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Abstract

Discrete-time models are frequently used in ecolmgy agronomy. These models can
be used for the management of endangered speciesjnfierstanding intraspecific and
interspecific competitions, for pest managemenfpopredicting plant growth. Their outputs
can be expressed as time series. It is often infdes® estimate all the parameters of a
discrete-time model due to their large number. Aewn practice consists in selecting a
subset of parameters by sensitivity analysis, timeging the selected parameters from data,
and in fixing the others to some nominal values. &discrete-time model, global sensitivity
analysis can be applied separately on each oupptitthere is a high level of redundancy
between close dates and, on the other hand, ititeydeatures of the dynamic may be missed
out. In this paper, a method based on principal pmmnt analysis and on analysis of
variance is presented to compute a generalizedtiséggsindex for each model parameter.
The proposed index synthesizes the influence ofpdm@meter on the whole time series
output. It may be used to select a subset of paeamt be calibrated. In addition a quality
criterion is proposed for any approximation assedavith the ANOVA decomposition on
the principal components. The method was applieda twinter wheat dynamic model
including seven parameters with few observationsestimating all the parameters. The
results showed that two parameters had a strohgemde on the wheat biomass simulated by
the model at a daily time step: the radiation u$&ciency and a parameter of the
mathematical function describing the kinetic of teaf area index. We also showed that the
generalized index can be accurately computed bygusinly the first three principal
components. The proposed approach is quite geaedilcan be applied to any dynamic
model predicting one or several output variables discrete time step.

Keywords: ANOVA decomposition, Discrete-time modekperimental design, Multivariate
sensitivity analysis.



1. Introduction

Discrete-time models are frequently used in ecolagy agronomy. These models are
useful for management of endangered species (aguggelo et al., 2007), for understanding
intraspecific and interspecific competitions (e.@k¥bu et al., 2002; Wu et al., 2007), for pest
management (e.g Matsuoka and Seno, in press)caddicting plant growth (e.g Boogt
al., 1996; Passioura, 1996; Bechatial, 2005). Their outputs can be expressed as tinkesser

Discrete-time models can include up to several heosl parameters whose values
must be estimated from past experiments (Makowskl.e2006a). The estimation of these
parameters is an important step because modelrpenfices depend for a large part on the
accuracy of the parameter estimates (Wallathal.,, 2001; Makowskiet al, 2006a).
Predictions obtained with models are not reliabhemwinaccurate parameter values are used.

In general, it is impossible to estimate all parsarseeof complex models (Bechiat
al, 2005). A strategy consists in selecting a subsparameters to be calibrated by sensitivity
analysis and in fixing the others to some nomiralies (Wallacket al, 2001; Makowskiet
al., 2006a; Makowsket al, 2006b; Monockt al, 2006). Several local and global sensitivity
analysis methods have been developed and appliedefatifying the parameters that deserve
an accurate estimation (Homma and Saltelli, 192#teti et al, 2000b; Saltellet al, 2004;
Saltelli et al, 2006; Caribonet al., 2007). Methods of global sensitivity analysis aseful
and are easy to interpret. They allow modellersiétermine which subset of parameters
accounts for most of the output variance. Thosefaawvith a small contribution can be set
equal to any value within their range. This conttds to a model simplification and a
reduction of the number of experiments performede&iimating model parameters.

For a discrete-time model, global sensitivity Iggsid can be applied separately on
each output but there is a high level of redundametyveen close dates and, on the other
hand, interesting features of the dynamic may b&sed out. The application of a sensitivity
analysis method to the daily output of a dynamideiaan result in a very large number of
sensitivity indices (one index per daily output)isl not easy to identify the most important
parameters based on such a large number of valtiasigolongoet al, 2007). As an
alternative, Campbelét al. (2006) proposed to decompose time series uponnglete
orthogonal basis and to compute sensitivity indme®ach component of the decomposition.
However, no single global index has been proposeddmmarizing the sensitivity of a time
series to parameter values.

