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Abstract 
 

Discrete-time models are frequently used in ecology and agronomy. These models can 
be used for the management of endangered species, for understanding intraspecific and 
interspecific competitions, for pest management, or for predicting plant growth. Their outputs 
can be expressed as time series. It is often impossible to estimate all the parameters of a 
discrete-time model due to their large number. A common practice consists in selecting a 
subset of parameters by sensitivity analysis, in estimating the selected parameters from data, 
and in fixing the others to some nominal values. For a discrete-time model, global sensitivity 
analysis can be applied separately on each output, but there is a high level of redundancy 
between close dates and, on the other hand, interesting features of the dynamic may be missed 
out. In this paper, a method based on principal component analysis and on analysis of 
variance is presented to compute a generalized sensitivity index for each model parameter. 
The proposed index synthesizes the influence of the parameter on the whole time series 
output. It may be used to select a subset of parameters to be calibrated. In addition a quality 
criterion is proposed for any approximation associated with the ANOVA decomposition on 
the principal components. The method was applied to a winter wheat dynamic model 
including seven parameters with few observations for estimating all the parameters. The 
results showed that two parameters had a strong influence on the wheat biomass simulated by 
the model at a daily time step: the radiation use efficiency and a parameter of the 
mathematical function describing the kinetic of the leaf area index. We also showed that the 
generalized index can be accurately computed by using only the first three principal 
components. The proposed approach is quite general and can be applied to any dynamic 
model predicting one or several output variables at a discrete time step. 

 

Keywords: ANOVA decomposition, Discrete-time model, Experimental design, Multivariate 
sensitivity analysis.    
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1. Introduction 

 

Discrete-time models are frequently used in ecology and agronomy. These models are 
useful for management of endangered species (e.g Santangelo et al., 2007), for understanding 
intraspecific and interspecific competitions (e.g Yakubu et al., 2002; Wu et al., 2007), for pest 
management (e.g Matsuoka and Seno, in press), and for predicting plant growth (e.g Boote et 
al., 1996; Passioura, 1996; Bechini et al, 2005). Their outputs can be expressed as time series. 

Discrete-time models can include up to several hundreds parameters whose values 
must be estimated from past experiments (Makowski et al. 2006a). The estimation of these 
parameters is an important step because model performances depend for a large part on the 
accuracy of the parameter estimates (Wallach et al., 2001; Makowski et al., 2006a). 
Predictions obtained with models are not reliable when inaccurate parameter values are used.  

In general, it is impossible to estimate all parameters of complex models (Bechini et 
al, 2005). A strategy consists in selecting a subset of parameters to be calibrated by sensitivity 
analysis and in fixing the others to some nominal values (Wallach et al., 2001; Makowski et 
al., 2006a; Makowski et al., 2006b; Monod et al., 2006). Several local and global sensitivity 
analysis methods have been developed and applied for identifying the parameters that deserve 
an accurate estimation (Homma and Saltelli, 1996; Saltelli et al., 2000b; Saltelli et al., 2004; 
Saltelli et al., 2006; Cariboni et al., 2007). Methods of global sensitivity analysis are useful 
and are easy to interpret. They allow modellers to determine which subset of parameters 
accounts for most of the output variance. Those factors with a small contribution can be set 
equal to any value within their range. This contributes to a model simplification and a 
reduction of the number of experiments performed for estimating model parameters.  

  For a discrete-time model, global sensitivity analysis can be applied separately on 
each output but there is a high level of redundancy between close dates and, on the other 
hand, interesting features of the dynamic may be missed out. The application of a sensitivity 
analysis method to the daily output of a dynamic model can result in a very large number of 
sensitivity indices (one index per daily output). It is not easy to identify the most important 
parameters based on such a large number of values (Campolongo et al, 2007). As an 
alternative, Campbell et al. (2006) proposed to decompose time series upon a complete 
orthogonal basis and to compute sensitivity indices on each component of the decomposition. 
However, no single global index has been proposed for summarizing the sensitivity of a time 
series to parameter values.   

