 − t

[(p
2

)1−t
− 1

]
≤ 2

1 − t

(p
2

)1−tand 
ondition (82) simpli�es as
ρ2 ≤ 1

n
log
(
1 + pt21−t(1 − t)η2

)
.8.6 Proof of Proposition 11For ea
h dimension D between 1 and p, we de�ne r2D = ρ2

D,n ∧ a2
DR

2. Let us �x some D ∈
{1, . . . , p}. Sin
e r2D ≤ a2

D and sin
e the aj 's are non in
reasing,
D∑

j=1

var(Y |Xmj−1) − var(Y |Xmj )

a2
j

≤ var(Y |X)R2,for all θ ∈ SmD su
h that ‖θ‖2var(Y )−‖θ‖2 = r2D. Indeed, ‖θ‖2 =
∑D
j=1 var(Y |Xmj−1 ) − var(Y |Xmj )and var(Y ) − ‖θ‖2 = var(Y |X). As a 
onsequen
e,

{
θ ∈ SmD ,

‖θ‖2var(Y ) − ‖θ‖2
= r2D

}
⊂
{
θ ∈ Ea(R),

‖θ‖2var(Y ) − ‖θ‖2
≥ r2D

}
.Sin
e rD ≤ ρD,n, we dedu
e from Proposition 4 that

βΣ

({
θ ∈ Ea(R),

‖θ‖2var(Y ) − ‖θ‖2
≥ r2D

})
≥ δ .The �rst result of Proposition 11 follows by gathering these lower bounds for all D between 1and p.Moreover, ρ2

i,n is de�ned in Proposition 4 as ρ2
i,n =

√
2
[√

L(η) ∧ L(η)√
log 2

] √
i
n . If α+ δ ≤ 47%,it is straighforward to show that ρ2

i,n ≥
√
i
n .8.7 Proof of Proposition 13We �rst need the following Lemma.Lemma 17. We 
onsider (Ij)j∈J a partition of I. For ea
h j ∈ J let p(j) = |Ij |. For any

j ∈ J , we de�ne Θj as the set of θ ∈ R
I su
h that their support is in
luded in Ij . For anysequen
e of positive weights kj su
h that

∑

j∈J
kj = 1,40



it holds that
βI




⋃

j∈J

{
θ ∈ Θj ,

‖θ‖2var(Y ) − ‖θ‖2
= r2j

}

 ≥ δ ,if for all j ∈ J , rj ≤ ρp(j),n(η/
√
kj), where the fun
tion ρp(j),n is de�ned by (16).For all j ≥ 0 su
h that 2j+1 − 1 ∈ I (i.e. for all j ≤ J where J = log(p+ 1)/ log(2) − 1 ), let

S̄j be the linear span of the ek's for k ∈ {2j, . . . , 2j+1 − 1}. Then, dim(S̄j) = 2j and S̄j ⊂ SmDfor D = D(j) = 2j+1 − 1. It is straighforward to show that
J⋃

j=0

S̄j [rD(j)] ⊂
J⋃

j=0

SmD(j)
[rD(j)] ⊂

p⋃

D=1

SmD [rD] ,where S̄j [rD(j)] =
{
θ ∈ S̄j ,

‖θ‖2var(Y )−‖θ‖2 = r2D(j)

} and SmD [rD] =
{
θ ∈ SmD ,

‖θ‖2var(Y )−‖θ‖2 = r2D

}.We now apply Lemma 17 with kj := (1/(j + 1)2)/R(p) where R(p) =
∑J

k=0 1/(k + 1)2 toshow that
βI

(
p⋃

D=1

{
θ ∈ SmD ,

‖θ‖2var(Y ) − ‖θ‖2
= r2D

})
≥ δ ,if for all those D = D(j)

r2D ≤
√

log(1 + 2η2/kj)

(
1 ∧

√
log(1 + 2η2/kj)√

2 log 2

) √
D

n
.For D = D(j), this last quantity equals

√
log(1 + 2η2/kj)

(
1 ∧

√
log(1 + 2η2/kj)√

2 log 2

) √
D

n
≥
√

log(1 + 2η2(j + 1)2R(p))

(
1 ∧

√
log(1 + 2η2)√

2 log 2

)
2j/2

n
. (83)It remains to 
he
k that (83) is larger than ρ̄D(j),n. Using j+1 = log(D+1)/ log(2) ≥ log(D+1),we get 2j/2 ≥