In this paper, we follow on this proposal and pnesihe multivariate sensitivity
analysis under a global framework coherent withsgitzal multivariate methods. A
generalized index is defined which synthesizesethect of each model parameter on the
whole time series output. It may be used to selestibset of parameters to be calibrated or to
simplify a complex model. In addition a qualityterion is proposed for any approximation
associated with the decomposition. In section 2,psesent a global sensitivity analysis
method adapted to discrete-time models. Sectidlug@rates this method on a dynamic crop
model, section 4 presents a R-program developeddomputing the generalized sensitivity
index, and section 5 concludes.



2. Method

2.1. Time series output

We consider a deterministic and dynamic model @isicrete time step
y(t) = f(z.1,0), 1)

where y(t) is the scalar output on tintefor t =1,2,.., T, z is a vector of input variables and

@ is a vector of parameters. Input variables andrpaters will be further referred to as input
factors. In the case study presented in Sectiahe3jnput variables will be assumed to be
known so that the paramete#swill be the only sources of uncertainty to be ¢desed in the
sensitivity analysis.

Suppose thalN simulation runs are performed, using equatiom(t) different values of the
input factors. Then the output can be stored kxal matrix:

@ oox@® oy

Y=l y@ oy . ¥

W@ o %@ % (D

Each columny(t) in Y represents the simulated values of the outpualikgion a given time
t, while each row ofY is an individual dynamic for a given set of inpalues. The rows of
Y constitute a sample of output dynamicsRfA over the uncertainty domain of the input
factors. In the sequel, we assume thatT .

Conducting separate sensitivity analyses yf),...y(T) gives information on how the
sensitivity of y(t) evolves over time. However, it leads to a higrelesf redundancy because

of the strong relationship between responses froendate to the next one. It may also miss
important features of thg(t) dynamics because many features cannot be effigidatected

through single-time measurements.

Alternatively, sensitivity analyses can be appltedpre-defined function(y(l),.., Y T))

with an biological interpretation. For example, may represent the difference in biomass
between two stages of plant growth. Many functiafs y(1),.., (T) are potentially

interesting to look at and there is a need for waghto identify automatically the most
interesting features in thg(t) dynamics.

2.2. Principal Components Analysis

The Principal Components Analysis (PCA) is a mettimdecompose the whole variability,
or total inertia, inY (Krzanowski and Marriott, 1990). The total ineris defined as
| (Y,.) =trace(Y, Y. ), whereY, is the matrixY with each column centered around its mean

cn

and possibly normalized. Thu¥,.'Y, is the empirical variance-covariance matrix of the
columns ofY if Y, has not been normalized, or it is the empiricatadation matrix between
the columns ofY , with 1 on the diagonal, if the columns ¥f have been normalized. It
follows that the total inertia is also equal to em of they(t) variances, or tor if the



columns in Y, have been normalized. Saporta (2006) provides tailei@ treatment of
principal component analysis methodology.
The PCA decomposition is based on the eigenvalues eagenvectors ofY_ 'Y.. Let

A,...,A. denote the eigenvalues of 'Y, in decreasing order (with eigenvalues repeated

according to their multiplicity if any) and let denote aTxT matrix of normalized
eigenvectors ofy,'Y_, with columnl, an eigenvector associated widp. The NxT matrix

H of Principal Components (PC) is obtained by
H=Y.L. (2)
Its columnsh,, for k=12.., T, are mutually orthogonal linear combinations oé t¥f_

columns satisfyingh, = Y,I, and|h,|* =A,. By constructionH has the same total inertia as
Y., but this inertia is concentrated as much as ptess the first principal components.

Example

To follow this approach more easily, let us takeegy simple example
y(t) =a+bxt

where the uncertain values of parametgrand b are assumed to vary in the interyal,1].
For a maximum of simplicity, we pay attention t@ tmodel output at =0 andt=T only,
whereT represents the latest time of interest, and wesiden four simulations performed at
the £1 combinations ofa andb (a=1 andb=1; a=1 andb=-1; a=-1 andb=1; a=-1 and
b=-1).

In this example, theY matrix of simulation outputs and its normalizedsien Y, are
centered. They are given by

1 1+T 1 (+TYa
1T v 21 1 (-TYa

-1 -1+T | ¢ 2/-1 +TYa |

-1 -1-T -1 1-TYa

with @ =+1+T2.