In this paper, we follow on this proposal and present the multivariate sensitivity 
analysis under a global framework coherent with classical multivariate methods. A 
generalized index is defined which synthesizes the effect of each model parameter on the 
whole time series output. It may be used to select a subset of parameters to be calibrated or to 
simplify a complex model. In addition a quality criterion is proposed for any approximation 
associated with the decomposition. In section 2, we present a global sensitivity analysis 
method adapted to discrete-time models. Section 3 illustrates this method on a dynamic crop 
model, section 4 presents a R-program developed for computing the generalized sensitivity 
index, and section 5 concludes.  
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2. Method 

 

2.1. Time series output 

We consider a deterministic and dynamic model with discrete time step  

 ( ) ( )y t f t θ= , ; ,z  (1) 

where ( )y t  is the scalar output on time t  for 1 2t … T= , , , , z  is a vector of input variables and 
θ  is a vector of parameters. Input variables and parameters will be further referred to as input 
factors. In the case study presented in Section 3, the input variables will be assumed to be 
known so that the parameters θ  will be the only sources of uncertainty to be considered in the 
sensitivity analysis.  

Suppose that N  simulation runs are performed, using equation (1) with different values of the 
input factors. Then the output can be stored in a N T×  matrix:  

 

1 1 1(1) ( ) ( )

. . . . .

(1) ( ) ( )

. . . . .

(1) ( ) ( )

i i i

N N N

y … y t … y T

y … y t … y T

y … y t … y T

 
 
 
 = .
 
 
 
 

Y  

Each column ( )ty  in Y  represents the simulated values of the output variable on a given time 
t , while each row of Y  is an individual dynamic for a given set of input values. The rows of 
Y  constitute a sample of output dynamics in TR  over the uncertainty domain of the input 
factors. In the sequel, we assume thatN T≥ .  

Conducting separate sensitivity analyses on (1) ( )… T, ,y y  gives information on how the 
sensitivity of ( )y t  evolves over time. However, it leads to a high level of redundancy because 
of the strong relationship between responses from one date to the next one. It may also miss 
important features of the ( )y t  dynamics because many features cannot be efficiently detected 
through single-time measurements.  

Alternatively, sensitivity analyses can be applied to pre-defined functions ( (1) ( ))h y … y T, ,  
with an biological interpretation. For example, h  may represent the difference in biomass 
between two stages of plant growth. Many functions of (1) ( )y … y T, ,  are potentially 
interesting to look at and there is a need for methods to identify automatically the most 
interesting features in the ( )y t  dynamics.  

2.2. Principal Components Analysis 

The Principal Components Analysis (PCA) is a method to decompose the whole variability, 
or total inertia, in Y  (Krzanowski and Marriott, 1990). The total inertia is defined as 

( ) trace( ' )c c cI =Y Y Y , where cY  is the matrix Y  with each column centered around its mean 

and possibly normalized. Thus 'c cY Y  is the empirical variance-covariance matrix of the 

columns of Y  if cY  has not been normalized, or it is the empirical correlation matrix between 

the columns of Y , with 1 on the diagonal, if the columns of cY  have been normalized. It 

follows that the total inertia is also equal to the sum of the ( )ty  variances, or to T  if the 
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columns in cY  have been normalized. Saporta (2006) provides a detailed treatment of 

principal component analysis methodology. 

The PCA decomposition is based on the eigenvalues and eigenvectors of 'c cY Y . Let 

1λ ,…, Tλ  denote the eigenvalues of 'c cY Y  in decreasing order (with eigenvalues repeated 

according to their multiplicity if any) and let L  denote a T T×  matrix of normalized 
eigenvectors of 'c cY Y , with column kl  an eigenvector associated with kλ . The N T×  matrix 

H  of Principal Components (PC) is obtained by  

 c= .H Y L  (2) 

Its columns kh , for 1 2k … T= , , , , are mutually orthogonal linear combinations of the cY  

columns satisfying k c k=h Y l  and 
2

k kλ=h . By construction, H  has the same total inertia as 

cY , but this inertia is concentrated as much as possible in the first principal components.  

