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Abstract

We investigate the parameter identifiability problem for a system of nonlinear integro-
partial differential equations of transport type, representing the spread of a disease with
a long infectious but undetectable period in an animal population. After obtaining the
expression of the model input-output (IO) relationships, we give sufficient conditions on the
initial and boundary conditions of the system that guarantee the parameter identifiability
on a finite time horizon. We finally illustrate our findings with numerical simulations.
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1 Introduction

Epidemiological models are useful tools to describe the spread of a disease in a population,
to predict its evolution and control its outbreak. They usually derive from the classical SIR
model, a compartmental model in which the population is structured in susceptible, infected
and recovered individuals. Depending on the interactions between host and pathogen, as well as
their time and space scales, several models have been built, dating back to Kermack-McKendrick
[1, 2].

The model we investigate in this paper is a SI-like model, a simplified version of a model
developed to study the spread of scrapie in a sheep flock [3]. It is characterised by a long and
variable incubation period, during which individuals are infectious but cannot be detected. At
the end of this period, either they are culled, or they recovered and become immune. In both
cases, they do not participate in the infection process anymore and need not be represented in
the model. The flock is assumed to be a well-mixed population confined on a limited territory,
so the space dimension can be omitted. It is however structured in age (a ∈ [0, A]) and infection
load (θ ∈ [0, 1]). Newly infected individuals are distributed along θ according to a probability
density function Θ (support [0, 1]). The infection load θ then grows exponentially with time
during the incubation period, which ends when θ reaches 1. An alternative option would have
been to structure the infected population according to an age of infection instead, leading to
a model similar to [4]. Whatever the modelling, it yields a distributed delay structure. The
resulting susceptible (S) and infected (I) population densities evolve with time (t ∈ [0,+∞[)
according to the following nonlinear integro-partial differential dynamical system of transport
reaction type

(

∂

∂t
+

∂

∂a

)

S(t, a) = −µS(t, a) − βS(t, a)I(t), (1)

(

∂

∂t
+

∂

∂a
+ cθ

∂

∂θ

)

I(t, a, θ) = −(µ + c)I(t, a, θ) + Θ(θ)βS(t, a)I(t), (2)

where positive parameters µ, β, and c correspond to, respectively, the basic mortality rate, the
transmission rate, and the infection load growth rate (dθ

dt
= cθ). I(t) =

∫ A

0

∫ 1
0 I(t, a, θ) dθ da

denotes the total number of infected individuals at time t. Boundary conditions are given by

S(t, 0) = B(t), I(t, 0, θ) = 0, I(t, a, 0) = 0, (3)

where B is the birth function, and initial conditions by

S(0, a) = S0(a), I(0, a, θ) = I0(a, θ). (4)

The system input is the birth function B. The system outputs are observed on a given finite
time horizon T > 0 and consist of the total population density given by

N(t, a) = S(t, a) +

∫ 1

0
I(t, a, θ) dθ, (5)

and the incidence given by
i(t, a) = c I(t, a, 1), (6)

which corresponds either to the disease-induced mortality, or to the recovery outflow. Indeed,
infected individuals cannot be distinguished from susceptible individuals during their infectious
incubation period. Unlike the demographic parameter µ and function B which are estimated
[5] or known, epidemiological parameters c, β and function Θ need to be identified from output
observations.
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An important issue is therefore to check whether these epidemiological parameters are iden-
tifiable, i.e. whether they can be uniquely determined from the input, initial conditions and
observed outputs. It is an inverse problem that consists in establishing that the map from pa-
rameters to outputs is into, the input and initial conditions being known. This property is a
prerequisite to the model identification, in which parameters are estimated from observed data.

There is a well-established theory for the identifiability of controlled and uncontrolled dy-
namical systems described by ordinary differential equations [6, 7]. Three main approaches have
been used: (i) the state isomorphism method [8, 9]; (ii) the Taylor series expansion method [10];
(iii) the algebro-differential elimination method [11, 12, 13], aiming at obtaining and exploiting
algebro-differential relations between the input and output of the system.

In infinite dimension, identifiability results exist for fairly general classes of linear problems.
Results concerning convolutive systems, which include the delay-differential equations, can be
found in [14, 15, 16]. Identifiability results derived from the use of spectral theory are given
in [17] for the 1-D heat and wave equations with boundary observations as well as for abstract
homogeneous evolution equations with whole state observation. Results on various classes of
linear models with point-wise observation where obtained using Carleman estimates, for instance
for the Schrödinger equation [18] or for a non-stationary particle transport equation (see [19] and
references therein). In the nonlinear case, we only found results dealing with parabolic equations
using Carleman estimates [20, 21, 22].

To our knowledge, the identifiability of nonlinear transport reaction models, such as the
model presented here, has never been considered before. Our aim is to check the identifiability
of this model, which is therefore an original study. Our approach is adapted from the finite
dimensional elimination method.

The document is organised as follows: identifiability results are stated in Section 2; Section 3
establishes an input-output (IO) relation for the model; the proofs, based on algebro-differential
elimination are given in Sections 4 and 5. Results are illustrated by simulations in Section 6.
Finally, we conclude in Section 7.

2 Identifiability results

As mentioned in the introduction, the parameters of interest are the epidemiological parameters.
They are gathered into a vector p = (c, β,Θ)T belonging to P = (R+∗)2 ×A0, where A0 is the
set of real-analytic functions on ]0, 1[, continuous on [0, 1], with zero values at 0 and 1.

Denoting H+
S = L2 ([0, A], R+), H+

I = L2([0, A] × [0, 1], R+) and Cp(J1, J2) the set of piece-
wise continuous functions from J1 to J2 it has been shown in [23] that for T > 0, (S0, I0) ∈ H+

S ×
H+

I , B ∈ Cp([0, T ], R+), and p ∈ P system (1-4) has a unique mild solution in C([0, T ],H+
S ×H+

I )
and outputs in C([0, T ],H+

S )2. Moreover, with stronger regularity assumptions on the ini-
tial conditions (S0, I0) ∈ Cp([0, A], R+) × Cp([0, A] × [0, 1], R+), solutions satisfy (S(t), I(t)) ∈
Cp([0, A], R+) × Cp([0, A] × [0, 1], R+). Consequently, the outputs N(t, ·) and i(t, ·) are both in
Cp([0, A], R+). We assume in the sequel that all these assumptions are verified. We also assume
that the initial conditions (S0, I0) are fixed and known. Hence the parameter to output map O
is defined from P to the set

{(N, i) ∈ C([0, T ],H+)2 /∀ t ∈ [0, T ], (N(t), i(t)) ∈ Cp([0, A], R+)2}.