√
D/2. Thanks to the 
onvexity inequality log(1+ux) ≥ u log(1+x), whi
h holdsfor any x > 0 and any u ∈]0, 1], we obtain

√
log(1 + 2η2(j + 1)2R(p))2j/2 ≥

√
D/2

(
η
√

2R(p) ∧ 1
)√

log
[
1 + log2(D + 1)

]

≥
(
(η
√

2) ∧ 1
)√

log log2(D + 1)
√
D/2,

≥
(
1 ∧

√
log(1 + 2η2)

)√
log log(D + 1)

√
D ,as R(p) is larger than one for any p ≥ 1. All in all, we get the lower bound

√
log(1 + 2η2(j + 1)2R(p))

(
1 ∧

√
log(1 + 2η2)√

2 log 2

)
2j/2 ≥ 1

2
√

log(2)

(
1 ∧ log(1 + 2η2)

)√
log log(D + 1)

√
D

= ρ̄2
D,n .Thus, if for all 1 ≤ D ≤ p, r2D is smaller than ρ̄2

D,n, it holds that
βI

(
p⋃

D=1

{
θ ∈ SmD ,

‖θ‖2var(Y ) − ‖θ‖2
= r2D

})
≥ δ .41



8.8 Proof of Lemma 17Using a similar approa
h to the proof of Theorem 5, we know that for ea
h rj ≤ ρ̃j(η/
√
kj) thereexists some measure µj over

Θj [rj ] :=

{
θ ∈ Θj,

‖θ‖2var(Y ) − ‖θ‖2
= r2j

}su
h that
E0

[
L2
µj

(Y,X)
]
≤ 1 + η2/kj . (84)We now de�ne a probability measure µ =

∑
j∈J kjµj over ⋃j∈J Θj [rj ]. Lµj refers to the densityof Pµj with respe
t to P0. Thus,

Lµ(Y ) =
dPµdP0

(Y,X) =
∑

j∈J
kjLµj (Y,X) ,and

E0

[
L2
µ(Y,X)

]
=
∑

j,j′∈J
kjkj′E0

[
Lµj (Y,X)Lµj′

(Y,X)
]
.Using expression (68), it is straightforward to show that if j 6= j′, then

E0

[
Lµj (Y,X)Lµj′

(Y,X)
]

= 1.This follows from the fa
t that the sets Θj and Θj′ are orthogonal with respe
t to the innerprodu
t (4). Thus,
E0 [Lµ(Y,X)] = 1 +

∑

j∈J
k2
j

(
E0

[
L2
µj

(Y,X)
]
− 1
)
≤ 1 + η2thanks to (84). Using the argument (65) as in the proof of Theorem 5 allows to 
on
lude.8.9 Proof of Proposition 14First of all, we only have to 
onsider the 
ase where the 
ovarian
e matrix of X is the identity. Ifthis is not the 
ase, one only has to apply Gram-S
hmidt pro
ess to X and thus obtain a ve
tor

X ′ and a new basis for Θ whi
h is orthonormal. We refer to the beginning of Se
tion 5 for moredetails.Like the previous bounds for ellipsoids, we adapt the approa
h of Se
tion 6 in Baraud (2002).We use the same notations as in proof of Proposition 11. Let D∗(R) ∈ {1, . . . , p} an integerwhi
h a
hieves the supremum of ρ̄2
D ∧ (R2a2

D) = r̄2D. As in proof of Proposition 11, for any
R > 0,

{
θ ∈ SmD∗(R)

,
‖θ‖2var(Y ) − ‖θ‖2

= r2D∗(R)

}
⊂
{
θ ∈ Ea(R),

‖θ‖2var(Y ) − ‖θ‖2
≥ r2D∗(R)

}
.When R varies, D∗(R) des
ribes {1, . . . , p}. Thus, we obtain

⋃

1≤D≤p

{
θ ∈ SmD ,

‖θ‖2var(Y ) − ‖θ‖2
= r2D

}
=

⋃

R>0

{
θ ∈ SmD∗(R)

,
‖θ‖2var(Y ) − ‖θ‖2

= r2D∗(R)

}

⊂
⋃

R>0

{
θ ∈ Ea(R)

‖θ‖2var(Y ) − ‖θ‖2
≥ r2D∗(R)

}
,and the result follows from proposition 13. 42
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