 

Example 

To follow this approach more easily, let us take a very simple example  

 ( )y t a b t= + ×  

where the uncertain values of parameters a  and b  are assumed to vary in the interval [ 1 1]− , . 
For a maximum of simplicity, we pay attention to the model output at 0t =  and t T=  only, 
where T  represents the latest time of interest, and we consider four simulations performed at 
the 1±  combinations of a  and b  (a=1 and b=1; a=1 and b=−1; a=−1 and b=1; a=−1 and 
b=−1). 

In this example, the Y  matrix of simulation outputs and its normalized version cY  are 

centered. They are given by  

 

1 1 1 (1 )

1 1 1 (1 )1

1 1 1 ( 1 )2

1 1 1 ( 1 )

c

T T

T T

T T

T T

α
α
α
α

+ + /   
   − − /   = , = ,
   − − + − − + /
   − − − − − − /   

Y Y  

with 21 Tα = + .  

The eigenvalues of 'c cY Y  are equal to 11 α −+  and 11 α −− . Up to normalization constants, the 

first principal component is equal to the mean of (0)y  and ( )y T  and the second principal 
component is equal to the difference between (0)y  and ( )y T . More precisely, the H  
principal components matrix is  

 

1 1

1 11

1 12 2

1 1

T T

T T

T T

T T

α α
α α
α αα
α α

+ + − − 
 + − − + = .
 − − + − + −
 − − − − + + 

H  
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2.3. Sensitivity principal indices 

Sensitivity analyses (SA) can be computed on each principal component (PC). In this paper, 
we consider the SA methods based on a factorial design for the simulations and analysis of 
variance (ANOVA) for the calculation of sensitivity indices (Jansen et al., 1994; Saltelli et 
al., 2000a; Ginot et al, 2006). We denote the s input factors by 1 sF … F, ,  and each factor is 

supposed to vary at m  distinct levels. For example, 1 sF … F, ,  may represent s model 

parameters taking m possible values. The complete factorial design then consists of sN m=  
simulations performed at all combinations of levels of 1 sF … F, , . From now on, we assume that 

Y  is the output matrix from those N  simulations and that H  is issued from the PCA of Y .  

Because of the orthogonality properties of the complete factorial design, there is a unique 
ANOVA decomposition for the variance of each principal component:  

 
2

SSW kk
W

,=∑h  (3) 

where the W ’s are the factorial terms in the ANOVA (main effects and interactions) and 
SSW k,  denotes the sum of squares associated with W  for the k th principal component. Note 

that the W ’s in the summation should include a residual term if the ANOVA model is not 
complete.  

Recall that 
2

k kλ=h  with kλ  the inertia associated with the k th principal component. Then 

SSW k,  is the part of that inertia accounted for by the factorial term W  and the sensitivity 

principal indices in the k th principal component kh  can be defined as  

 SS
SI

W k
W k

kλ
,

, = ,  

so that their values lie between 0 and 1. The first order sensitivity indices correspond to the 
case when W  is a main effect. The total sensitivity indices are calculated by summing the 
sensitivity indices SIW k,  over all factorial terms W  which include a given input factor (Salteli 

and al, 2000).  

From a technical point of view that will be useful in the sequel,  

 
2

SSW k W k, = S h  (4) 

                             trace( ' ')c W c= k kY S Y l l  (5) 

where WS  is the orthogonal projection matrix on the subspace associated with W  in NR .  

