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ABSTRACT

So called biadditive models (most commonly known as AMMI models for Additive Main effect
and Multiplicative Interaction) are frequently used to interpret the main traits of two ways
data, for instance for the interpretation of genotype by environment interactions. Linked with
PCA technics, they provide efficient empirical descriptions of matrix structures.

The use of Bayesian approaches in statistical analysis in increasing for many statistical models
due to the new computer capacities and the existence of specialized algorithms to draw into
posterior distributions.

Some work was already presented to deal with biadditive models in a Bayesian way. Here, we
consider the point, proposing a new solution directly on the overparameterized model which
allows one the use of standard softwares, for instance BUGS implementations.

We first give a detailed presentation of our proposal and then apply it to a real data set coming
from the litterature, focusing on the interpretation.

In the appendix, the proposal to deal with overparameterized models is developped for any
type of models.
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RESUME

Les modéles biadditifs (souvent appelés modéles AMMI pour Additive Main effect and Multiplicative
mteraction) sont fréquemment employés pour linterprétation de tableaux de données a deux
entrées, par exemple pour l'interprétation des interaction génotype-milieu. Proches des analy-
ses de données factorielles, ils représentent un outil efficace pour une description parcimonieuse
de structure matricielles.

D’autre part, 'utilisation d’approches bayésienne en statistique se généralise. C’est la con-
séquence de la puissance accrue des calculateurs et de la disponibilité d’algorithmes spécialisés
pour tirer des échantillons dans les distributions a posteriori.

Plusieurs travaux ont déja été réalisés pour traiter les modéles biadditifs de maniére bayésienne.
Dans ce rapport, nous proposons une nouvelle approche qui prend directement en compte une
définition surparamétrée de ces modéles. Son principal avantage est de permettre 1'utilisation
d’algorithmes génériques, comme ceux proposés dans les logiciels de la famille BUGS.

Un exemple de données de la litérature est traité de maniére détaillée aprés une présentation
formalisée de la proposition.

Dans I’annexe, la prise en compte de la surparamétrisation d’un modéle dans une approche
bayésienne est traitée de maniére complétement générale.

Mots clef biadditif - bayésien - AMMI - surparaméterisation - IGM - BUGS
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1 Introduction

Biadditive models [Denis.1992, Denis.1994, Denis.1996, Denis.1998] are frequently used to in-
terpret the interaction between two factors. For instance in plant breeding, it is usual to study
the interaction between varieties and environments for different purposes such as the selection
of new varieties. Biadditive models present several advantages compared with the usual anal-
ysis of variance models with interaction terms: (i) simplification of the interaction scheme, (ii)
better estimation because all results are used for the estimation of a unique combination?, (iii)
the possibility to have an idea of the interaction and estimate the error variance when replicates
are absent, even with missing values.

In some recent papers [Perez.2011, Crossa.2011], it can be observed that the Bayesian approach
was proposed for biadditive models. Most of the good properties of the Bayesian approaches
are the consequences of a clear separation between the modelling on parameters (definition of
priors) and the statistical analysis (getting information from the data set). In this report, we
will have a look at that possibility, get some experience on it and propose a new treatment of
such models with the Bayesian point of view.

2 Reminders

2.1 About Bayesian statistics
2.1.1 The Bayesian paradigm

Let [Y | 6] be the likelihood distribution? of a data set Y defined through a vectorial parameter
6. In Bayesian statistics, 6 is not considered as having a fixed and unknown value but as being
a random variable, the distribution of which characterizes the degree of certainty we have on
the values it can take. So to complete the description model, the marginal distribution of 6,
[0], must be provided. This is the a priori distribution, or prior for shortness.

Performing a Bayesian statistical analysis is no more that applying twice the so-called Bayes
theorem to get [0 | Y] denominated a posteriori distribution :

Y | 6]16]

01Y]= (1)
Y]
which is possible since the numerator is the joint distribution allowing the computation of [Y],

the marginal distribution of Y.

2.1.2 Advantages

More freedom about used probability distributions Thanks to stochastic algorithms
(most known are MCMC), a lot of distributions are at hand. Among the points to underline
when using a BUGS facility (see the Jags manual [Plummer.2011]), one can check that

"When a saturated interactive modelling is used the estimation of the expectation of one variety-environment
combination relies only on the available observations for this combination.

2Square brackets stand for density distribution of a random variable; vertical bar for the conditioning oper-
ator. Then [Y | 0] reads as the density distribution of Y conditioned by 6.



Truncated distributions can be incorporated in a standard way,

Censored data can be used all the same,

A large spectrum of discrete or continuous, scalar or multivariate distributions are avail-

able,

Standard transformations are implemented.

No fear of non identifiability When no information is available from the data, we are left
at the prior level of information (only for proper priors). For the same reason missing values are
no more a problem. In fact, the viewpoint is shifted: we are not analyzing a data set, we are (i)
defining a model on some phenomenum (establishing a prior distribution) and (ii) extracting the
information relative to this model from available dataset(s) (getting the posterior distribution).
For that reason, Bayesian approaches are very convenient for statistical meta-analyses.

A possibility to introduce knowledge When defining the prior distribution, one can
incorporate, with much more flexibility than when defining the likelihood of a data set, the
already knowledge about the phenomenon under study (expert knowledge, historical data, etc.).
This is why sometimes, Bayesian approaches are linked to learning processes: the posterior is
naturally the prior of new statistical analyses.

Of course, a sequential incorporation of data via such a prior/posterior scheme is equivalent to
a unique global statistical inference.

Consistent inference for any transformation If a correct Bayesian inference is made
on some set of parameters (say ), a transportation of the probability distribution gives us a
consistent inference to any function of it. No longer useful to decide if we are interested in
the standard deviation (o), the variance (02) or the precision (%)! Credibility intervals will
correspond exactly.

Of course this is applicable to vectorial situations.

Ease of interpretation The output (posterior distribution) is of the same nature than the
input (prior distribution) so if one is able to propose a prior, he must be able to well use the
posterior. Moreover, compared to the frequentist approach, the notion of credible intervals
can be seen as easier to interpret than the notion of confidence interval. Indeed, in the latter,
the randomness is on the data (we consider all possible data, if we were able to do many
experiments) whereas in the credible interval the randomness is on the parameter side.

2.1.3 Drawbacks

A prior has to be defined This is the main criticism again the Bayesian statistical practice.
According to the statistician defining the prior, results will be different, then not objective. This
is true, but can be viewed as an advantage because good statisticians will get better results
which is fair? Also bad statisticians will be wrong as well when defining the Likelihood? Also,
defining the prior imply a useful consideration of the model in use, which is often a profitable
spent time.



By the way, it is worth recalling that the joint prior distribution on all model parameters has
to be defined and not only the series of scalar marginals. This can be a quite tricky issue?,

sometimes solved with a reparameterization.

Difficult to question the model In classical statistics, there are several ways to question a
model (via the study of residuals, for example) or at least to select a model within a family of
models. This is not so easy in the Bayesian approach where a difficult point is the definition of
fair priors for different models. Fair would be that the priors be equivalent at the level of every
used observation but this is rarely the case because the number and natures of the parameters?,
is compulsorily different from a model to another.

The correct answer would be to imagine a hierarchy of the considered models, giving each a
prior probability... this is not, for the moment, easily tractable.