The eigenvalues oY, 'Y, are equal td+a™ and1-a™. Up to normalization constants, the
first principal component is equal to the meanyg®) and y(T) and the second principal
component is equal to the difference betwegi®) and y(T). More precisely, theH
principal components matrix is

a+l+T a-1-T
1 a+l-T a-1+T
T oJ2a| —a-1+T —a+1-T|

-a-1-T -a+1+T

H



2.3. Sensitivity principal indices

Sensitivity analyses (SA) can be computed on eaicitipal component (PC). In this paper,
we consider the SA methods based on a factoriafjalder the simulations and analysis of
variance (ANOVA) for the calculation of sensitivitgdices (Jansert al, 1994; Saltelliet
al., 2000a; Ginot et al, 2006). We denote thenput factors byF,,.., F, and each factor is

supposed to vary atn distinct levels. For exampleF,.., F, may represens model

parameters takingn possible values. The complete factorial desigm thensists ofN = n?
simulations performed at all combinations of levai$, .., F,. From now on, we assume that

Y is the output matrix from thosd simulations and that is issued from the PCA of .

Because of the orthogonality properties of the detepfactorial design, there is a unique
ANOVA decomposition for the variance of each prpaticomponent:

Il = 2SS 3)

where theW's are the factorial terms in the ANOVA (main effe@nd interactions) and
SSv.« denotes the sum of squares associated Witfor the kth principal component. Note

that theW'’s in the summation should include a residual tértme ANOVA model is not

complete.

Recall that||hk||2 = A, with A, the inertia associated with theth principal component. Then
SSv« Is the part of that inertia accounted for by thetdrial termW and the sensitivity
principal indices in th& th principal componenh, can be defined as

_SSv«
Slw .k A

so that their values lie between 0 and 1. The @irder sensitivity indices correspond to the
case wherW is a main effect. The total sensitivity indiceg aalculated by summing the
sensitivity indicesSl,,, over all factorial term&V which include a given input factor (Salteli

and al, 2000).
From a technical point of view that will be useifuthe sequel,
SSu=[Suhid @
=tracel’, S, Yl I, (5)
whereS,, is the orthogonal projection matrix on the subspessociated witkv in R" .
Example (continued)

The complete ANOVA model includes the main effaaftsA and B and the interactiorA.B.
There is no general mean because the data areeskni@e projection matrices are

1 1 -1 -1 1 -1 1- 1-1-1

o1 1 1 -1 -1 _1)-1 1-1 _1-1 1 1-

A4l -1 1 1) 4 1 -1 1-1 "% 4-1 1 1-
-1 -1 1 1 -1 1-1 1-1-1



Using equation (4), we getsS,;=i(1+a™)’, SS.=1(1-a7), SS,=i(@-a™),
SS,=30-a" ) SSue1= SSs2=0.

The sensitivity principal indices argl,,;=3(1+a™), Slg1=2(1-a™"), Sla,=3(1-a™),
Slg2=2(1+a™), Slae1=Slag2=0. Sly1and Sk, measure the first order sensitivity of the

first principal component to the two model paramet® and B. Sly» and S ; measure first
order sensitivity of the second principal comporterthe two model parameters.

2.4. Generalized sensitivity indices

In addition to the sensitivity indices on each pipal component, it is interesting to quantify
the contributionss, . Of each factorial ternW to the total inertia. This is precisely the

decomposition performed in multivariate analysisvafiance (MANOVA), which is the
generalisation of ANOVA to multivariate responsésiderson, 2003). In MANOVA, the
decomposition in equation (3) is applied to thaltotertia and becomes

I (Yc) = z SS\/,total (6)
where
SS\/,total = ”sNYc”2 (7)
= tracelf ;S,Y.) (8)
i trace(y (S, Ydil, ©)
= Z SSy ke (10)

becausez I "is theT xT identity matrix.

The various decompositions of the total inertia atenmarized in Table 1. The finest
decomposition is into thgs, , terms. Sums oveW give the inertiad, associated with the
principal components, whereas sums okegive the MANOVA decomposition of the total
inertia among the factorial terms. All sensitivityices presented in this paper arise from the
guantities in table 1.