A subset Q of P is said to be identifiable if the restriction O|Q is into.

We are now in a position to state our first identifiability result.
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Let θ⋆, c⋆, B, B, Q⋆ and R⋆ be defined as

θ⋆ = sup{θ ∈]0, 1[, ∃a⋆ ∈]0, A[, I0(a
⋆, θ) > 0},

c⋆ = −
1

m
ln θ⋆, where m = min(A,T ),

B = {t ∈ [0, T ], B(t) 6= 0}, B = inf B,

Q⋆ =]c⋆,+∞[×R+∗ ×A0, R⋆ =]0, c⋆[×R+∗ ×A0,

(7)

Consider the following conditions on (3,4),

(H1) The birth function B is such that B is a finite union of disjointed intervals (not reduced
to singleton sets since B is piecewise continuous).

(H2) ∃ t′ ∈ [0,m] such that ]B, t′] ⊂ B and t 7→ S0(A− t) has two discontinuity points t1 < t2 ∈
B ∩ [0, t′[.

Theorem 1.

1. Q⋆ is identifiable if either B = 0 and (H1) holds or if B > 0 and (H1) and (H2) hold,

2. R⋆ is not identifiable.

Theorem 1 shows that Q⋆ is identifiable under realistic hypotheses on the input B and the
initial condition (S0, I0). Hypothesis (H1) includes seasonal birth functions, that correspond
to real situations in many animal populations. Hypothesis (H2) is a technical assumption that
is not too restrictive on the initial conditions. We are convinced that it could be made more
realistic, or even unnecessary in future work.

Moreover, in the definition of Q⋆, a condition on the infection load growth rate appears,
stating that it should be bigger than a threshold value c⋆ that depends on the initial condi-
tion I0. The biological interpretation of this condition is clear: for such growth rates, some
initially infected animals necessarily die of the disease (i.e. their load reaches value 1) during the
observation period.

In order to obtain Theorem 1, we assumed that the initial conditions were fixed and known.
However, whatever the time, getting to know the state of the system is not easy in practical
situations, unless perhaps in an experimental setting. When restricting Θ to a suitable para-
metric family, it is possible to prove the identifiability of the epidemiological parameters on the
whole parameter space with weaker assumptions on the initial conditions, as stated in the two
following theorems.

We now assume that the initial conditions (S0, I0) are fixed, but they are not known. Then
we have

Theorem 2. Assume that (H1) holds and let G ⊂ A0 be such that for all (Θ, Θ̄) ∈ G2, ∀(c, c̄) ∈
(R+∗)2, ∀(α, ᾱ) ∈ (R+∗)2,

(∀θ ∈ [0, 1], c̄θc̄Θ̄(θc̄) = cθcΘ(θc)) ⇒ (c̄ = c, Θ̄ = Θ) (8)

and

∀θ ∈ [0, 1],
c̄

α
θc̄Θ̄(θc̄) −

c

ᾱ
θcΘ(θc) = F(θc) − F̄(θc̄)

⇓ (9)

(α = ᾱ, c = c̄ and Θ = Θ̄),
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where F and F̄ denote the cumulative distribution function of Θ and Θ̄.

Then Q⋆
G = (R+∗)2 × G is identifiable.

Theorem 2 ensures that, given a suitable parametric family for the first infection load distri-
bution, Q⋆

G is identifiable under the realistic hypothesis (H1). This theorem has a very strong
practical interest, because when dealing with parameter identification on experimental data, Θ is
indeed restricted to a parametric family of p.d.f., such as for instance the two-parameter family
of Beta p.d.f. with support in [0, 1]. For this family, it is easily checked that conditions (8) and
(9) hold.

Note that in Theorem 2, the initial conditions are assumed to be fixed but unknown. As-
suming now that they are not fixed, they have to be included in the unknown parameter vector.
Hence the “extended parameter” to output map is now defined on PE = P × Cp([0, A], R+) ×
Cp([0, A] × [0, 1], R+).

Theorem 3. Let G ⊂ A0 be as in Theorem 2, and assume that B = 0. Then for all p =
(c, β,Θ, S0, I0)

T ∈ PE, p̄ = (c̄, β̄, Θ̄, S̄0, Ī0)
T ∈ PE such that I(0) = Ī(0),

O(p) = O(p̄) ⇒ (c = c̄, β = β̄, Θ = Θ̄).

3 Input-Output relationships

A standard strategy to investigate identifiability problems is to seek differential IO relationships
of the model. To this end, we use an alternative expression of the incidence (6). It can be
deduced from the mild solution of (1-4) given in [23] by

S(t, a) =

{

S0(a − t)e−(µt+β
R t
0
I(s) ds) for a > t,

B(t − a)e−(µa+β
R t
t−a

I(s) ds) for a 6 t,
(10)

I(t, a, θ) =











S0(a − t)e−µt
∫ t

0e
c(s−t)Θ

(

θec(s−t)
)

βI(s)e−β
R s
0

I(u)duds

+I0(a − t, θe−ct)e−(µ+c)t for a > t,

B(t − a)e−µa
∫ t

t−a
ec(s−t)Θ

(

θec(s−t)
)

βI(s)e−β
R s
t−a

I(u)duds for a 6 t.

(11)

Let us define the non-negative real-analytic function on R+∗, continuous on R+

X(τ) = c e−cτΘ(e−cτ ), (12)

Note that X is the p.d.f. corresponding to the incubation period (τ = −1
c

ln θ). Then, for
(t, a) ∈ [0, T ] × [0, A] and t 6 a, one has

i(t, a) = S0(a − t)e−µt

∫ t

0
X(t − s)βI(s)e−β

R s
0

I(u)duds

+ cI0(a − t, e−ct)e−(µ+c)t,

(13)

and, for (t, a) ∈ [0, T ] × [0, A] and t > a,

i(t, a) = B(t − a)e−µa

∫ t

t−a

X(t − s)βI(s)e−β
R s

t−a I(u)duds. (14)

We now define D = {(t, a) ∈ [0, T ] × [0, A], a 6 t} and introduce the function y defined on
D by

y(t, a) =

∫ t

t−a

X(t − s)βI(s)e−β
R s
t−a

I(u)du ds. (15)
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In the sequel we shall also denote

DB = {(t, a) ∈ D, t − a ∈ B}, D = ∂a + ∂t .

Therefore, y is known on DB since y(t, a) = i(t,a)
B(t−a)e−µa on DB. Moreover, the following key result

holds.

Proposition 1. On D, y and Dy are C1, ∂ay is differentiable and

D∂ay(X(a) − y) = ∂ay(X ′(a) − Dy). (16)

On DB, Eq. (16) defines an IO relation for the system.