Example (continued) 

The complete ANOVA model includes the main effects of A  and B  and the interaction A B. . 
There is no general mean because the data are centered. The projection matrices are  

 

1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 11 1 1

1 1 1 1 1 1 1 1 1 1 1 14 4 4

1 1 1 1 1 1 1 1 1 1 1 1

A B A BS S S.

− − − − − −     
     − − − − − −     = , = , = .
     − − − − − −
     − − − − − −     
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Using equation (4), we get 1 21
1 2 (1 )SSA α −
, = + , 21

1 2 (1 )SSB α −
, = − , 1 21

2 2 (1 )SSA α −
, = − , 

21
2 2 (1 )SSB α −

, = − , 1 2 0SS SSA B A B. , . ,= = .  

The sensitivity principal indices are 11
1 2 (1 )SIA α −
, = + , 11

1 2 (1 )SIB α −
, = − , 11

2 2 (1 )SIA α −
, = − , 

11
2 2 (1 )SIB α −

, = + , 1 2 0SI SIA B A B. , . ,= = . SIA,1 and SIB,1 measure the first order sensitivity of the 

first principal component to the two model parameters A  and B . SIA,2 and SIB,2 measure first 
order sensitivity of the second principal component to the two model parameters. 

  

2.4. Generalized sensitivity  indices 

In addition to the sensitivity indices on each principal component, it is interesting to quantify 
the contribution totalSSW,  of each factorial term W  to the total inertia. This is precisely the 

decomposition performed in multivariate analysis of variance (MANOVA), which is the 
generalisation of ANOVA to multivariate responses (Anderson, 2003). In MANOVA, the 
decomposition in equation (3) is applied to the total inertia and becomes  

 total( ) SSWc
W

I ,=∑Y  (6) 

where  

 
2

totalSSW W c, = S Y  (7) 

                        trace( ' )c W c= Y S Y  (8) 

                                   
1

trace( ' ')
T

c W c
k=

=∑ k kY S Y l l  (9) 

            
1

SS
T

W k
k

,
=

= .∑  (10) 

because 
1

'
T

k=∑ k kl l  is the T T×  identity matrix.  

The various decompositions of the total inertia are summarized in Table 1. The finest 
decomposition is into the SSW k,  terms. Sums over W  give the inertia kλ  associated with the 

principal components, whereas sums over k  give the MANOVA decomposition of the total 
inertia among the factorial terms. All sensitivity indices presented in this paper arise from the 
quantities in table 1.  

To measure contributions to the total inertia, the generalized sensitivity index of any factorial 
term W  is defined as  

 totalSS
GSI

( )
W

W

cI
,= .

Y
 (11) 

The first order generalized sensitivity indices correspond to the case when W  is a main effect. 
The total generalized sensitivity indices are calculated by summing the generalized sensitivity 
indices GSIW  over all factorial terms W  which include a given input factor.  
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Factorial term Principal Component Inertia 

 1PC  2PC  3PC  … PCT   

A  1SSA,  2SSA,  3SSA,  … SSA T,  totalSSA,  

B  1SSB,  2SSB,  3SSB,  … SSB T,  totalSSB,  

. . . . . . . 

A B.  1SSAB,  2SSAB,  3SSAB,  … SSAB T,  totalSSAB,  

. . . . . . . 

W  1SSW ,  2SSW ,  3SSW ,  … SSW T,  totalSSW ,  

. . . . .  . . 

Inertia 
1λ  2λ  3λ  … 

Tλ  ( )cI Y  

Table 1. Sum of squares decomposition of the total inertia ( )cI Y  based on PCA and 

MANOVA. A  and B  denote the first two parameters, A B.  their interaction, and W  a generic 
factorial term. 

 

Example (continued) 

Table 2 presents the decomposition in Table 1 when applied to the example. Thus, 
21

GSI
2

A

α −+=  is the part of inertia explained by factorA  and 
21

GSI
2

B

α −−=  the part of 

inertia explained by factorB . There is no interaction between factors A  and B  as expected 
from an additive model. Factor A  has more global importance than B , but the difference 
tends to zero when T  increases. Note that the results are strongly influenced by the 
normalization performed on Y .  