2.2 The biadditive model
2.2.1 Definition

This class of models is known for many years since there is was described in 1923 in one of the
Fisher’s papers |Fisher.1923|. The terminology was proposed by Denis and Gower [Denis.1992]
and we will stick to it, considering only the B (m,a,b, 7g)" variety defined as

Q
Yije = p+ o + B + Z AqVialjq + Eiji (2)

q=1

where Y;;;, is the kth observation for the combination of genotype ¢ and environment j. The
number of observations for each combination, K;;, being variable (but known) including zero
which means missing value. Most analyses are carried out with K;; = 1. The number of geno-
type is denoted with I, and the number of environments J. Here @ € {0,...,min (I —1,J — 1)};
when @@ = 0, we are dealing with the additive model; when @) = min (I — 1,J — 1), it is the
saturated interactive model (no restriction on the interactive term). Ejjj is the error term that
includes the design effect, here we will assume that these errors are independent, centred, with
same variance (og) and normal distribution.

2.2.2 Constraints

This is one of the difficult point about biadditive models, overparameterization is present and
there is a need for additional constraints to determine unique values for the parameters. We
would like constraints which lead to an easy interpretation of the parameters, inducing simple
statistical derivations and most often keeping the symetry between the levels of the two factors.

3There are two way: (i) use a multivariate distribution [61,602,605] or (i) go through conditional definition
[01] [02 | 61] (63 | 01, 02].

4The number of parameters is also difficult to define in a Bayesian framework. However, criteria that mimics
the AIC have been proposed such as the DIC to select models. One can also talked about the Bayes’ Factor
but which is hard to compute.

5The presence of m indicates the constant parameter u, this of a the presence of the row main effect, b for
the column main effect and @ precises the number of involved multiplicative terms in the interaction term.
When there are no interaction the term 7 vanishes and when @ = 1, only = is left.



Let us define the effect term by

Wij = E(nj‘u7a767)\7775)
Q
= ptai+ B+ Mgl (3)

q=1

It is well known [van_ Eeuwijk.1996]| that the parametric dimension of y;;is (1 + Q) (I + J) — (1 + Q))
meanwhile the number of parameters in (3) is (14 Q) (1+ I+ J) so that (1+ Q) (2+ Q) ad-
ditional constraints have to be introduced. Here we will use the standard ones:

1ja=1, = 0

ve=1,0, = 0Oforqge{l,..,Q} (4)
V=704 = I
M< A< L <)

where 7, and J, are the gth columns of matrices v and § of respective sizes (I x @) and (J x Q).

In fact this set of constraints is not sufficient since they don’t fix the orientations of the (v, d,)
which can be simultaneously inverted. Most often, this indetermination is not considered. Here
we will use the non standard specification of orientation borrowed from [Viele.2000] that the
As be not restricted and that ;4,5 and 91,5 be always positive. Even if it looks like breaking the
symetry between the levels of the factors out, giving a different role to the first levels, we will
see later on that this is not the case.

2.2.3 Least squares estimation

When the number of replicates is constant (Kj; = K > 0), with the proposed constraints (4),
the least squares estimates of the biadditive model are easy to obtain. Let Y be the I x J
matrix of the mean by cell Y;; = % > Yiji.

po= (1)) Y (1,017 )
o = Y(1,(151,)7" 1))
5= V(L)1)
and the parameters of the interaction terms are given by the singular vectors and singular

values for the biggest () singular values of the singular value decomposition of the row and
column centered matrix

(=1, 117" 19) YV (1, - 1, (151,) 7' 1)),

2.3 Literature proposals

Recently some authors [Viele.2000, Crossa.2011, Perez.2011] have used biadditive models within
a Bayesian framework. Their motivation is that the Bayesian approach may offer solutions to
issues that are often difficult to handle such as: unbalanced data, unequal cell size, heteroscedas-
tic data, the difficult choice of the number of relevant dimensions for the interaction terms, etc.
Moreover, a Bayesian approach also offers distributions of any quantity of interest (to be com-
pare with point estimates and their confidence intervals of the maximum likelihood approach)

10



which may permit to construct credible areas in the biplot for example. Finally, it allows one
to take into account in the analysis previous information such as historical data which may be
very interesting in the analysis of genotype-environment data. We can remark that compared
to the surge of interest in using Bayesian approaches to study models of very distincs types,
only few proposals have been made for the biadditive models. This can be explained by the
difficulty to work in a overparametrization framework (as we will see later). More precisely, the
problem can be quite easily tackle for the linear terms of the model but the major difficulty is
to put priors on the interaction terms taking into account the constraints.

Viele and Srinivasan (2000) [Viele.2000] seems to be the first ones to propose a Bayesian treat-
ment of such models. They put uniform priors on the first column of the matrices v and 4.
Since each vector has zero sum and unit length, it corresponds to put uniform prior on a [
(respectively J) dimensional unit sphere. Then, they work sequentially and take as conditional
prior of each (v,)(respectively (d,)) given the previous dimensions a uniform distribution on
the correct subspace. Of course, due to the constraints (the vectors must be normalized and
orthogonal to the previous ones), it is not easy to define the supports and to sample from
uniform distributions with the correct supports. They proposed a method to do so and then
used it in a specific Gibbs sampler. On a real data set [Crossa.2011], their approach seems
quite promising and offers confidence regions helping in the interpretation of the results .

Spherical uniform distribution is a special case of von Mises-Fisher [VMF] distributions (see §B).
Such distributions exist also for matrices. More precisely, the set of orthonormal matrices is
called the Stiefel manifold [Chikuse.2002|. The von Mises-Fisher distributions are distributions
over this manifold. [Hoff.2012, Hoff.2009, Smidl.2007| used these distributions in a Bayesian
treatment of models based on singular value decompositions of particular matrices such as
models for Principal Components Analysis. From a computational point of view, these models
are closed to the linear-bilinear ones, the main difference being that the linear part is not
included. More precisely, [Hoff.2012, Hoff.2009, Smidl.2007| proposed to use as prior the uniform
distributions for matrices v and 9, indeed a special case of von Mises-Fisher distributions. Using
such priors allow them to ensure the orthonormality constraints at the posterior level since the
posterior distributions are also VMF distributions®. More details about the method and the
associated algorithm is given in appendix §D.

Very recently, in the framework of the analysis of genotype-environement data, [Perez.2011]
proposed also to use as prior distributions for matrices v and J specific von Mises-Fisher dis-
tributions. Their method detailled in appendix §D remains to put priors onto the cells of the
matrix Y.

3 Defining a prior

One of the major difficulty to tackle the biadditive model is to ensure a prior on the parameters
taking into account the over-parameterization and the associated constraints. As far as the
constraints are linear, it is not too much problematic. But for the bilinear constraints on -
and § matrices to be a set of ) orthonormal columns, no standard solution is at hand. In that
section, we propose a straightforward solution having the great advantage to be implementable
in the standard BUGS softwares.

6but no more uniform ones.
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3.1 Using prior in an overparameterized framework

In the appendix (§C) we have considered the overparameterization difficulty with a reparameter-
ization clearly separating the involved parameters into two transformed subsets (¢1 (0) , ¢2 (0));
the first is sufficient to define the data likelihood [Y" | ] = [Y | ¢ ()] and the second is left re-
dundant once the first is taken into account [¢s (0) | Y, ¢1 (6)] = [é2 (0) | ¢1 (6)]. More, for multi-
normal priors, we achieved a clear separation getting the independence, i.e. [¢; (0),po (0)] =
(61 (0)] [¢2 (#)] which implies that the prior and posterior distributions of ¢9 (f) are identical,
no information is given by the data onto the ¢, (f) parameters.

It can be also argued that the overparemeterization problem is identical to the missing value
situation. Indeed, let us take the very simple example of one way factor without replicate
and with known variance. Let the parameters be {61, 0s, ...,0;} and consider a prior-likelihood
couple as

[0;] ~ N (50,2) whatever is ¢ = 1, ..., I independent,
Y;]0;] ~ N(6;,1) whatever is ¢ = 1, ..., I independent.