To measure contributions to the total inertia, dbeeralized sensitivity indet any factorial
termW is defined as

SSV,totaI (11)

TS

The first order generalized sensitivity indicesrespond to the case whev is a main effect.
The total generalized sensitivity indices are dal@d by summing the generalized sensitivity
indices GS}, over all factorial term¥V which include a given input factor.



Factorial term Principal Component Inertia

PC PG PG e PG
SSA,l SSAZ SSAS ren SSAT SSA,totaI
B SS1 SS2 SSs s SSr S total
AB SSe1 SSw2 SSas e SSeT S total
W SSVl SSVZ SSV3 SSVT SSv,totaI
Inertia A A, Ay A 1(Y.)

Tablel. Sum of squares decomposition of the total ineit{&,) based on PCA and

MANOVA. A andB denote the first two parameters,B their interaction, antlvV a generic
factorial term.

Example (continued)

Table 2 presents the decomposition in Table 1 wheplied to the example. Thus,
-2 -2

is the part of inertia explained by facforand GSIB=1 g

GSIA=1+a the part of

inertia explained by factd@. There is no interaction between factgksand B as expected
from an additive model. FactoA has more global importance thdh, but the difference
tends to zero whenT increases. Note that the results are stronglyuemited by the
normalization performed ol .

Factorial term Principal Component Inertia
PG PG
A i@l+a™)?  Li@-a?'y 1+a™
B 11-a?)  i@-a?) 1-a”
AB 0 0 0
Inertia 1+g* 1-a 1(Y.)=2

Table 2. Sum of squares decomposition for the small exammualdel.

2.5. Approximation quality

In practice, the methodology described in thisieacts often approximated by considering
only the first P principal components and by restricting the ANOWXms to the main



effects and a few interactions. Thus, we defineaghygroximategeneralized sensitivity index
of W as

Gt = 2SS
g .
Zk:l/‘k

The quality of the approximation can be quantifigdthe proportion of inertia preserved by
the approximation. We thus define tygproximation global qualitypy

_ ZW’kSSv,k
1(Y,)
where the summation is restricted to the p&s k) of principal component and factorial

term included in the approximation. For examgBg) in the example equals(l+a™) if all

factorial terms but only the first principal comgon are kept. By analogy to the coefficient
of determination, ifGQ is close to 1 then the approximation accountsrfost the inertia of

GQ , (12)

Y , whereas lowGQ suggests thaﬁélw indices must be interpreted with much caution.

In addition to the global quality criterion, tldgnamic coefficient of determinati@lows to
assess the approximation quality directly on thgimal time seriesy(t) . In fact, going back

to the time series from the approximation prodweapproximate (normalized or not) output
matrix \~(c. If the approximation includes the same factotgs for all of itsP principal

components, the approximate output ma‘l;ﬁxis obtained by the formula
Ye=Y'§,. HL (13)
W

where H (resp.L) contains the first? columns of predictedd (resp.L) and where the
summation onW is restricted to those factorial terms in the agpnation. In the general
case, the approximation is

QC = |:|sub E, (14)

where thekth column of Hsw, for k=1.., P, equals ' S,h, with the summation
restricted to th&V'’s such that the paifw, k) is included in the approximation.

The dynamic coefficient of determination is caltethby considering the columngt) of

the matrix of outputsy, and the columns;/(t) of the approximated matrix of outpﬁt. At
timet, this coefficient is expressed as

ZL(&« () —V(t)j
> (o-vm)

R =

fort=1...T.



3. Application

3.1. Model description

We consider a dynamic crop model running at a daitg step, called the Winter Wheat Dry
Matter model (WWDM) (Makowskiet al, 2004; Monodet al, 2006). It has two state
variables, the above-ground winter wheat dry mdttér) and the leaf area indekAl(t),

with t the day number from sowing €1) to harvest {=223). The state variablé (t) is
calculated on a daily basis in function of the clative degree-dayd (t) (over a basis of
0°C) and of the daily photosynthetically active ramiat PAR f). The model equations are
defined by

U(t+1)=U t)+E,Epp, 1~ €V PAR )+ £() (15)

and

_ 1 B(T()-T,)
LAI (t) = Lmax [W_e (16)
where £(t) is a random term with zero expectation represgntire model error. In the
sequel, we shall consider only the deterministit pithe model and so the latter term will be
neglected. The dry matter at sowirtg=(1) is set to zero U (1) = 0. In addition, the constraint

T, =1log[l+exp(Ax T, )] is applied, so thatAl (1) = 0.