 

Factorial  term Principal Component Inertia 

 1PC  2PC   

A  1 21
2 (1 )α −+  1 21

2 (1 )α −−  21 α −+  

B  21
2 (1 )α −−  21

2 (1 )α −−  21 α −−  

A B.  0  0  0  

Inertia 11 α −+  11 α −−  ( ) 2cI =Y  

Table 2. Sum of squares decomposition for the small example model. 

 

2.5. Approximation quality 

In practice, the methodology described in this section is often approximated by considering 
only the first P  principal components and by restricting the ANOVA terms to the main 
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effects and a few interactions. Thus, we define the approximate generalized sensitivity index 
of W  as  

~
1

1

SS
P

W kk
w P

kk

GSI
λ

,=

=

= .∑
∑

 

The quality of the approximation can be quantified by the proportion of inertia preserved by 
the approximation. We thus define the approximation global quality by  

 
SS

GQ
( )

W kW k

cI

,,= ,
∑

Y
 (12) 

where the summation is restricted to the pairs ( )W k,  of principal component and factorial 

term included in the approximation. For example, GQ in the example equals 11
2 (1 )α −+  if all 

factorial terms but only the first principal component are kept. By analogy to the coefficient 
of determination, if GQ is close to 1 then the approximation accounts for most the inertia of 

Y , whereas low GQ suggests that 
~

wGSI  indices must be interpreted with much caution.  

In addition to the global quality criterion, the dynamic coefficient of determination allows to 
assess the approximation quality directly on the original time series ( )y t . In fact, going back 
to the time series from the approximation produces an approximate (normalized or not) output 

matrix 
~

cY . If the approximation includes the same factorial terms for all of its P  principal 

components, the approximate output matrix 
~

cY  is obtained by the formula  

 
~ ~ ~

'c W
W

Y S H L= . ,∑  (13) 

where 
~

H  (resp. 
~

L ) contains the first P   columns of predicted 
^

H  (resp. L ) and where the 
summation on W  is restricted to those factorial terms in the approximation. In the general 
case, the approximation is  

 
~ ~ ~

',c subY H L=  (14) 

where the k th column of 
~

subH , for 1k … P= , , , equals 
^

W kW
S h∑  with the summation 

restricted to the W ’s such that the pair ( )W k,  is included in the approximation.  

 

The dynamic coefficient of determination is calculated by considering the columns ( )y t  of 

the matrix of outputs cY  and the columns 
~

( )y t  of  the approximated matrix of output 
~

cY . At 

time t, this coefficient is expressed as 

 
( )

2~

1
2

2

1

( ) ( )

( ) ( )

N

ii

t N

ii

y t y t
R

y t y t

=

=

 − 
 = .

−

∑

∑
 

for 1t …T= . 
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3. Application  

 

3.1. Model description 

We consider a dynamic crop model running at a daily time step, called the Winter Wheat Dry 
Matter model (WWDM) (Makowski et al., 2004; Monod et al., 2006). It has two state 
variables, the above-ground winter wheat dry matter ( )U t  and the leaf area index ( )LAI t , 
with t  the day number from sowing ( 1t = ) to harvest ( 223t = ). The state variable ( )U t  is 
calculated on a daily basis in function of the cumulative degree-days ( )T t  (over a basis of 

0oC ) and of the daily photosynthetically active radiation ( )PAR t . The model equations are 
defined by  

 ( )
max( 1) ( ) 1 ( ) ( )K LAI t

b iU t U t E E e PAR t tε− . 
 