Proof 1. Consider ỹ defined on D by

ỹ(t, a) = c

∫ t

t−a

e2c(s−t) Θ′(ec(s−t))β I(s) e−β
R s
t−a

I(u)du ds.

From Eq. (11) the function t 7→ I(t) is differentiable on [0, T ] and has a piecewise continuous

derivative. Consequently, t 7→ e−β
R t
0
I(u)du ∈ C1([0, T ]) and y(t, a) has partial derivatives in a

and t on D, expressed as

∂ay = X(a)βI(t − a) − βI(t − a)

∫ t

t−a

X(t − s)βI(s)e−β
R s
t−a

I(u)duds

= X(a)βI(t − a) − βI(t − a)y(t, a) = βI(t − a) (X(a) − y) , (17)

and

∂ty =−X(a)βI(t−a)−c

∫ t

t−a

X(t − s)βI(s)e−β
R s
t−aI(u)duds

− c2

∫ t

t−a

e2c(s−t) Θ′(ec(s−t))β I(s) e−β
R s
t−a I(u)du ds

+ βI(t − a)

∫ t

t−a

X(t − s)βI(s)e−β
R s
t−a I(u)duds

= −X(a)βI(t − a) − cy + βI(t − a)y − cỹ. (18)

Moreover, standard results on integrals depending on parameters imply that the functions y and
ỹ are continuous on D. From Eq. (17,18) we deduce that ∂ay and ∂ty are continuous functions
on D and consequently y is C1 on this set. Similar arguments prove that ỹ is also C1. Summing
(17) and (18) leads to Dy = −c y − c ỹ, which proves that Dy is C1. Since y is C1 and t 7→ I(t)
is differentiable, Eq. (17) implies that ∂ay is differentiable. Applying the operator D to (17),
since D

(

I(t − a)
)

= 0, leads to

D∂ay = β I(t − a) (X ′(a) − Dy). (19)

Eq. (16) is obtained by combination on D of Eq. (17) and (19).

4 Proof of Theorem 1

Let (S0, I0) and B be given and consider (p, p̄) ∈ P2 such that

O(p) = O(p̄). (20)
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The theorem is proved by directly checking that O is (or is not) injective, that is by showing
that under the the given hypothesis, (20) implies (or not) p = p̄.

In the sequel, the population densities, the p.d.f. of first infection load and incubation period,
the output vector associated to p̄ shall be denoted as S̄, Ī, Θ̄, X̄ , ī and N̄ ; more generally, all the
quantities wearing a bar will be related to p̄. The same quantities without bar will be related
to p. Note that (20) implies ȳ = y on DB.

As mentioned in the introduction, we start with an algebro-differential elimination step where
ȳ = y is combined with Eq. (16) in order to obtain some relationships between p and p̄.

4.1 Algebro-differential elimination

Algebro-differential elimination between ȳ = y and Eq. (16) in Proposition 1 leads to the
following fundamental result.

Proposition 2. If (20) holds, then

either X = X̄ on R+,

or ∃ (α, ᾱ) ∈ (R+∗)2 / α 6= ᾱ and
1

α
X̄ ′ −

1

ᾱ
X ′ = X − X̄ on R+∗.

In this last case, t 7→ βI(t) and t 7→ β̄ Ī(t) are non zero constant functions on B, whose values
are α and ᾱ respectively.

Let us define My(t, a) = (Dy, y)T , and also M∂ay, Y (a) = (X ′(a), X(a))T and Ȳ (a) =
(

X̄ ′(a), X̄(a)
)T

and finally for x > 0,

R(x) =

∣

∣

∣

∣

∣

∣

∣

X ′(x) X̄ ′(x) ∆(x)

X(2)(x) X̄(2)(x) ∆′(x)

X(3)(x) X̄(3)(x) ∆(2)(x)

∣

∣

∣

∣

∣

∣

∣

, (21)

where we set ∆ = X − X̄ on R+.

Note that from (20), My(t, a) = Mȳ(t, a) and M∂ay = M∂aȳ on DB. The proof of proposition
2 starts with three technical lemmas that make an extensive use of the following remark.

Remark 1. Since Θ and Θ̄ are analytic on ]0, 1[, X, X̄, ∆ and all their derivatives are real-
analytic functions on R+∗. Consequently, either they have isolated zeros in R+∗ or they are
identically equal to zero.

Lemma 1. If (20) holds one gets for all (t, a) ∈ DB

D∂ay(X(a) − X̄(a)) − ∂ay(X ′(a) − X̄ ′(a)) = 0 (22)

[X ′X̄ − XX̄ ′] − y [X ′ − X̄ ′] + Dy [X − X̄ ] = 0. (23)

Proof 2. Let (t, a) ∈ DB. Then either M∂ay(t, a) 6= 0 or M∂ay(t, a) = 0.

In the first case, as Eq. (16) implies that M∂ay(t, a) and (Y (a) − My(t, a)) are colinear,
and so are M∂aȳ(t, a) and (Ȳ (a) − Mȳ(t, a)). It follows that (Y (a) − Ȳ (a)) and M∂ay(t, a) are
colinear, which yields (22). Moreover, Y (a)−My(t, a) and Ȳ (a)−Mȳ(t, a) are also colinear and
consequently (23) holds.

In the second case, Eq. (17) yields β I(t − a)(X(a) − y(t, a)) = 0. It can be easily checked
that when starting from a positive (> 0) infected population at time zero, I remains positive on
[0, T ], so X(a) = y(t, a) = X̄(a). Using (19) we similarly obtain X ′(a) = X̄ ′(a), so (22) and
(23) also hold.
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Lemma 2. If (20) holds one gets for all (t, a) ∈ DB

[X ′X̄ − XX̄ ′] [X ′ − X̄ ′] − [X(2)X̄ − XX̄(2)] [X − X̄]

−y
(

[X ′ − X̄ ′]2 − [X(2) − X̄(2)] [X − X̄]
)

= 0.
(24)

Proof 3. Consider (t, a) ∈ DB. Since B is piecewise continuous, there exists an interval V(a)
such that {a} ( V(a) ⊂ [0, A], and {t} × V(a) ⊂ DB. Therefore we differentiate Eq. (23) w.r.t.
a, which yields, for all (t, a) ∈ DB,

[X(2)X̄ − XX̄(2)] − ∂ay[X ′ − X̄ ′] − y[X(2) − X̄(2)] + Dy [X ′ − X̄ ′] + ∂aDy [X − X̄] = 0.