There is no overparameterization in the sense that every modification of any non constant
function of the 6, modifies the likelihood. But if we remove Y; from the data set, #; can be
modified without change in the likelihood inducing overparameterization. Nevertheless there is
no harm for the Bayesian statistician, the joint distribution over parameters and data can be
calculated and the posterior deduced. Of course, it is obvious that [61 | (Vi) } = [0,], the
posterior of A is equal to its prior, no information have been born onto this parameter by the
data, logical enough.

The same can can be proposed for every overparameterized model. The functions of the parame-
ters associated to the neccessary constraints of the type f (6) = 0 to prevent the indetermination
does not influence the likelihood.

But we could imagine that some data be associated to them, producing complete identifiability
of the parameter set. Why not to argue that these data are missing? And that only their prior
will be identical to their posterior.

Taking the case of the B (m,a, b, m3) model with no replicates:
Y;j ~ N ([L + o5 + Bj + )\1’)/1'15]'1 + )\2’)@'25]’2, ].) for ¢ = 1, ceey I and j = ]_, ceey J,

we can say that are missing some observations to replace the constraints, for instance

=
.

o+, 1)

pA+ B, 1)

A1)

A7, 1) fori=1,...,2

10j1,1) for j=1,...,2

2)

XoYie, 1) fori=1,...,3
20j0,1) for j=1,...,3

A
A

<

|

2
2222222

(
(
(
(
(
(
Yio ~ N(
Yoo, ~ N

And it is clear that they ensure that all parameters (and every functions of them) are informed.
So in principle a good algorithm to produce the posterior will work even with these values
missing.

12



And at the moment of the interpretation we will be free to consider only functions of the
parameters which are identifiable, that is with a posterior different from the prior. The first
candidates are

Hij = W + oy + Bj + )\1’}/1'15]'1 + )\2’)/2‘25]‘2 for 1 = 1, ,I and j = 1, cees J

and we will use them (see the model code in §E) and base our interpretations from functions
of them.

3.2 Standard complete proposal

We will use” the following independent normal distributions as priors plus a uniform for the
error variance.
pw o~ N (m, si)
a; ~ N (O,si)
B ~ N (O, s%)
O‘q)q=1...Q ~ ordered sample of Q) independent N (O, s?\) (5)
f}/lq ~ HN (0, 1)
Yig ~ N(0,1) fori>1
by ~ HN(0,1)
djg ~ N(0,1) for j >1
Op U (0, SME)

where HN (0, 1) stands for the half-normal distribution (truncation of N (0,1) on the positive
values). Only five hyparameters are used for the definition®; their interpretation® is:

m the guessed mean value of the studied variable,

s, quantifies the uncertainty we believe to have about m,

S quantifies the variability we believe the genotype main effects have got,

sg quantifies the variability we believe the environment main effects have got,

sy quantifies the variability we believe the GE interaction is on its different Q'° compo-
nents'!,

"Even if it does not matter, it would have been more consistent to use Yig ~ N (0, Ifl) and djq ~ N (0, Jfl)
to stick to the choosen constraints (4).

8They are supposed to be numerical values, so expressed with latin letters.

9n the following we give a precise meaning to the terms variability and uncertainty. Variability is the
variation linked to a random variable we are interested in. For instance, if we are interested in the yield of next
year some variability has to be introduced as a consequence of the not known and influential climate effect.
Uncertainty is related to a lack of knowledge about some value of interest, it could be decreased by acquiring
additional relevant data. When a volume of grains is sampled to get the wetness of the crop, taking a greater
volume will certainly reduce the uncertainty we have about the humidity of the total crop.

10The determination of the number of multiplicative components is a difficult question, we will see in Figure
7 how this can be approached from the posterior distributions to reduce their number.

Of course, different distributions could have been used for the different \,, if some knowledge is available.

13



e Sy/g quantifies both the remaining variability not taken into account previously and the
uncertainty of the measurement'2.

Notice that

e we spoke about uncertainty only for the parameter y since it represents the parameter
insuring the translation invariance of the model (no need to have variability on it, it can
be incorporated into the main effects).

e from our point of view, if we would like to introduce uncertainty on the other parameters,
either an expectation has to be introduced as a random variable, and/or the standard
deviation parameter has to be supposed random. Taking the example of the genotype
main effect:

a; | g ~ N (am, si) and ag; ~ N (O, sua)

or

;| so~N (O,GC%) and ¢, ~ U (0, Sira)

or both. The distribution of the newly introduced «g; and/or ¢, could be interpreted as
uncertainty.

Important remark When looking at the definition of the von Mises-Fisher distribution (§B),
it is clear that the distributions induced by our proposal onto the orthonormal matrices ~ and
0 are indeed von Mises-Fisher distributions: the uniform distributions onto their spaces.

3.3 Prior marginal distribution of the data

We believe that it is quite important to look at what represents the information put in the prior
definition step. In order to do that, the more natural way is to look, using the likelihood, at the
induced prior distribution on the data set. This is done integrating the joint [#, Y] distribution
over 6.

Due to the presence of the bilinear terms, it is not possible to obtain in close form the distri-
bution of Y;;, but it is possible to explicit expressions for their first two moments and also to
simulate them. As defined in (2) and with the retained priors (5), one can check that (using
results presented in §A.3 and §A.2) that

E(Yye) = m
V(Yijr) = s.+so+s5+ 5+ %%E
Cov (Yijr, Yijwr) = 85+ 55+ 55+ 53
Cou (Vi Yin) = 52+
Cov (Yi]k, n) = si + s%
Cov (Yijr, Yijm) = s,

Notice that these results apply equally well when i = 1 or/and j = 1, even if the computation is
slightly different. This is why we said in §2.2.2 that the symetry was not lost with the proposed
constraints.

I2Gamma distributions were often used for variance parameters, but recent works show that it is possible and
more efficient to put uniform priors

14



Figure 1: Directed Acyclic Graph associated to the Bayesian approach. Rounded rectangles
are used for loops. Circled nodes are random variables. Rectangular nodes are constant. Arcs
indicate the direct relationships between the nodes. mu is used for u, al for a,...

/
k=1,...n[i, jzl,R
sd.al
\ V(i K

m.mu @ /@‘ sd.be
(e )

»\ muli,j]

sd.mu \/ [ /\

sd.la

4 Accessing to the posterior distribution

4.1 Algebraically

No close form of posterior can be imagined!?, especially in the case of a non equally replicated
design where even LS estimators are not known. Nevertheless, there is no difficulty (in all trials
we did) to get simulated values from the posterior using Jags [Plummer.2011] one of the BUGS
softwares.

4.2 Graphical presentation: the DAG

To better understand the mechanism of the modelling, it is of interest to build the underlying
directed acyclic graph, so called DAG; it is presented in Figure 1. It emphasizes the central role

13as a consequence of the bilinear terms.
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Table 1: Parameter values used for the simulation in §4.3
w =100
() = (—1,-1,0,1,1)
(Bj) = (—4,-3,-2,-1,0,1,2,3,4)

1
_ 2 1 1 2
(72) — (ﬁa\/—ﬁﬁou_ﬁu_\/—ﬁ])
(5]) = (%7%70707070707_1 _l)
3

20 2

Table 2: ANOVA table of the parameter values given in Table 1 only based on the expectation.
The error variance being equal to 2.25.

EIRSE
row effect 4 1 36 | 9.0
column effect 8 1300 | 37.5
interaction effect | 32 | 144 | 4.5

of 1,5, the expectation of the observed variable in a frequentist approach. We will see in §5.7
that a Bayesian approach allows one to play between fixed and random effect affectation.

4.3 Simulation study

In order to check that in practical situations, a Bayesian approach is effective for biadditive mod-
els, we performed a small simulation study. From a B (m,a,b, ) biadditive expectation' we
added a normal random error with identical standard deviations (o) and fitted a B (m, a, b, 75)
model. This was done a number of times, to escape a favorable (or unfavorable) case.