 

+ = + − +  (15) 

and  

 2

1

( ( ) )
max ( ( ) )

1
( )

1
B T t T

A T t T
LAI t L e

e

 
− 

 − − 
 

= −
+

 (16) 

where ( )tε  is a random term with zero expectation representing the model error. In the 
sequel, we shall consider only the deterministic part of the model and so the latter term will be 
neglected. The dry matter at sowing (1t = ) is set to zero : (1) 0U = . In addition, the constraint 

1
2 1log[1 exp( )]BT A T= + ×  is applied, so that (1) 0.LAI =   

 

 
Figure 1. Daily simulated values of the dry matter increase ( ) ( 1)U t U t− − , using the nominal 
values of the WWDM model parameters. 
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Parameter Interpretation Nominal 
value 

Uncertainty 
interval 

bE  radiation use 
efficiency 

185 0.9-2.8 

maxiE  maximal ratio of 
intercepted to incident 

radiation 

0.94 0.9-0.99 

K  coefficient of 
extinction 

0.7 0.6-0.8 

maxL  maximal value of 
LAI  

7.5 3-12 

1T  temperature threshold 900 700-1100 

A  - 0.0065 0.0035-0.01 

B  - 0.00205 0.0011-0.0025 

Table 3. Uncertainty intervals for the winter wheat dry matter model parameters. 

 

There are seven free parameters, which are considered uncertain for the sensitivity analysis. 
Most of them have a meaningful interpretation. Uncertainty intervals in Table 3 were given by 
agronomists (Monod et al. 2006). Usually the climate should form one or several input factors 
for the sensitivity analysis. Here, preliminary investigations on 14 annual climate series 
showed little differences between years. For simplicity, results with a single series are 
presented. 

The model output to be considered is the dynamic evolution of the dry matter ( )U t  from 
sowing ( 1t = ) until harvest ( 223t = ). It is represented in Figure 1 for the nominal values of 
the parameters.  

 

3. 2. Simulation design 

A complete 73  factorial design (seven parameters at three levels) was constructed. With three 
levels, it is possible to estimate the linear and quadratic effects of quantitative factors. The 
three levels of each factor were the two bounds of the factor uncertainty interval and their 
mean. The number of simulations was 73 2187N = = .  
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3.3. Results 

 

3.3.1. Principal components analysis 

The PCA showed that 95% of the total inertia between the simulated dry matter dynamics was 
concentrated in the first three principal components, with 1 0 54λ = . , 2 0 36λ = .  and 3 0 05λ = . .  

PCA results and sensitivity principal indices are presented in Figure 2, with one column of 
graphics per principal component k , for 1 3k …= , , . The top row displays the correlation of 
the principal component hk,, for 1 3k …= , ,  with the outputs yt, for 1t … T= , ,  as a function of 
day t , and the second row shows the first order and total sensitivity  indices of the seven input 
factors on each PC.  

 

 

Figure 2. Correlations of the First three principal components with the output variables (top) 
and sensitivity indices on the first three principal components (bottom).  The main sensitivity 
indices are in dark bars and interaction ones are in pale bars. The total length of any bar 
represents the total sensitivity index. 

 

The first PC correlation with outputs had positive coordinates, with the largest ones in the 
middle of the time span. The first PC was thus associated with the global amount of dry 
matter all along the crop growth. It was mainly sensitive to parameter Eb. The second PC 
correlation was negative for half the time span, and then positive. Thus it opposed slow to fast 
growing dynamics relatively to the average behaviour. It was mainly sensitive to parameter A. 
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The third PC accounted for a much smaller part of inertia, associated with an opposition in the 
dry matter increase between the middle and both extremes of the dynamics. It was sensitive to 
the interaction between T1 but other sensitivity indices were close. Clearly, the most three 
important parameters appeared to be A, Eb and Ti, but sensitivity principal indices were not 
sufficient to identify the most important among these three parameters.  
 