Using (22) to eliminate ∂ay we obtain

[X ′(2)X̄ − XX̄(2)] − y[X(2) − X̄(2)] + Dy [X ′ − X̄ ′] = 0 ∀(t, a) ∈ DB. (25)

Combining (23) and (25) one gets (24) on DB.

Lemma 3. If (20) holds then R(x) = 0 for all x ∈ R+∗ .

Proof 4. We perform algebro-differential elimination of y in (23) and (24) using operator D
to obtain the following equality

(X − X̄)3
(

−X̄X̄(2)X(3) + X̄X(2)X̄(3) − X(2)X̄(2)X ′ + (X̄ ′)2X(3)

+ XX̄(2)X(3) − X ′X̄ ′X(3) + X̄(3)(X ′)2 + X ′(X̄(2))2

− X(2)XX̄(3) − X̄(2)X(2)X̄ ′ − X̄(3)X ′X̄ ′ + (X(2))2X̄ ′
)

= 0,

which rewrites after some calculation

(∆(x))3 R(x) = 0. (26)

Using similar arguments as in the proof of Lemma 24, Eq. (26) is valid on an open interval of
[0, A] and can be extended to R+∗ consequently to Remark 1. The proof is ended by contradiction:
assume there exists x0 > 0 such that R(x0) 6= 0. By continuity, this is still valid on a neighbour-
hood V(x0) ⊂ R+∗ and equality (26) implies that ∆(x) = 0 for all x ∈ V(x0) and finally, since
the third column of the determinant is null, R(x) = 0 on V(x0) which is impossible.

We now proceed with the proof of Proposition 2. Lemma 3 and (20) imply that, for all x > 0,
there exists λ(x), µ(x), ν(x) ∈ R such that











λX ′ + µX̄ ′ + ν∆ = 0,

λX(2) + µX̄(2) + ν∆′ = 0,

λX(3) + µX̄(3) + ν∆(2) = 0,

(27)

where λ, µ, ν are minors of determinant (21). We can choose ν associated to ∆(2), given by
ν = X ′X̄(2) − X̄ ′X(2). Then two cases may arise.

Case 1. Assume that ν(x) = 0 for all x > 0. The function X̄ ′ is a non zero function on R+∗,
otherwise, by continuity, X̄ would be constant and equal to zero on R+. Therefore, we can find
x1 > 0 such that X̄ ′(x1) 6= 0. By continuity, this is still true in a neighbourhood V(x1) of x1.
Then, for all x ∈ V(x1),

(

X̄ ′(x)
)2

×
d

dx

(

X ′

X̄ ′

)

= 0,
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which implies that there exists a constant c0 such that X ′ = c0 X̄ ′ on V(x1). From Remark 1,
we get X ′ = c0 X̄ ′ on R+∗ and X = c0 X̄ on R+∗ since X(0) = X̄(0) = 0. Taking into account
that

∫ +∞

0 X(x)dx =
∫ +∞

0 X̄(x)dx = 1, we have c0 = 1 and finally X = X̄ on R+∗.

Case 2. Assume that there exists x2 > 0 and a neighbourhood V(x2) ⊂ R+∗ such that
ν(x) 6= 0 for all x ∈ V(x2). Then, from system (27), we deduce that the following equations are
satisfied on V(x2),

λ̃X ′ +µ̃X̄ ′ = ∆, (28)

λ̃X(2)+µ̃X̄(2)= ∆′, (29)

λ̃X(3)+µ̃X̄(3)= ∆(2), (30)

where λ̃ = −λ
ν
, µ̃ = −µ

ν
. Differentiating (28) and subtracting (29) yields, for x ∈ V(x2),

λ̃′X ′ + µ̃′X̄ ′ = 0. (31)

In the same way, differentiating (28) twice and subtracting (30) yields

λ̃(2)X ′ + µ̃(2)X̄ ′ + 2(λ̃′X(2) + µ̃′X̄(2)) = 0. (32)

Finally, differentiating (31) and combining it (32), we get

λ̃(2)X ′ + µ̃(2)X̄ ′ = 0 on V(x2). (33)

From (31) and (33), we have W = 0 on V(x2) where

W =

∣

∣

∣

∣

∣

λ̃′ µ̃′

λ̃(2) µ̃(2)

∣

∣

∣

∣

∣

.

Otherwise, there would exist an open subset V ⊂ V(x2) such that W (x) 6= 0 for x ∈ V. The
unique solution of system (31,33) would be

(

X ′, X̄ ′
)

= (0, 0) on V. This would imply ν(x) = 0
on V, which is impossible. We now distinguish the two following subcases.

Case 2.1. If there exists an open subset V ⊂ V(x2) on which λ̃′(x) 6= 0, then W = 0 on V(x2)
implies that d

dx
(µ̃′/λ̃′) = 0 in V. Consequently, there exists a constant c0 such that X ′ = c0 X̄ ′

on V and we can conclude as in Case 1 that X = X̄ on R+.

Case 2.2. If λ̃′ = 0 on V(x2), then λ̃ is a constant function on V(x2) whose value is denoted
λ̃0. Since X̄ ′ has isolated zeros, Remark 1 and (31) imply that µ̃ is also a constant function
on V(x2) whose value is denoted µ̃0. Consequently, on V(x2), equalities (28) and (29) become
respectively

λ̃0X
′ + µ̃0X̄

′ = ∆,

λ̃0X
(2) + µ̃0X̄

(2) = ∆′.
(34)

By Remark 1, these equalities can be extended to R+∗ and can be used to simplify (24). On DB

one therefore has

[X ′X̄ − XX̄ ′]∆′ − [X(2)X̄ − XX̄(2)]∆ = (λ̃0X + µ̃0X̄)(X̄(2)X ′ − X̄ ′X(2)),

(∆′)2 − ∆ ∆(2) = (λ̃0 + µ̃0) (X̄(2)X ′ − X̄ ′X(2)),

and
(

−y(λ̃0 + µ̃0) + λ̃0X + µ̃0X̄
)(

X̄(2)X ′ − X̄ ′X(2)
)

= 0.

By Remark 1, since ν 6= 0, we conclude that

−y(λ̃0 + µ̃0) + λ̃0X + µ̃0X̄ = 0 on DB. (35)

12



Then, either λ̃0 + µ̃0 = 0, and integrating (34) yields ∆ = X − X̄ = 0. Or λ̃0 + µ̃0 6= 0 and
consequently for all (t, a) ∈ DB

y(t, a) =
λ̃0X(a) + µ̃0X̄(a)

λ̃0 + µ̃0

.