30
I

25
|

biomass
15

10
|

0 50 100 150 200

days

Figure 1. Daily simulated values of the dry matter increlig¢) —U (t —1), using the nominal
values of the WWDM model parameters.
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Parameter Interpretation Nominal Uncertainty

value interval
E, radiation use 185 0.9-2.8
efficiency
B maximal ratio of 0.94 0.9-0.99
intercepted to incident
radiation
K coefficient of 0.7 0.6-0.8
extinction
Lo maximal value of 7.5 3-12
LAl
T, temperature threshold 900 700-1100
A - 0.0065 0.0035-0.01
B - 0.00205 0.0011-0.0025

Table 3. Uncertainty intervals for the winter wheat dry reatinodel parameters.

There are seven free parameters, which are coeslidercertain for the sensitivity analysis.
Most of them have a meaningful interpretation. Utaiety intervals in Table 3 were given by
agronomists (Monoét al. 2006). Usually the climate should form one or savimput factors
for the sensitivity analysis. Here, preliminary @stigations on 14 annual climate series
showed little differences between years. For sioigli results with a single series are
presented.

The model output to be considered is the dynamatugion of the dry mattetJ (t) from

sowing ( =1) until harvest { =223). It is represented in Figure 1 for the nominduea of
the parameters.

3. 2. Simulation design

A complete3’ factorial design (seven parameters at three Ilpwels constructed. With three
levels, it is possible to estimate the linear anddyatic effects of quantitative factors. The
three levels of each factor were the two boundgheffactor uncertainty interval and their

mean. The number of simulations wisls= 3’ = 2187.
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3.3. Results

3.3.1. Principal components analysis

The PCA showed that 95% of the total inertia betwibe simulated dry matter dynamics was
concentrated in the first three principal composgwith A, =0.54, A, =0.36 and A, = 0.05.

PCA results and sensitivity principal indices aresented in Figure 2, with one column of
graphics per principal componekt, for k =1,..,3. The top row displays the correlation of

the principal componentihfor k =1,..,3 with the outputsyfor t=1.., T as a function of

dayt, and the second row shows the first order and setasitivity indices of the seven input
factors on each PC.

first principal component second principal component third principal component

—

0.5
0.5
0.5

correlation
.0

correlation
correlation

T T T T T T T T
0 50 100 150 200 0 50 100 150 200 0 50 100 150 200

days days days

main and total-effect main and total-effect main and total-effect

_DDE-I

Eimax

1
2
3
4
05~
0.0
0.1
0.2 o
4
5
0.6 —
0.0
0.1
0.2 o
0.3 o
0.4 o
05~

Figure 2. Correlations of the First three principal composenith the output variables (top)
and sensitivity indices on the first three printipamponents (bottom). The main sensitivity
indices are in dark bars and interaction ones m@rpale bars. The total length of any bar
represents the total sensitivity index.

The first PC correlation with outputs had posita@ordinates, with the largest ones in the
middle of the time span. The first PC was thus @ased with the global amount of dry
matter all along the crop growth. It was mainly stwe to parameteE,. The second PC
correlation was negative for half the time sparm #ren positive. Thus it opposed slow to fast
growing dynamics relatively to the average behavitiwas mainly sensitive to parameter
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The third PC accounted for a much smaller parheftia, associated with an opposition in the
dry matter increase between the middle and bottemmes of the dynamics. It was sensitive to
the interaction betweet; but other sensitivity indices were close. Cleathge most three
important parameters appeared toAyds, andT;, but sensitivity principal indices were not
sufficient to identify the most important amongdbehree parameters.