 

3.3.2. Generalized Sensitivity  Index 

The Generalized sensitivity indices (GSI) are shown in Figure 3. GSI and the approximated 
~

GSI with 3P =  lead to the same conclusions. Indeed, the rankings of factorial terms are the 
same. The three important parameters are Eb (the most important parameter), A (the second 
most important parameter) and T1 (the third most important parameter). These results confirm 
the previous sensitivity analyses on PCs and bring new information by ranking the 
parameters. For instance, if one has to choose two parameters to calibrate, these parameters 
should be Eb and A.  

 

Figure  3. Generalized Sensitivity Indices GSI (right) and approximated indices 
~

GSI (left) 
for the WWDM model. The main sensitivity indices are in dark bars and interaction ones are 
in pale bars. The total length of any bar represents the total sensitivity index. 

 

The dynamic coefficients of determination are shown in Figure 4, for an ANOVA model with 
main effects and two-factor interactions and for various numbers of PCs. It is logical that the 
dynamic coefficients of determination increase with the number of PCs included in the 
approximation, but for this application, considering the first three PCs or all the PCs lead to 
the same results. The approximations are good (GQ 0 80≥ . ) except for the end of the crop 
growth.  
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Figure 4. Dynamic coefficient of determination with the first one, the first two, the first three 
or with all principal components, and with main effects and two-factor interactions in the 
ANOVA models. 

 

4. GSI R-Program 

 
A R function was developed to compute the global sensitivity index defined in section 2. This 
function is named GSI and is available upon request. It is based on the free language R 
(www.cran-r.org) and can be easily used to implement our method with other dynamic 
models. The inputs of the function are: the experimental design including the levels of the 
model input factors, the output matrix including the model simulations corresponding to the 
experimental design, the maximal order of the interactions among factors, the number of 
principal component to be considered.  The function proceeds in four steps: 

(a) principal components analysis on the output matrix; 
(b) ANOVA analyses on the principal components; 
(c) computation of the sensitivity indices for each principal component;  
(d) computation of the generalized sensitivity indices and goodness of fit 

assessment. 
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The outputs of the GSI function are: the values of the classical sensitivity index for each 
principal component (main and total effects), the generalized sensitivity index (main and total 
effects), the values of the dynamic coefficient of determination, and the global criterion. 
Results are also presented graphically as shown in figures 2 and 3.  

 

5. Conclusion 

 

In this paper, we proposed a generalized index to study the sensitivity of time series 
output to parameter values. This index is based on a principal component analysis and can be 
easily computed by using a set of model simulations derived from a factorial design. It can be 
used to identify the parameters of a discrete-time model that must be estimated from 
experimental data. The method considered in this study allows biologists to summarize the 
sensitivity of a time series output to several parameters and so, to determine which subset of 
parameters accounts for most of the output variance. Our approach could contribute to model 
simplification and a reduction of the number of experiments performed for estimating the 
parameters of discrete-time models. 

In this paper, our method was applied to a model including seven parameters. The 
results showed that two parameters had a strong influence on the wheat biomass simulated by 
the model at a daily time step; the radiation use efficiency and a parameter of the 
mathematical function describing the kinetic of the leaf area index. We also showed that the 
index could be accurately computed by using only the first three principal components.   

 The method presented in this paper is quite general and can be applied to any dynamic 
model predicting one or several output variables at a discrete time step (e.g KLM model used 
in Campolongo et al. (2007), SWEB model described in Rizo et al. (2005) etc.). We provide a 
R-function for running any sensitivity analysis on discrete-time models. In this paper, the 
decomposition of the total inertia was based on principal component analysis and the 
simulations were computed from a factorial design. In the future, it will be interesting to 
extend the method. For example, principal components could be made more flexible by 
considering functional principal components (Ramsey and Silverman, 1997). Alternatively 
they could be replaced by Legendre polynomials (Campbell et al, 2006) and factorial designs 
by Monte Carlo simulations. It will be interesting to study the consequences of these 
alternatives on the results of the sensitivity analysis.  
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