This expression used in (17) yields, for all (t, a) ∈ DB,

λ̃0X
′(a) + µ̃0X̄

′(a) = µ̃0 β I(t − a) (X(a) − X̄(a)). (36)

Denoting J = {a ∈ [0, A], ∆(a) 6= 0}, we easily check that 0 is in the closure of J . Moreover,
equation (36) implies that (t, a) 7→ β I(t − a) is a constant on {(t, a) ∈ DB, a ∈ J } and conse-
quently, for all a ∈ J ∩ [0, T ], t 7→ β I(t) is constant on B ∩ [0, T − a]. Since 0 is in the closure of
J , we conclude that t 7→ β I(t) is constant on B. We denote α this constant, which is positive, as
already mentioned. By the same arguments we also prove that t 7→ β̄ Ī(t) is a positive constant
on B that we denote ᾱ. Then (28) and (36) yield α = 1

µ̃0
. Similarly, ᾱ is positive and such that

ᾱ = − 1
λ̃0

. Substituting these values in (34) yields the desired result.

4.2 Proof of theorem 1, part 1

We assume in this section that (20) is satisfied.

4.2.1 Case where (H1) holds and B = 0

Step 1: proof of X = X̄. By contradiction, assume that there exists x0 > 0 such that
X(x0) − X̄(x0) 6= 0. Then, from Proposition 2, t 7→ β I(t) and t 7→ β̄ Ī(t) are constant positive
functions on B with values

α 6= ᾱ. (37)

Therefore, Eq. (5) can be rewritten as

∫ A

0
S(t, a) da +

α

β
=

∫ A

0
S̄(t, a) da +

ᾱ

β̄
, ∀t ∈ B. (38)

Since B = 0 and S0 = S̄0, letting t tend to 0 in (38) yields α
β

= ᾱ
β̄

and

∫ A

0
S(t, a) da =

∫ A

0
S̄(t, a) da ∀ t ∈ B. (39)

From hypothesis (H1), let t′ > 0 be such that ]0, t′[⊂ B.
Then, on ]0, t′[×[0, A], S satisfies ∂tS + ∂aS = −µ S −αS. Integrating w.r.t. a on [0, A] leads to

∂

∂t

∫ A

0
S(t, a) da + S(t, A) − B(t) = −(µ + α)

∫ A

0
S(t, a) da, ∀t ∈]0, t′[.

The same holds for S̄. Using (39) and its derivative on ]0, t′[ one gets

S(t, A) − S̄(t, A) = (ᾱ − α)

∫ A

0
S(t, a) da, ∀t ∈ B.

Letting t tend to 0, one has α = ᾱ, which contradicts (37) and ends the proof.
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Step 2: proof of β = β̄ and I(t) = Ī(t) for all t ∈ [0, T ]. Substituting X = X̄ in Eq. (17),
one has for all (ξ, a) ∈ B × [0, A]

∂ay(ξ + a, a) = βI(ξ)
(

X(a) − y(ξ + a, a)
)

,

∂ay(ξ + a, a) = β̄Ī(ξ)
(

X(a) − y(ξ + a, a)
)

.

Term to term subtraction yields

(

βI(ξ) − β̄Ī(ξ)
) (

X(a) − y(ξ + a, a)
)

= 0. (40)

By contradiction, assume that there exists ξ0 ∈ B such that βI(ξ0) 6= β̄Ī(ξ0). Since B is
piecewise continuous and ξ 7→ (βI− β̄Ī)(ξ) is continuous, there exists an interval V(ξ0) included
in B, containing ξ0, not reduced to a singleton set, such that (βI − β̄Ī)(ξ) 6= 0 for all ξ ∈ V(ξ0).
Therefore, (40) reduces to

X(a) = y(ξ + a, a), ∀(ξ, a) ∈ V(ξ0) × [0, A]. (41)

This implies that ∂ty(ξ + a, a) = 0 for (ξ, a) ∈ V(ξ0) × [0, A]. Consequently,Eq.(17) becomes
∂ay(ξ + a, a) = 0 on V(ξ0) and differentiating (41) w.r.t a yields

X ′(a) = ∂ty(ξ + a, a) + ∂ay(ξ + a, a) = 0,

for all a ∈ [0, A]. It follows that X ≡ 0 on [0, A]. Then Remark 1 implies that X is null on R+,
which contradicts its definition as a p.d.f., and consequently yields

β I(t) = β̄ Ī(t), ∀t ∈ B. (42)

As B = 0, then 0 is in the closure of B and we deduce successively from Eq. (42) that β = β̄
and then I(t) = Ī(t) for all t ∈ B.

We now prove that I(t) = Ī(t) for all t ∈ [0, T ]. Consider E = {t ∈ [0, T ]/∀s ∈ [0, t], I(s) =
Ī(s)}. From hypothesis (H1), there exists t′ > 0 be such that ]0, t′[⊂ B, hence E is nonempty.
Since I and Ī are continuous on [0, T ], E is a closed subset of [0, T ]. Let s ∈ E. Using hypothesis
(H1), we can choose ε > 0 small enough so that either B > 0 on ]s, s+ε[∩[0, T ] or B is identically
equal to 0 on ]s, s + ε[∩[0, T ]. We show that I = Ī on [s, s + ε[∩[0, T ]. In the first case (B > 0),
since I = Ī on B, the desired result is obviously true. In the second case (B = 0), from (20) and
(5), we have

I(t) − Ī(t) =

∫ A

0
S̄(t, a) da −

∫ A

0
S(t, a) da, ∀t ∈ [0, T ]. (43)

Using (10) and performing the change of variables b = t−a, it follows that for t ∈]s, s+ε[∩[0, T ]

(I − Ī)(t) =

∫ t

0

(

B(b) e−µ(t−b) f

(
∫ t

b

βĪ(ξ)dξ,

∫ t

b

βI(ξ)dξ

)

×

∫ t

b

β (I − Ī)(ξ)dξ

)

db +

(

∫ A−min(t,A)

0
S0(a)da

)

×f

(
∫ t

0
βĪ(ξ)dξ,

∫ t

0
βI(ξ)dξ

)
∫ t

0
β (I − Ī)(ξ)dξ,

where the continuous function f : R2 →]0, 1] is defined by

f : (x, y) 7→

{

− e−x−e−y

x−y
if x 6= y,

e−x if x = y,
(44)
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Since I = Ī on [0, s], we get for t ∈]s, s + ε[∩[0, T ],

(I − Ī)(t) =

∫ s

0

(

B(b) e−µ(t−b) f

(
∫ t

b

βĪ(ξ)dξ,

∫ t

b

βI(ξ)dξ

)

×

∫ t

s

β (I − Ī)(ξ)dξ

)

db +

(

∫ A−min(t,A)

0
S0(a)da

)

f

(
∫ t

0
βĪ(ξ)dξ,

∫ t

0
βI(ξ)dξ

)
∫ t

s

β (I − Ī)(ξ)dξ,

and finally for t ∈]s, s + ε[∩[0, T ],

I(t) − Ī(t) = H0(t)

∫ t

s

(

I(ξ) − Ī(ξ)
)

dξ, (45)

where Hα is defined for 0 ≤ α ≤ B by

Hα : t 7→ β

(
∫ s

α

B(b) e−µ(t−b) f

(
∫ t

b

βĪ(ξ)dξ,

∫ t

b

βI(ξ)dξ

)

db

+

(

∫ A−min(t,A)

0
S0(a)da

)

f

(
∫ t

0
βĪ(ξ)dξ,

∫ t

0
βI(ξ)dξ

)

)

.