More precisely, we did 49 simulations, with a posterior sample of 50 draws with a thinning
coefficient of 200 to avoid autocorrelations; not because the computation are lengthy: they
last 140 seconds but because we wanted to display the results graphically. The introduced
parameter values are shown in Table 1 resulting in the ANOVA table given in Table 2.

The results of the simulation study are given in Figures 2 (study of the suggested number of
multiplicative terms), 3 (inferring the row main effects), 4 (inferring the row first interactive
effects) and 5 (inferring the row second interactive effects).

Figure 2 displays the joint posterior distributions of (A1, A\2). The values of \; are positive for
all the simulations, whereas \; takes a continuum of values negative or positive. This is a clear
indication that the credible region of \; does not include the zero value, contrary to its of As.
Consequently, we can say that most often the Bayesian analysis correctly assess one multiplica-
tive term (except in simulation 48 where the conclusion would be two multiplicative terms and
a not so clear conclusion for simulation number 11 but still in favor of one multiplicative term).
Here we can see an advantage to let the singular values being negative: it would have been less
clear if the absolute value of the singular values have been used as commonly done.

The profile study of the row effects proposed in Figures 3, 4 and 5 would be much clearer if the
bundle of the 50 profiles were replaced by the quantile profiles of a greater number of profiles.
Straightforword (but tedious) algorithms can be implemented for that.

14additive part plus interaction with a unique multiplicative term.
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Figure 2: Simulation study: number of multiplicative terms. For each of the 49 simulations,
the simulated joint posterior density of A; (abscissae) and Ay (ordinates) is displayed with 50
draws. The red circle indicates the true value (A = 12, A\ = 0). Due to the indetermination of

the parameterization, negative values are equivalent to positive values.
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Nevertheless o and ; parameters seems well assessed. More heterogeneity occurs for 7; where
particularly the already mentionned simulation number 11 has a few opposite profiles. Looking
this case with attention, ones can notice that the v;; parameter'® is very close to zero and
sometimes fautly; a free attribution would have given two sets of profile, one similar to the true
profile and the other one opposite. The erratic behavior of 75 profiles (Figure 5) is consistent
with the found unique dimension. Here too with the exception of simulation 48 which tended
to propose two dimensions, where the bundle of profiles has got a systematic concave shape.

I5The one forced to be positive due to our constraint system.
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Figure 3: Simulation study: row main effects. For each of the 49 simulations, the simulated

joint posterior density of the «; profiles is displayed with 50 draws.
lines linking (7, ;); the red line indicates the true profile.
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Figure 4: Simulation study: first interactive row effects. For each of the 49 simulations, the

simulated joint posterior density of the ~;; profiles is displayed with 50 draws. A profile is

defined as the lines linking (4,7;1); the red line indicates the true profile.
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Figure 5: Simulation study: second interactive row effects. For each of the 49 simulations,
the simulated joint posterior density of the ~;, profiles is displayed with 50 draws. A profile
is defined as the broken line linking (7,7;2); there is no true profile since there is no second
multiplicative term in the proposed expectation; the red line is the null profile.
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5 Using posterior simulations: a worked example

When analyzing a real genotype-environment data, five main questions'® arise:

Q1 What is the genotype with the best performances across all the environments?
Q2 What is the genotype with the best performance for a specific environment?
Q3 Are the genotypes stable across all the environments?

Q4 Ts it possible to rank the genotypes?

Q5 Could we assign a probability that a genotype will give more than a certain threshold?

Of course, the symetrical questions (considering genotype instead of environments) are also of
value.

In this part, we try to address these questions. Moreover, in the classical statistical approach
where estimates (and precision of them) of the biadditive model are obtained, it is not that
easy to interpret the results. One can wonder if it would not be worst in a Bayesian context
where distributions have to be handled instead of estimations? We would like to show that not.

To illustrate our purpose, we use a worked example using the data set proposed by [Crossa.1991]
which comprises I = 18 genotypes and J = 25 environments, all combinations, no replicates.
More precisely we will analyse it in four versions :

reduced using only the 40 combinations of the first 5 genotypes with the first 8 environments,
complete the complete data set,

reduced missing the reduced data set where 4 values, randomly choosen, were considered
missing,

complete missing the complete data set where 45 values, randomly choosen, were considered
missing.

Table 3 gives general features about the considered cases. From the ANOVA tables, one can
conclude that important values have been eliminated when creating a 10% missing scheme in
the reduced missing case; less obvious for the complete case.

The standard output of a MCMC algorithm is a simulation of the parameters from their posterior
distribution. We will use a superscript s varying from 1 to S to indicate it. For instance «;
will be the sth simulation of the parameter «.

Because we are fan of them, we present the interpretation with graphs, but this also could be
done with numerical values in tables.

5.1 Comparing prior versus posterior

As seen in §2.1.3, the major criticisms made to the Bayesian approach is the necessity to define
a prior on the model parameters. Two precautions have to be taken with this respect.
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Table 3: Some characteristics of the four data cases. The four computations were made with
the same computer; 10° iterations were used for the burn-in phase; 10* were drawn with a

systematic sampling of 1072 giving 10? retained simulations.

case | ANOVA | duration (s) |
| | df | SS [ MS |
reduced Gen9 41 1.0 025 3
Envi 71956 | 13.7
Geno:Envi | 28 | 5.7 | 0.20

Geno 17 | 18.1 1.1
complete Envi 24 | 2369.5 | 98.7 86
Geno:Envi | 408 | 132.5 | 0.32
Geno 4 | 3.9 |0.96
reduced missing Envi 7 166.4| 9.5 2.7
Geno:Envi | 24 | 3.7 | 0.15

Geno 17 | 16.1 |0.95
complete missing Envi 24 | 2122.4 | 88.4 75
Geno:Envi | 363 | 115.66 | 0.32

Table 4: Prior definitions: used constant values referring to the distributions introduced in (5).

Take care that implicitely all priors are supposed to be stochastically independent.
‘ constants ‘

m =35, s, =0.8
Sq = 0.5
85 =05
sy = 0.5v1.J
SME =2
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First the prior distribution has to be discussed with the experts of the field in order to incor-
porate to the priors as much as possible knowledge in them. Here, we directly used the rather
vague priors shown in Table 4.

Second, a careful examination of the prior distributions has to be conducted on the quantities
of interest. It can occur that prior on parameters lead to prior on observation out of relevance!'”
This is a clear indication that something is wrong and must be changed. Also the comparison
between priors and posteriors is needed to assess the level of involment of the data set in the
posterior. In Figure 6 one can see that consistently with the used priors (Table 4) no effect is
visible in the prior dimension, which is not the case for the posterior dimension where three
distinct clusters appear. Probably, it would be logical to reduce the variability of the prior since
negative yields are proposed for almost every 1;; together with upper values also not sensible.

5.2 Looking for a sensible number of multiplicative terms

Figure 7 displays the joint posterior distributions of (Ay, A\y) for the reduced and complete
cases. The reduced case is interesting because we can notice that the S = 100 simulations
are distributed in two groups: the most numerous for negative values of \;, the other one for
positive values of A\y. In each group, A\, takes a continuum of values negative or positive. This
is a clear indication that the credible region of A\; does not include the zero value, contrary to
its of As. The conclusion is that only one multiplicative is needed for the reduced case. For the
complete case, a glance at the scales show that no doubt is left, both credible intervals are very
far from zero and at least the first two dimensions have to be kept. As we didn’t introduce a
third term, nothing can be said about its necessity'®.

5.3 Interpreting the parameters

Let us concentrate our attention towards the genotypes; the same could be made for the envi-
ronment, factor.