3.3.2.Generalized Sensitivity Index
The Generalizedensitivity indices (GSI) are shown in Figure@SI and the approximated

GSI with P =3 lead to the same conclusions. Indeed, the rankihggctorial terms are the
same. The three important parameterskaréhe most important parameted,(the second
most important parameter) aiiigl (the third most important parameter). These reszdhfirm

the previous sensitivity analyses on PCs and briegyv information by ranking the
parameters. For instance, if one has to chooseptwameters to calibrate, these parameters

should beE, andA.

main and total—effect main and total—effect

Eb Eb

TI TI

Lmax

Lmax

Eimax Eimax

_HHHHI
'HHHII

0.00
0.05
0.10
0.15 4
0.20
0.25
0.30
0.35 -
0.00
0.05
0.10
0.15 4
0.20
0.25
0.30
0.35 -

Figure 3. Generalized Sensitivity IndiceGSI (right) and approximated indice8Sl (left)
for the WWDM model. The main sensitivity indiceg an dark bars and interaction ones are
in pale bars. The total length of any bar represtrd total sensitivity index.

The dynamic coefficients of determination are shanvRigure 4, for an ANOVA model with
main effects and two-factor interactions and fariauzs numbers of PCs. It is logical that the
dynamic coefficients of determination increase wile number of PCs included in the
approximation, but for this application, considerithe first three PCs or all the PCs lead to
the same results. The approximations are gde@ % 0.80) except for the end of the crop

growth.
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Dynamic coefficient of determination

1.0

0.8
1

R"2
0.6

0.4

- one component
— - two components
—— all components

—+— three components

0.2

0.0

0 50 100 150 200

days

Figure 4. Dynamic coefficient of determination with the fiste, the first two, the first three
or with all principal components, and with maineets and two-factor interactions in the
ANOVA models.

4. GS| R-Program

A R function was developed to compute the globabkgrity index defined in section 2. This
function is named GSI and is available upon requesst based on the free language R
(www.cran-r.org and can be easily used to implement our methtil ether dynamic
models. The inputs of the function are: the expental design including the levels of the
model input factors, the output matrix including tinodel simulations corresponding to the
experimental design, the maximal order of the adBons among factors, the number of
principal component to be considered. The fungtiteeds in four steps:

(@) principal components analysis on the output matrix;

(b) ANOVA analyses on the principal components;

(c) computation of the sensitivity indices for eacmpipal component;

(d) computation of the generalized sensitivity indiaesl goodness of fit

assessment.

14



The outputs of the GSI function are: the valueghef classical sensitivity index for each
principal component (main and total effects), teeayalized sensitivity index (main and total
effects), the values of the dynamic coefficientdaftermination, and the global criterion.
Results are also presented graphically as shovigures 2 and 3.

5. Conclusion

In this paper, we proposed a generalized indexudysthe sensitivity of time series
output to parameter values. This index is based pnncipal component analysis and can be
easily computed by using a set of model simulatoersved from a factorial design. It can be
used to identify the parameters of a discrete-timadel that must be estimated from
experimental data. The method considered in thidysallows biologists to summarize the
sensitivity of a time series output to several peeters and so, to determine which subset of
parameters accounts for most of the output varia@oe approach could contribute to model
simplification and a reduction of the number of esxments performed for estimating the
parameters of discrete-time models.

In this paper, our method was applied to a modeluding seven parameters. The
results showed that two parameters had a strohgemde on the wheat biomass simulated by
the model at a daily time step; the radiation u$feciency and a parameter of the
mathematical function describing the kinetic of teaf area index. We also showed that the
index could be accurately computed by using ondyfiitst three principal components.

The method presented in this paper is quite géaarhcan be applied to any dynamic
model predicting one or several output variableg discrete time step (e.g KLM model used
in Campolongeet al (2007), SWEB model described in Rigbal (2005) etc.). We provide a
R-function for running any sensitivity analysis discrete-time models. In this paper, the
decomposition of the total inertia was based omgjpal component analysis and the
simulations were computed from a factorial designthe future, it will be interesting to
extend the method. For example, principal companeould be made more flexible by
considering functional principal components (Ramaeg Silverman, 1997). Alternatively
they could be replaced by Legendre polynomials (azeth et al, 2006) and factorial designs
by Monte Carlo simulations. It will be interestirntg study the consequences of these
alternatives on the results of the sensitivity gsial

Acknowledgements. We are grateful to colleagues of the Mexico (“Métes pour
I'EXploration Informatique des modeles COmplexesdwork for their useful advices.
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