Since (I − Ī)(s) = 0, by a standard Gronwall argument, I = Ī on [s, s + ε[∩[0, T ]. Therefore E
is also an open subset of [0, T ] and E = [0, T ].

Step 3: c = c̄ and Θ = Θ̄. Eq. (13) and (20) imply that for (t, a) ∈ [0, T ] × [0, A], a > t

cI0(a − t, e−ct) e−(µ+c)t = c̄I0(a − t, e−c̄t) e−(µ+c̄)t.

Performing the coordinate change (t, a) → (t, u = a− t) and dividing each member by e−µt, this
equality rewrites

cI0(u, e−ct) e−ct = c̄I0(u, e−c̄t) e−c̄t, for (t, u) ∈ [0, T ] × [0, A].

Note that for u > A − t, both members are zero in the above equation. Using the change of

variable v = e−ct, one gets
∫ e−ct

e−c̄t I0(u, v) dv = 0. Denoting θ = e−c̄t, one has

∫ θc̄/c

θ

I0(u, v) dv = 0, ∀ θ ∈]e−c̄T , 1[, ∀u ∈ [0, A]. (46)

Moreover, from the definition of c⋆ and the piecewise continuity of I0, we deduce the existence
of a sequence {θn}n∈N and a sequence of open intervals {Vn}n∈N verifying:

∀n ∈ N, θn ∈ Vn ⊂]0, e−c⋆m[, (47)

θn −−−−−→
n→+∞

e−c⋆m, (48)

∀n ∈ N, ∃ an ∈ ]0, A[, ∀ θ ∈ Vn, I0(an, θ) > 0. (49)

Since c̄ > c⋆ and T ≥ m, ]0, e−c⋆m[∩]e−c̄T , 1[ is nonempty and from (47, 48), one can choose n0

big enough such that Vn0
∩]e−c̄T , 1[ is nonempty. From (46, 49), we deduce that

∫ θc̄/c

θ

I0(an0
, v) dv = 0, I0(an0

, θ) > 0, ∀ θ ∈ Vn0
∩]e−c̄T , 1[,

which implies c = c̄. It easily follows, since X = X̄ on R+, that Θ = Θ̄ on [0, 1], which proves
that Q⋆ is identifiable.
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4.2.2 Case where (H1) and (H2) hold and B > 0

Step 1: proof of X = X̄. The proof (by contradiction) is the same as in previous subsection
until Eq. (38). Then Eq. (2) can be integrated w.r.t. a and θ so as to obtain the following
integro-differential equation for I on [0, T ]

d

dt
I(t) +

∫ 1

0
I(t, A, θdθ +

∫ A

0
i(t, a)da = −µI(t) + βI(t)

∫ A

0
S(t, a)da.

Substituting the constant value βI = α, one gets

∫ 1

0
I(t, A, θ) dθ +

∫ A

0
i(t, a) da = −

µ α

β
+ α

∫ A

0
S(t, a) da, ∀t ∈ B.

The same holds for Ī. Subtracting these two equations and using (5,20) yields

(S̄ − S)(t, A) = α

(
∫ A

0
S(t, a) da −

µ

β

)

− ᾱ

(
∫ A

0
S̄(t, a) da −

µ

β̄

)

, (50)

for t ∈ B. Integrating Eq. (10) in age, we obtain

∫ A

0
S(t, a)da =

∫ min(t,A)

0
B(t − a)e−µa−β

R t
t−aI(u)duda

+

∫ A

min(t,A)
S0(a − min(t, A))e−µt−β

R t
0
I(u)duda.

From hypothesis (H1), let t < A be such that ]B, t] ⊂ B. Then S(t, A) = S0(A − t)G(t) and

∫ t

0
B(t − a)e−µa−β

R t
t−a I(u)duda =

∫ t

B

B(u)e−(µ+α)(t−u)du,

∫ A

t

S0(a − t) e−µt−β
R t
0
I(u)du da =

(
∫ A−t

0
S0(u) du

)

G(t),

where G(t) = e−(µt+β
R t
0
I(u)du). Ḡ(t) is similarly defined for p̄. Eq. (50) rewrites, for all t such

that ]B, t] ⊂ B,

S0(A − t)(G − Ḡ)(t) = α

∫ t

B

B(u)e−(µ+α)(t−u)du − ᾱ

∫ t

B

B(u)e−(µ+ᾱ)(t−u)du

+ (αG(t) − ᾱḠ(t))

∫ A−min(t,A)

0
S0(u)du + µ

(

α

β
−

ᾱ

β̄

)

. (51)

Thanks to hypothesis (H2), (51) is valid on a neighbourhood of [t1, t2]. Moreover, the right
member of (51) is a continuous function of t and so is t 7→ (G − Ḡ)(t). Hence the discontinuity
of t 7→ S0(A − t) at t1 and t2 implies that

G(t1) = Ḡ(t1), G(t2) = Ḡ(t2).