The most straightforward use of the simulations is to draw scatter plots of a factor with the pa-
rameter depending on it. For instance'® (ai\/j, )\lfyi,l), but instead of one point for genotypes,
we will get S points providing a direct view of the variability /uncertainty: Bayesian statistics
returns a distribution?’, not a point estimate with possibly a confidence interval. This is done
in Figure 8 for the complete case and the first nine genotypes. They look impressively distinct.
No overlapping for any pair of genotypes (this does not seem the consequence of the very re-
duced number of simulations: 100). Among these genotypes, the 6th looks attractive with the
strongest main effect and limited interaction, then among the most stables.

1645 suggested by Fred van Eeuwijk (Prof. at Wageningen University, NL) during a workshop on statistical
interpretation of Genotype-Environment interaction, 2012, Inra, Jouy en Josas.

17Strongly negative or exagerated yields...

8Notice that in [Crossa.1991], three multiplicative terms have been introduced, we consider only two for the
sake of the exposure simplicity. Nevertheless the model code provided in §E has got a NQ variable which can
take any value. As underlined in §2.1.3, a flaw of Bayesian approaches is the lack of tools to select a model
among a set of models. In case of nested models, credibility regions can be used to decide if some parameters
take values associated to some submodels.

19The multiplication of « by v/.J and of ¢ by Aq provides them a squared norm equal to the sum of squares
explained by the associated terms in the model which seems a fair way to relate them. More precisely SSgeno =
JY, 8% and SSaxpay = A3 = A} Y, 7i1 s in the orthogonal case.

20Here with the means of simulations, then an empirical distribution.
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Figure 6: Prior-posterior credible boxes for the s;; for the reduced data set. 2.5% and 97.5%
quantiles were used to define the boxes around the median position. The red line is the first
bissector.

Crossa (5,8) 1e+05|10000|100 reduced

/

MU[L8] 7
/
o 4 /
|%rp /
NUITT <1 /
3
@ p—
S
3
S
(]
I3
(%2}
o
(al
<t —
N p—

15 20

Prior

24



Figure 7: Posterior distributions of the As for the reduced (left) and complete (right) cases.
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Taking into account the easy interpretation given to the parameters associated to each genotype
(since there is only one multiplicative term), it is possible to answer most of the questions risen
at the beginning of this section. Among the nine displayed in Figure 8, genotype 6 has got the
better performance across the set of all environments (Q1), it as also in the group of the stable
genotypes {6,8,7} (Q3), certainly it deserves the first rank meanwhile genotype 3 is on the last
position (Q4).

5.4 Interpreting the genotype responses across the environments

But, as the clear interpretation of the parameters identified in (2) is not always unambiguous, we
suggest to always start from the matrix (1) defined in (3) and indicated in the DAG of Figure
1. The proposal is to show the genotype response for the spectrum of studied environments.
For that, we think that a random curve for each genotype along the F (% > uij) is of value.

To take into account the uncertainty linked with the posterior distribution, we propose to
represent each genotype with a bundle of S curves (one for each simulation) obtained by joining

the J points of coordinates (% POTHNTIEE DY ,ufj). With the adopted constraints (§2.2.2), it
is (,us + B35, + Z(?Zl )\fﬂfqéjs). Other proposals can be think of, this one has the advantage
of proposing non common terms between abscissae and ordinates, eliminating noise effects of
systematic correlations.

This is proposed in Figures 9 and 10.

Indeed very strong differences appear and we retrieve the very good behavior of genotype 6.
Using this diagram, we can also determine which are the best genotypes for a given environment
(Q2). After genotype 6 which is definitively the best for all environments, the first one is the
more advisable for poor environement necessarily placed on the left side of the abscissae.
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Figure 8: Genotype effects (additive with «;, interactive with ~; ;) for the complete case. Each
genotype is drawn in a different plot; only the first nine genotypes are shown (out of 18).
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MU[4,j] = (MU+Beta[j]) MUI[L,j] - (MU+Betal[j])

MU[7,i] - (MU+Betalj])

Figure 9: Posterior genotype profiles for the complete case (One to Nine)
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MU[10,j] - (MU+Betalj])

MU[13,]] - (MU+Betalj])

MU[16,j] - (MU+Betalj])

Figure 10: Posterior genotype profiles for the complete case (Ten to Eighteen)
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Figure 11: Posterior genotype profiles (Ten to Eighteen) in case of 45 missing values
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5.5 Missing values

One of the strong points of the Bayesian approach is that missing values are no more a problem.
Let’s inspect the results obtained in such a situation. An intriguing fact appears in Table 3:
the MCMC seems faster with missing values than without! In fact, this can be explained. The
Bayesian statistical approach is no more than defining a joint probability distribution onto the
whole set of parameters and data (prior and likelihood definitions) before conditioning with the
observed data (posterior calculation). Missing values are not missing, they are not conditioning
variable since not observed. One can then admit that more missing values there are, easier is
the conditioning task!

The ten percent missing values does not alter the interpretation obtained from the complete
data set, as it can be checked with Figure 11.
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5.6 Exceeding a threshold

The previous diagrams does not allow to answer the last question (Q5): could we assign a
probability that a genotype will give more than a certain threshold?, a quantitative question!
Indeed, the bayesian framework is quite adapted to answer such a question!

First we have to be more precised about the question: is the yield for a given environment or for
the range of all possible environments? If we are interested in a precise environment and that
we have information about it, either because it was experimented or because we can predict its
response through our modelling using pertinent covariables, then we can propose an answer to
the question. But let us suppose that we are asking for a response across a set of environments
which is not exactly represented by the experimental set. Let us also suppose that we are able
to give relative weights (w;) for each of our experimented environments to unbias the results,
i.e. that

M=) Wik
j

is the performance of genotype ¢ that we are looking for. One can see that if all w; are zero
except one of them, we will get the answer for a precised environment.

Then we can easily introduce this new variable into our model and be interested into the
proportion of posterior simulations where the given threshold is exceeded, also it is of interest
to look at the density of m;, just to see where is the threshold. This was done for w;—; 5 =
2—10, Wj=6,..,10 = 1—10, wy = i and wj—12_ 25 = 0 with a threshold of 8. Results are displayed
in Figure 12 where it can be seen that only the first and sixth genotype can have a positive
probability (respectively estimated to 0.1 and 1 by the posterior expectation of the proportions.)

5.7 Random versus fixed effects?

Genotype Environement data are often analyzed either by mixed models or by biadditive models
(with a frequentist point of view). One of the most discussed point when defining such models
is the choice between fixed or random status for the two factors. This is not so obvious. Indeed,
when looking at the first question (Q1), the factor environement may be considered as random:
we are not interested in one environement in particular and with the “subset” of environement
we dispose, we want to tell what is the best genotype across all the possible environements (as
done in §5.6). However, when regarding the second question, the factor environement must
be considered as fixed: within this specific environment (and not another one) what is the
performance of the genotypes? Using fixed effects model or random effects model is mainly the
consequence of different questions?' implying different models and then different results.

Within the Bayesian framework, there is no more unknown fixed parameters but only random
variables and the inference could be denominated the art of conditioning. Consequently, we
can pretend to keep with the general model and by some conditioning (for instance fixing the
environment or not) adopt the right viewpoint to answer a precised question.

From a technical point of view, there are links between shrinking estimation, mixed models and
Bayesian statistics: what is observed is not considered as unbiased truth.

2lof course supposing that the data is pertinent to answer them.
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Figure 12: Performances of the first nine genotype in a target set of environments
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Figure 13: Similar Figure of Figure 7 with Perez et al.’s algorithm
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5.8 Comparison with Perez et al. proposal

As explained in §2.3 other proposals already exist. In that section, we show the results obtained
with the [Perez.2011| approach, using the R script of them.

For easier comparison the results obtained with [Perez.2011|’s algorithm are displayed with
equivalent diagrams: Figures 13, 14, 15 and 16. Apart from the singular values, the results for
the main effects ad the interactions seems very closed on this dataset. This is consistent with
the fact that we used the same type of priors.

6 Conclusion

We have proposed an easy Bayesian treatment of the Biadditive model which seem to provide
goods results based on a small simulation study and results comparable to the ones obtained

32



Figure 14: Similar Figure of Figure 8 with Perez et al.’s algorithm
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MUI[1,j] - (MU+Betal[j])

MU[4,j] - (MU+Betal[j])

MU[7,j] = (MU+Betal[j])

Figure 15: Similar Figure of Figure 9 with Perez et al.’s algorithm
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MUI[13,] - (MU+Betalj]) MUI[10,]] - (MU+Betal]])

MUJ16,j] - (MU+Betal[j])

Figure 16: Similar Figure of Figure 10 with Perez et al.’s algorithm
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by [Perez.2011] on a real dataset. The proposal solves the problem of overparametrization
considering overparametrization as directly tractable with standard MCMC algorithms.

Regarding missing values, it would be interesting to compare the proposition to classical ap-
proaches where weighted least squares procedures are used to estimate the parameters from
an incomplete dataset. One can argue that with the Bayesian point of view, we will obtain
directly credible regions for the “estimated” data as well as for the factor effects which is very
appealing.

Another point which deserve more research is the choice of the appropriate number of multi-
plicative terms which is a core issue in biadditive models. In our proposal, it is possible by
inspecting the posterior distribution to decide how many terms to keep. More work has to be
done using a simulation study for example in order to assess this procedure. Another path
to investigate may be the use of "Bayesian Model Averaging", an empirical proposal to tackle
models with different parametric dimensions in a Bayesian way. As the term suggests, per-
form as many Bayesian analyses as possible models and then take a synthetic posterior simply
averaging each of them.

A Miscellaneous formulae

A.1 Conditional expectation and variance

It is well known that

E(Y) = Ex(Ey(Y|X))

V(YY) = Ex(W (Y | X))+ Vx(Ey (Y] X))
A.2 First two moments of £,

When E | o ~ N(0,0%) and og ~ U (0, SyE), just applying formulae given in §A.1, one
obtains

E(E) = 0
V(E) = 38

A.3 First two moments of a triple product

Let three independent variables A, B and C' such that their expectations be respectively a, b, ¢
and their standard deviation «, ,~. Then

E(ABC) = abc
V(ABC) = ((12 + aQ) (b2 + 62) (02 + 72) — a’b*c?
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B von Mises-Fisher distribution

B.1 Definition

Following [De Waal.2006], let X be a random matrix of size I x @ (@ < I) be multinormally
distributed with
EX) = u
Vivec (X)) = VX
where p is any [ x ) matrix, ¥ is a [ x [ p.s.d. matrix, ¥ is a ) x () p.s.d. matrix and the
operator vec transforms a matrix into a vector by stacking its columns.

Then X | X'X = s is distributed as a generalization of the von Mises-Fisher distribution with
distribution given by the density

1
-1 e -1 -1,
Cexp (tr(Z W ,u) — itr (Z xP x))
when 7'z = s.
It is appealing that the constraint 2’z = s does not intervene in the density but for the definition
of the support...
The von Mises-Fisher distribution occurs when ¥ = I;, ¥ = s = I; its density is then

defined to exp (tr (zp')) for 2’z = Ij.

Fexp (tr (a17)
when o'z = I.

The normalizing constant, k, can be expressed as an infinite series of Hayakawa polynomials.

B.2 Interpretation of the von Mises-Fisher distribution

Some interesting facts can be emphasized:

e The matrix p is the only parameter of the distribution.

e Matrix p is no more than the expectation of the initial matrix X not restricted to lie
on the hyper-sphere unity but due to curved space where is the restricted variable, its
expectation does not belong to the hypersphere but is inside it. Nevertheless, u plays the
role of a centrality parameter for the direction of the normalized X.

e When [ = 2ou 3, and ¢ = 1 one can get hints, imagining the density function of a
N (u, Iy) intersected with the circle or sphere of radius one. The maximum density will
be in the direction of p; indeed what indicates tr (xu') = 2’p since z and p are vectors.
The same reasonning applies when [ > 3.

e Indeed for I = 2 and ) = 1, a simple reparameterization gives more insights. We can
write 2’ = (cos (#),sin (f)) and p = A (cos (v),sin (v)) then the density is proportional to
exp (Acos (0 — v)) and can be easily drawn.
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e When [ = 2 and ) = 2, due to the orthogonality constraint, still the matrix = depends
only of # and reads

[ cos(f) cos (9 + g)

v ( sin (0) sin(9+%) )

so with obvious notation the density is proportional to
™
exp ()\1 cos (0 — v1) + A cos <9 + 5 1/2>)

which also can be easily represented with isocontour diagrams.

e When [ = 3, similar considerations can be obtained with a parameterization with
parameters by means of the Euler angles, for Q) = 3, it reads

C1Co —S81C2C3 + S9S3 5§1C9S83 + SoC3
xr = S1 C1C3 C1
—C1S2  S$189C3 1+ €283  —S15253 + CaC3

where ¢; = cos (0;) and s; = sin (6;).

e When [ > 3, it is not that easy but, in principle, Euler angles can still be obtained by
successive rotations around the canonical axis.

e The uniform distribution onto the hypersphere is obtained for tr (2’';1) = 0, which implies
that n = OIXQ-

e When p is of rank R < @, then it seems that R out of the ) vectors of x will be close to
the directions comprised into p and that the other ones will be let free on the orthogonal
complement subspace? This rises the question if one cannot impose i to be defined with
orthogonal columns?

e It is clear that p and ku gives the same density, can other type of invariance be exhibited
to allow a easier definition of the parameter p?

C Prior/posterior with overparameterized models

C.1 Linear tiny case
C.1.1 Definition

In order to see the ideas and to be able to get all algebraical derivations, let us consider first
a single case of overparameterization with two data values and three parameters to infer. Let
be Y = (Y7,Y2) and its expectation defined with three parameters (i, a1, as). The supposed
independent priors are

pw ~ N(m,1)
ap ~ N (07 1)
Qo N (0, ].)

38



(where m is a known numerical value) and the likelihood is given by

Y1 JT el 10
(o) ~ (G20 1))
Some easy computations due to the multinormal framework gives as joint distribution
" m 10011
o 0 01010
ay [~ N 0 1,]00101
Y] m 11031
Y, m 10113

C.1.2 Reparameterization

In order to distinguish what is reachable (or not) by the data, we can modify the parameter
definition in the following linear way

0, 2 1 1 n
92 = 0 1 -1 (05}
(93 1 -1 -1 (e%))

The transformation matrix being full rank, the two parameterizations are equivalent, in the
sense that we can use one or the other, keeping the same modelling. One can notice that the
first two fs can be expressed from the conditional expectation of Y:

91 = E<Yi ‘ (M7&17a2)) _'_E(Yé | (:u7a17052>>
0 = EY1|(po1,00)) = E(Ya | (1, 01, 2))

and that there is no hope to express the last new parameter in such a way, since 63 is independent,
from (61, 05), the new joint distribution reading

6, 2m 6 0 01 1
0, 0 0 2 01 —1
6 |~N|| o |,]0 0 30 0 (6)
Y, m 3 1 03 1
Y; m 3 -101 3

As a consequence, the new Bayesian reformulation of the model evidences the useless of pa-
rameter 03, indeed the new parameters are independent and

01 ~ N (2m, 6)

92 ~ N (0, 2)

05 ~ N(0,3)

also the likelihood given by

Y, L 2 1
(1)1 = v((22).(11))

does not depend on 65.