Since [t1, t2] ⊂ B, G(t) = G(t1)e
−(µ+α)(t−t1) and Ḡ(t) = Ḡ(t1)e

−(µ+α)(t−t1) for all t ∈ [t1, t2], so
e−(µ+α)(t2−t1) = e−(µ+ᾱ)(t2−t1) and consequently α = ᾱ. This contradicts Eq. (37).
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Step 2: proof of β = β̄ and I(t) = Ī(t) for all t ∈ [0, T ]. As in previous subsection we
obtain Eq. (42). Eq. (43) holds on [0, B]; therefore, since for a ∈ [0, t], B(t− a) = 0, multiplying
Eq. (43) by β and using Eq. (10), one gets

β(I − Ī)(t) = βe−µt

(

∫ A−min(t,A)

0
S0(a)da

)

(

e−β̄
R t
0
Ī(ξ)dξ − e−β

R t
0
I(ξ)dξ

)

. (52)

Consider the continuous functions g : [0, T ] →]0, 1] defined by

g(t) = exp

(

−

∫ t

0
βe−µs

(
∫ A−min(s,A)

0
S0(a)da

)

f

(
∫ s

0
β̄Ī(ξ)dξ,

∫ s

0
βI(ξ)dξ

)

ds

)

,

where f is defined in (44). Eq. (52) can be rewritten as

β
(

I(t) − Ī(t)
)

=
g′(t)

g(t)

(
∫ t

0
β̄Ī(ξ)dξ −

∫ t

0
βI(ξ)dξ

)

. (53)

By contradiction, let us assume that β > β̄. Then we have

β
(

I − Ī)(t)
)

6 (βI − β̄Ī)(t),

and, consequently to (53), we get

−
g′(t)

g(t)

(
∫ t

0
βI(ξ)dξ −

∫ t

0
β̄Ī(ξ)dξ

)

6 βI(t) − β̄Ī(t), (54)

which implies that t 7→ g(t)
∫ t

0

(

βI − β̄Ī
)

(ξ)dξ is increasing on [0, B]. At t = 0, one has (βI −
β̄Ī)(0) = (β − β̄)I(0) > 0 and, by a continuity argument, there exists 0 < ε0 < B such that
βI − β̄Ī is positive on [0, ε0]. Since 0 < g < 1, for all t ∈ [ε0, B]

∫ t

0

(

βI − β̄Ī
)

(ξ) dξ > g(t)

∫ t

0

(

βI − β̄Ī
)

(ξ) dξ > Λ0,

where Λ0 = g(ε0)
∫ ε0

0

(

βI(ξ) − β̄Ī(ξ)
)

dξ > 0. Using this inequality and the expression of − g′(t)
g(t)

in (54), we deduce that for all t ∈ [ε0, B]

βe−µt

(

∫ A−min(t,A)

0
S0(a)da

)

f

(

β̄

∫ t

0
Ī(ξ)dξ, β

∫ t

0
I(ξ)dξ

)

Λ0 6 (βI − β̄Ī)(t).

Evaluating the above expression at t = B yields a contradiction with Eq. (42), and then β = β̄.

We now prove that I(t) = Ī(t) for all t ∈ [0, T ]. We first show that I = Ī on [0, B]. Eq. (53)
rewrites, for all t ∈ [0, B],

I(t) − Ī(t) =
g′(t)

g(t)

(
∫ t

0
I(ξ)dξ −

∫ t

0
Ī(ξ)dξ

)

,

and, therefore,
∫ t

0
I(ξ)dξ −

∫ t

0
Ī(ξ)dξ =

(

I(0) − Ī(0)
)

e
R t
0

g′

g
(s)ds = 0.

After differentiating the above equation w.r.t. t, one gets I = Ī on [0, B]. This result is extended
to [0, T ] by the same argument as in previous section, where (45) is given with HB instead of
H0.
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Step 3 Proving c = c̄ is similar to Step 3 in previous section, which proves that Q⋆ is identi-
fiable.

4.3 Proof of Theorem 1, part 2

To prove that the restriction O|R⋆ is not into, we build a counter example, that is two parameter
vectors p 6= p̄ ∈ R⋆ such that O(p) = O(p̄). These vectors are such that β = β̄, 0 < c̄ < c < c⋆

and Θ and Θ̄ are p.d.f. in A0 related by

Θ̄(θ) =
c

c̄
θ

c−c̄
c̄ Θ

(

θ
c
c̄

)

. (55)

This relationship ensures that the two incubation time p.d.f. X and X̄ are identical, and after
an easy computation, that the cumulative distribution functions of Θ and Θ̄, denoted F and F̄
satisfy

F(e−ct) = F̄(e−c̄t), ∀t ≥ 0. (56)

Let us prove that I = Ī on [0, T ]. From the semigroup property in [23], setting r(t) = A −

min(t, A), f0(t) =
∫ r(t)
0 S0(u)du and g0(t, v) =

∫ r(t)
0 I0(u, v)du, integration of (11) shows that I is

the unique solution of the integral equation

I(t) = e−µt

∫ e−ct

0
g0(t, v)dv + e−µtf0(t)

∫ t

0
βF(ec(x−t))I(x)e−β

R x
0
I(ξ)dξdx,

+

∫ t

max(t−A,0)
B(u)e−µ(t−u)

∫ t

u

βF(ec(x−t))I(x)e−β
R x

u
I(ξ)dξdxdu, (57)

We now check that Ī is also a solution of this equation to complete the proof.

Assume first that t 6 T 6 A, then m = T and, since 0 < c < c̄ < c⋆, e−ct > e−c⋆m for t 6 T ,
and similarly for c̄. By definition of c⋆, we have

∫ e−ct

0
g0(t, v)dv =

∫ A−t

0

∫ e−c⋆m

0
I0(u, v) dv du =

∫ e−c̄t

0
g0(t, v)dv. (58)

If t 6 A < T , then m = A and e−ct > e−c⋆m, and similarly for c̄ and Eq. (58) is still true.
Finally, if A < t 6 T , we also have

∫ e−ct

0
g0(t, v)dv = 0 =

∫ e−c̄t

0
g0(t, v)dv,

which shows that in all cases, Eq. (58) holds on [0, T ]. Therefore, from Eq. (56) and Eq. (58),
it follows that Ī is a solution of (57).

From the definition of c⋆ and Eq. (13), when t 6 a the incidence expression for p reduces to

i(t, a) = S0(a − t)e−µt

∫ t

0
c ec(s−t) Θ

(

ec(s−t)
)

βI(s)e−β
R s
0

I(u)du ds,

and similarly for p̄. Since I = Ī on [0, T ] and (56) is satisfied, we obtain i(t, a) = ī(t, a) when
t 6 a. In the same way we can easily check that i(t, a) = ī(t, a) when t > a.
We now prove that the populations N and N̄ are equal. From (1) and (2) N satisfies ∂N

∂t
(t, a)+

∂N
∂a

(t, a) = −µ N(t, a) − i(t, a). Subtracting the corresponding equation for N̄ we deduce that

∂(N − N̄)

∂t
(t, a) +

∂(N − N̄)

∂a
(t, a) = −µ (N − N̄)(t, a),

with initial and boundary condition (N − N̄)(0, a) = 0 and (N − N̄)(t, 0) = 0. Consequently,
N = N̄ on [0, T ], which ends the proof of the theorem.
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5 Proof of Theorems 2 and 3

The proof of Proposition 2 does not make use of any assumption on the initial conditions, hence
it is still true. Therefore, the assumptions on G immediately yield c = c̄ and Θ = Θ̄. Moreover,
Eq. 42 is satisfied.