A noticeable point is that the two Y's are no more conditionally independent to the parameters.
But why not? In fact, it is possible to linearly transform the data(Y7, Ys) in an equivalent pair
(Zy, Z3) such the the Zs be conditionally independent of the parameters.
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C.1.3 Posterior in the new parameterization

From (6), the posterior can be written applying the conditional formula of the multinormal
distribution:

6 R 4 gy 100
s || (Y1,Ys) ~N N2 e |, 010
05 0 0 0 3

C.1.4 Conclusion

If the statistical analysis is made with the second parameterization, it is observed that [f5 | (Y7, Y5)]
is no more than the prior [05]. This parameter can be eliminated and the overparameterization
is no more present.

C.2 Additive case

Similar results are easily found with the additive model following the same steps that in §C.1.

C.2.1 Definition

E (Y| 04, 8;) = p+a; + 5

with prior?? and likelihood:

w ~ N(0,1)
@ ~ NO1) i=1,.,1
Bi ~ N(0,1) j=1,..,J
Yij | (g0, 8) ~ N(p+ai+8,1)i=1,..,1;j=1,..,J

Here, we have 1 4+ [ + J parameters whose priors are defined independent and I.J data inde-
pendent conditionally to the parameters. But it is well known that the parametric dimension
of such additive model is I + J — 1 so that we have to find 2 (here linear) functions of the
parameters which are independent of the data, and such that no information will be added
when going from the prior to the posterior.

C.2.2 First reparameterization

It would be much more difficult to get a set of 1 + I + J independent orthogonal parameters
01,02, ...,0141+5 such that the last two be independent of the Y;; as done in the tiny case. But
we propose the following, let

0;j = pt+ o; + B; when ¢ = 1 and/or j = 1.
The number of fsis I + J — 1, and

pt i+ B =60 + 0 — O

22 Assuming that m = 0 and all variances unity.
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whatever is (7, j) showing that the fs generates all expectations of the data set. It now suffice
to get two additional linear combinations of the (u, o, ;) independent from them. Following
the indication given in §C.1.2, a possibility is

P = M—Zai
P2 = M—Zﬁj
J

To better see what is behind the transformation, let us detail the case for I = 3 and J = 4.
The new parameters are obtained from the basic ones from the following linear mapping

01 K
02 aq
th3 &%)
tha a3
B = Fax B
031 B2
P1 B3
P2 B4
where
1 1 0 0 1 0 0 0
1 1 0 0 0 1 0 0
1 1 0 0 0 0 1 0
Py = 1 1 0 0 0 0 0 1
1 0 1 0 1 0 0 0
1 0 0 1 1 0 0 0
1 -1 -1 -1 0 0 0 0
1 0 0 o -1 -1 -1 -1
giving
01
th2
013
Var Ora = Pyx P}
B
031
P1
P2
32222200
23221100
22 3 21100
- 222 31100
- 21113200
21112300
0 00O0O0O0AZ41
000O0O0O0OT1S>5
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C.2.3 Second reparameterization

Just to show that many reparameterizations are possible, again for I = 3 and J = 4. The new
parameters are obtained from the basic ones from the following linear mapping

" 174 4 4 3 3 3 3 "
o 101 0 0 0 0 0 o
s 100 1 0 0 0 0 org
Qs . 1 0 0 0 0 1 0 0 (6%}
Pextg 1 =1 100 0 0 0o 1 0l|X|a
8, 100 0 0 0 0 1 By
B3 03 0 0 -4 0 0 0 Bs
By 1 0 -1 -1 0 -1 -1 -1 By
giving
373 21 21 20 20 20 0 O
212 1 1 1 1 0 0
201 2 1 1 1 0 0
20 1 1 2 1 1 0 0
/ _
Pex Pg =1 99 1 1 1 2 1 0 0
20 1 1 1 1 2 00
0 0 0 0 0 0 25 0
0O 0 0 0 0 0 0 6

C.3 General formulation

As the derivation in §C.2.2 is done, one can think that it is mainly based on the linear re-
lationship between the parameters and the expections of the data: in fact not. It is only
based on the prior multinormality of the parameters. Let us now try to get the essence of the
overparameterization behaviour.

C.3.1 Definition of overparametrization

Let a model be defined with 6, the set of parameters and some data Y. Let [0] be the prior and
[Y | 0] the likelihood probability distributions. We will say that there is overparameterization
when not all the parameters are necessary to define the likelihood, that is when it exists ¢; (6) a
reparameterization with a smaller parametric dimension?3, equivalently defining the likelihood.
More precisely:

Y [0] = [Y|¢] (7)
pd(¢:) < pd(0).

Intuitively, there is sufficient information into ¢; to provide the complete determination of the
likelihood.

23We are not at ease of how define the parametric dimension of ¢;, we suspect that it is linked with the rank

of the Jacobian %.
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Figure 17: Prior and posterior forms of the joint distribution as DAGs

Prior form

Posterior form

C.3.2 Dealing with overparameterization

There is at least two ways to prevent the overparameterization difficulty: (i) use a transfor-
mation of type ¢; with minimal parametric dimension restricting the parameter space; (ii) add
additionnal constraints onto the initial parameter sets ¢. (¢) = 0 such 0 |4 9)=o be equivalent
to some minimal ¢;. The first solution eliminates the difficulty but most of the time loosing
some interesting symetrical properties. The interpretation of the parameters is then less easy
and interesting, so most often the second way is preferred.

Assuming that for a given model, we are able to find (¢, (0), ¢. (0)) such that ¢, is sufficient to
define the likelihood and has got the minimum parametric dimension. So we have (7) and

(0) <= (¢, &) - (8)

Then the initial model can be written into this new equivalent parameterization:

prior : [¢y, ¢c] = (@] [dc | Dt
likelihood : [V | ¢y].

The joint distribution is then the product of both:

[Y | Cbt] [¢t] [Cbc | Cbt] = [Y] [Cbt | Y] [¢c | ¢t] : (9)

Both forms are given in the two three-nodes Bayesian networks of Figure 17. The right hand
side of Equation (9) gives the posterior form while the left one is the prior form. From (9), we
obtain that the posterior distribution of the parameters as

[(¢¢,0) Y] = [¢¢ | Y][e | @] (10)

This does not mean that the posterior of ¢. does not depend on Y but that it depends on Y
only through ¢; and more that this dependence is identical to the one defined at the prior level.
It is the consequence of the d-separation operated by ¢; between the random variables Y and

Pe-
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C.3.3 Conclusion

Use of an overparameterized model with a prior onto the complete set of parameters is without
consequence. One is dealing with more random variables than necessary, no more. And experi-
mental observations tends to think that it is a more efficient way, possibly due to a symmetrical
repartition of the roles between the parameters.

When the prior on the complete set can be decomposed into independent (¢.) and necessary
(¢;) transformed subsets, then the prior and the posterior of ¢, are identical. This is convenient
but not required.

C.4 Biadditive case

Of course this applies to the biadditive case. Wihtout entering into a general treatment if we
consider the model B (x, %, %, ) provided with the following prior and likelihood:

A~ N(0,1)

vi ~ N(0,1)i=1,..,1

d; ~ N(0,1) j=1,...J

Y;j | ()\,’)/,5) ~ N()\’)/Zéj, 1) = 1, ,[ ) j = 1, ,J

One can notice that the complete set of parameters is identical to the additive case. As the prior
are similar and as necessary transformed subsets are identical (isomorphism between additive

form and multiplicative form), it is possible to get the same kind of independant parameters as
we obtained in §C.2.2 and §C.2.3. The two conditions to check are:

1. equivalent priors,

2. equivalence of the identifiability in the likelihood function.

This has to be generalized for any type of biadditive models, but we can wonder the utility (in
term of data interpretation) of such results since we are interested into the active parameters
not in the redundant ones.