If (H1) is true and the initial conditions are fixed, the same steps as in Step 2 of 4.2.1 and
Step 2 of 4.2.2 prove that β = β̄, and Theorem 2 holds.

When the initial conditions are not fixed, using 42 and B = 0, we get βI(0) = β̄Ī(0). If
I(0) = Ī(0), it follows that β = β̄, which proves Theorem 3.

6 Numerical simulations

In this section, we illustrate our identifiability results through two simulation scenarios. Sce-
nario 1 corresponds to the non identifiability case under the assumptions of Theorem 1. Sce-
nario 2 represents Theorem 2 for the Beta distribution family.

For both scenarios, system (1, 2, 3, 4) is integrated with parameter values given in Table 1.
The birth function B is constant. The initial susceptible population density follows an expo-
nential distribution S0(a) ∝ e−µa. The initial infected population density I0(a, θ) is uniformly
distributed over [amin, amax]× [θmin, θmax]. Scaling coefficients are adjusted to obtain the initial
population sizes given in Table 1. Parameter values are chosen to mimic realistic epidemiological
situations.

Table 1: Parameter values used for the simulations.

Parameter definition symbol value

initial population size – 600 indiv.

initial infected population size – 30 indiv.

— age range [amin, amax] [0.625, 1, 04] years

basic mortality rate µ 0.15 year−1

horizontal transmission rate β 3 10−3 (indiv. year)−1

birth rate B 70 indiv./year

maximum lifespan A 13 years

observation period T 4 years

Scenario 1 specific parameters

initial infection load range [θmin
1 , θmax

1 ] [0.125, 0.18]

infection load growth rates (c1, c̄1) (0.35, 0.28) year−1

first infection load distribution Θ1: mean mΘ1
0.35

— : standard deviation σΘ1
0.05

Scenario 2 specific parameters

initial infection load range [θmin
2 , θmax

2 ] [0.68, 0.73]

infection load growth rates (c2, c̄2) (0.35, 0.12) year−1

first infection load distribution Θ2: mean mΘ2
0.35

— : standard deviation σΘ2
0.05

first infection load distribution Θ̄2: mean mΘ̄2
0.7

— : standard deviation σΘ̄2
0.05
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6.1 Scenario 1

We build two parameter vectors p1 6= p̄1 of R⋆ for which the observed incidences i(t, a) are the
same on the observation time interval [0, T ]. The only differences between the two parameter
vectors p1 and p̄1 are the infection load growth rates c1 and c̄1, and the first infection load
distributions Θ1 and Θ̄1. Θ1 is a Beta distribution with mean mΘ1

and standard deviation σΘ1
.

The first infection load distribution Θ̄1 is related to Θ1 by (55). Parameter values ensure that
c1 and c̄1 are in ]0, c⋆

1[, c⋆
1 = 0.42 being defined in (7).

As a consequence of Theorem 1 the model is not identifiable on [0, T ]. This is illustrated in

Figure 1, that represents the total incidence
∫ A

0 i(t, a)da over time for both parameter vectors
p1 and p̄1. The two incidence curves coincide up to time T , but become different on a longer
time horizon.

T
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Figure 1: Scenario 1 – Total incidence
∫ A

0 i(t, a)da over time t for the two parameter sets given
in Table 1: (c1,Θ1) plain line & (c̄1, Θ̄1) dashed line. Up to time T = 4, the model is not
identifiable and the incidence outputs coincide.

Moreover, the proof of Theorem 1 states that I = Ī on [0, T ]. However, the infected densities
are different, as shown in Figure 2.

6.2 Scenario 2

The differences between the parameter vectors p2 and p̄2 are again the infection load growth rates
c2 and c̄2, and the first infection load distributions Θ2 and Θ̄2. They are both Beta distributions
with the same standard deviations σΘ2

= σΘ̄2
, but different means mΘ2

6= mΘ̄2
. Parameters c2

and c̄2 are adjusted to obtain the same mean incubation period of 3 years for the distribution
given in (12). First infection load and incubation period distributions are represented in Figure 3.

With such similar incubation period distributions, one could fear the model not to be iden-
tifiable. However, theorem 2 guarantees that the model is identifiable. This is illustrated in
Figure 4 that represents the total incidence for both parameter sets. Total incidences, which are
instantaneous flow measurements, exhibit notable differences. It is even more obvious on the
yearly cumulated incidences, which are closer to the data collected in realistic situations.
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Figure 2: Scenario 1 – Difference DI(t, θ) =
∫ A

0 (I − Ī)(t, a, θ)da between the two infected
densities obtained with the two parameter sets given in Table 1. Up to time T = 4, the model
is not identifiable, but the infected densities differ.
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Figure 3: Scenario 2 – Distributions represented for the two parameter sets given in Table 1:
(c2,Θ2) plain line & (c̄2, Θ̄2) dashed line.
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Figure 4: Scenario 2 – Incidence outputs correspond to the two parameter sets given in Table 1:
(c2,Θ2) plain line & (c̄2, Θ̄2) dashed line. The model is identifiable.
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7 Conclusion

We proved identifiability results for a nonlinear transport reaction model representing the spread
of a disease in a structured population in several cases. The first case, corresponding to Theo-
rem 1, holds for any analytic p.d.f. of the first infection load Θ. This might seem restrictive,
but in practical situations, parametric p.d.f. such as the Beta or log-Gamma distributions are
used, which satisfy this assumption. The (non) identifiable region has a clear biological inter-
pretation: cases must (not) be observed among the initial infected population. Therefore, the
initial conditions need to be known. These results were obtained under several fairly realistic
assumptions. Hypothesis (H1) on the birth function B is not restrictive at all since it covers
situations like seasonal birth. Hypothesis B = 0 amounts to knowing the state of the system
at a time when birth occurs, in our case the initial time. When B > 0, the sufficient technical
hypothesis (H2) needs to be verified to obtain the parameter identifiability. However, whatever
the time, getting to know the state of the system is not easy in practical situations, unless
perhaps in an experimental setting.

The second and third cases, corresponding to Theorems 2 and 3 respectively, are valid when
restricting Θ to a suitable parametric family. In the second case, we proved the identifiability
of the epidemiological parameters on the whole parameter space with fixed but not necessarily
known initial conditions and hypothesis (H1). In the third case, initial conditions are not known
but the total number of initially infected individuals is fixed. Then, assuming that birth occurs
at the initial time (B = 0), we proved the identifiability of the epidemiological parameters.
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