D Gibbs sampling algorithms used in the literature pro-
posals

D.1 Brief reminder about Gibbs sampling

When it is not possible to compute directly the posterior [0 | Y] most of the time the difficulty
can be break down in smaller pieces, this is the Gibbs sampling technique. The parameter vector
is partioned into convenient subsets 6 = {6y, 0,,...,0p} and an iterative scheme is applied by
cycling over the P subsets to get draws into the global posterior.

[01 | Y> {0 - 91}]
[02 | Y> {0 - 92}]
[0p | Y, {0 — 6p}]
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The only requirement is to be able to draw into the partial conditional distributions, in general
a much easier task. Of course there are some drawbacks, mainly the non independence of the
draws, and the safety of drawing into the posterior only asymptotically, then a burn-in phase
of the algorithm is necessary.

D.2 Hoff’s proposal

Hoff [Hoff.2009, Hoff.2012] is interested in multivariate data analysis techniques associated to
the model:

Yiuy=UDV' + E,

where Uryg and Vj.o are orthonormal matrices, D a diagonal matrix and £ a matrix with
independent components £ = {&;; ~ N(0,0?)}. This model can be seen as an underlying
model for Principal Component Analysis (PCA) and can be found under different names in the
literature such as the fixed effect model [Caussinus.1986], the fixed factor scores model, etc.

Hoff [Hoff.2009, Hoff.2012| proposed a Bayesian treatment of this model. With such a treatment,
he obtained posterior expectation of the singular values that are closer to the “true” ones
compared to the maximum likelihood estimates; he also proposed a new way to select the
number of dimensions. More precisely, his proposition is the following one.

The likelihood is given by:
—1
LY,U.D,V.0%) o exp{s5IlV = UDV'|},
o

exp{%(t'r((Y _UDV'Y(Y — UDV'Y))},

~1
exp{y 5 (tr(YY' = YVDU' ~UDV'Y' + UDV'VDU)}.

The priors for the singular vectors U and V' are defined as uniform on the Stiefel manifold.
Uniform distributions on this manifold correspond to very simple cases of von Mises-Fisher
distributions (cf. §B). The explicit form of these uniform distributions are given in [Smidl.2007].

The priors for the singular values as well as for the noise variance parameter are respectively:
{db a3) dQ} ~ N(07 7-2) )

1/7—2 ~ ga‘mma(n()/Qa 7707—02/2)7
1/0% ~ gammal(vy/2, 105 /2).

Then the model depends on the numerical constants vy, 19, 0.

The joint posterior distribution for the parameters is:

fU,D,V,a*lY) o f(Y|U,D,V,0%) x f(UD,V,0?)

To make inferences on the quantities of interest, we need to consider the marginal posterior
distributions. Since no close form is available for the joint posterior distribution for the pa-
rameters, a Gibbs sampler, which iteratively simulates each parameter from its full conditional
distribution, is built.
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Since the prior distribution for U is uniform, the conditional posterior distribution for U is
completely determined by the likelihood (or the conditional likelihood):

UV, D,Y,0%) x L(U,D,V,0%
exp{tr((YVD/o*)U)}

This distribution is a von Mises-Fisher distribution denoted MF(YV D/c?). Similarly, the
condition posterior distribution for V is a MF(Y'UD/c?). The conditional distributions for
dg, 1/7% and 1/0? follow respectively a normal, a gamma and a gamma distribution, with
parameters given in [Hoff.2012]. Initial values are taken as the maximum likelihood estimates
of the model (corresponding to the usual least squares estimates). On a simulated example,
[Hoff.2012] showed that the posterior mean of E (Y;;) is closer to true population values than
the estimation obtained by maximum likelihood.

Hoff’s method requires to simulate matrices from von Mises-Fisher distributions. To do so, he
proposed a method [Hoff.2009]|which is implemented in the R [RCRAN.2012] package rstiefel.

D.3 Perez et al.’s proposal

The method proposed by [Perez.2011| dedicated to linear-bilinear models also uses von Mises-
Fisher distributions but in a different way. We let the linear terms out for the sake of simplicity.
They have the same likelihood and conditional distributions for matrices U and V' as defined in
the previous section (§D.2), with an additional n corresponding to a constant number of repli-
cates for each combination of genotype-interaction and 7 instead of 1/02, to be in accordance
with their notations. From these conditional likelihoods, [Perez.2011] define its priors as:

7(U]7) oc exp{tr(rneYoVoDoU")},

with Y define as the prior cell averages such that Yy = UyDyV;. They do the same thing for V.
These priors are consequently distributed according to a von Mises-Fisher distribution. The
prior for 7 is a gamma distribution :

7(7) ~ gamma(a/2, s3/2)

With these priors, they only need to express their beliefs in the prior cell average Yj, then
Uo, Vo, Dy follows from the SVD of Y;, as well as their beliefs about a and s . In order to
draw samples from the marginal posteriors distribution a Gibbs sampler is also built. The
conditional posterior distribution for U is:

m(UIV,D,Y,7) o f(UIV,D,Y,7)*n(U|r)
exp{tr(7 * (ngYoVoDo + nYVD)U")}

This distribution is also a von Mises-Fisher distribution. The other posterior distributions are
given in the paper [Perez.2011|. Their algorithm is available as an R function but the code
is written for cases with replicates (it allows one to obtain an estimate for the variance o?);
however, it is possible to easily adapt the code for cases without repetitions.

E BUGS coding of the model

Here is the BUGS coding of the model we used for the worked example of §5.
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# 12_03_07

#

# A biadditive model with NQ multiplicative terms
# made as general as possible to get numerical
# example in the note written with Julie.

#

# constant to be defined are:

NI (number of genotypes)

NJ (number of environments)

NQ (number of multiplicative terms)

m.mu (mu expectation)

sd.mu (mu standard deviation)
sd.alpha (alpha standard deviation)
sd.beta (beta  standard deviation)
sd.lambda (lambda standard deviation)
sdm.E (maximum value of sigma.E)

w (weights for the targetted environments)
limit (threshold of interest)

H OH H H HE H H H H H R

model {

#
# prior on the additive part
Mu ~ dnorm(m.mu,1/sd.mu"2);
for (i in 1:NI) { alphali] ~ dnorm(0,1/sd.alpha~2);}
for (j in 1:NJ) { betalj] ~ dnorm(0,1/sd.beta"~2 );}
#
# prior on singular values
for (q in 1:NQ) {

lambdaO[q] ~ dnorm(0,1/sd.lambda"2);
}
lambda[1:NQ] <- sort(lambda0);
#
# prior on row singular vectors
for (q in 1:NQ) {

gamma[1l,q] ~ dnorm(0,1)T(0,);

for (i in 2:NI) {

gamma[i,q] ~ dnorm(0,1);

}
}
# prior on column singular vectors
for (q in 1:NQ) {

deltal1l,q] ~ dnorm(0,1)T(0,);

for (j in 2:NJ) {

deltalj,q] ~ dnorm(0,1);

}
}
#

# getting the expectation
for (q in 1:NQ) {
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for (i in 1:NI) {
gammaO[i,q] <- gammal[i,q] * lambdalq];

}

}

INTE <- gammaO %*% t(delta);

for (i in 1:NI) { for (j in 1:NJ) {
MU[i,j] <- Mu + alpha[i] +

betal[j] + INTE[i,jl;

1

#

# data variance

sigma.E ~ dunif(0,sdm.E);

#

# likelihood of the data set

for (i in 1:NI) { for (j in 1:NJ) {
Y[i,jl = dnorm(MU[i,j],1/sigma.E"~2);
Mupli,jl <- MU[i,j] * w[jl;

1

#

# performance of the genotype in a

# different set of environments

for (i in 1:NI) {
pilil <- sum(Mupli,1);
prlil <- step(pilil - limit);

}

+
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