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Abstra
tSo 
alled biadditive models (most 
ommonly known as ammi models for additive main e�e
tand multipli
ative intera
tion) are frequently used to interpret the main traits of two waysdata, for instan
e for the interpretation of genotype by environment intera
tions. Linked withp
a te
hni
s, they provide e�
ient empiri
al des
riptions of matrix stru
tures.The use of Bayesian approa
hes in statisti
al analysis in in
reasing for many statisti
al modelsdue to the new 
omputer 
apa
ities and the existen
e of spe
ialized algorithms to draw intoposterior distributions.Some work was already presented to deal with biadditive models in a Bayesian way. Here, we
onsider the point, proposing a new solution dire
tly on the overparameterized model whi
hallows one the use of standard softwares, for instan
e bugs implementations.We �rst give a detailed presentation of our proposal and then apply it to a real data set 
omingfrom the litterature, fo
using on the interpretation.In the appendix, the proposal to deal with overparameterized models is developped for anytype of models.

Key Words biadditive - Bayesian - ammi - overparameterization - gei - bugs
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RésuméLes modèles biadditifs (souvent appelés modèles ammi pour additivemain e�e
t andmultipli
ativeintera
tion) sont fréquemment employés pour l'interprétation de tableaux de données à deuxentrées, par exemple pour l'interprétation des intera
tion génotype-milieu. Pro
hes des analy-ses de données fa
torielles, ils représentent un outil e�
a
e pour une des
ription par
imonieusede stru
ture matri
ielles.D'autre part, l'utilisation d'appro
hes bayésienne en statistique se généralise. C'est la 
on-séquen
e de la puissan
e a

rue des 
al
ulateurs et de la disponibilité d'algorithmes spé
ialiséspour tirer des é
hantillons dans les distributions a posteriori.Plusieurs travaux ont déjà été réalisés pour traiter les modèles biadditifs de manière bayésienne.Dans 
e rapport, nous proposons une nouvelle appro
he qui prend dire
tement en 
ompte unedé�nition surparamétrée de 
es modèles. Son prin
ipal avantage est de permettre l'utilisationd'algorithmes génériques, 
omme 
eux proposés dans les logi
iels de la famille bugs.Un exemple de données de la litérature est traité de manière détaillée après une présentationformalisée de la proposition.Dans l'annexe, la prise en 
ompte de la surparamétrisation d'un modèle dans une appro
hebayésienne est traitée de manière 
omplètement générale.

Mots 
lef biadditif - bayésien - ammi - surparaméterisation - igm - bugs4
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1 Introdu
tionBiadditive models [Denis.1992, Denis.1994, Denis.1996, Denis.1998℄ are frequently used to in-terpret the intera
tion between two fa
tors. For instan
e in plant breeding, it is usual to studythe intera
tion between varieties and environments for di�erent purposes su
h as the sele
tionof new varieties. Biadditive models present several advantages 
ompared with the usual anal-ysis of varian
e models with intera
tion terms: (i) simpli�
ation of the intera
tion s
heme, (ii)better estimation be
ause all results are used for the estimation of a unique 
ombination1, (iii)the possibility to have an idea of the intera
tion and estimate the error varian
e when repli
atesare absent, even with missing values.In some re
ent papers [Perez.2011, Crossa.2011℄, it 
an be observed that the Bayesian approa
hwas proposed for biadditive models. Most of the good properties of the Bayesian approa
hesare the 
onsequen
es of a 
lear separation between the modelling on parameters (de�nition ofpriors) and the statisti
al analysis (getting information from the data set). In this report, wewill have a look at that possibility, get some experien
e on it and propose a new treatment ofsu
h models with the Bayesian point of view.2 Reminders2.1 About Bayesian statisti
s2.1.1 The Bayesian paradigmLet [Y | θ] be the likelihood distribution2 of a data set Y de�ned through a ve
torial parameter
θ. In Bayesian statisti
s, θ is not 
onsidered as having a �xed and unknown value but as beinga random variable, the distribution of whi
h 
hara
terizes the degree of 
ertainty we have onthe values it 
an take. So to 
omplete the des
ription model, the marginal distribution of θ,
[θ], must be provided. This is the a priori distribution, or prior for shortness.Performing a Bayesian statisti
al analysis is no more that applying twi
e the so-
alled Bayestheorem to get [θ | Y ] denominated a posteriori distribution :

[θ | Y ] =
[Y | θ] [θ]

[Y ]
(1)whi
h is possible sin
e the numerator is the joint distribution allowing the 
omputation of [Y ],the marginal distribution of Y .2.1.2 AdvantagesMore freedom about used probability distributions Thanks to sto
hasti
 algorithms(most known are MCMC), a lot of distributions are at hand. Among the points to underlinewhen using a BUGS fa
ility (see the Jags manual [Plummer.2011℄), one 
an 
he
k that1When a saturated intera
tive modelling is used the estimation of the expe
tation of one variety-environment
ombination relies only on the available observations for this 
ombination.2Square bra
kets stand for density distribution of a random variable; verti
al bar for the 
onditioning oper-ator. Then [Y | θ] reads as the density distribution of Y 
onditioned by θ.7



� Trun
ated distributions 
an be in
orporated in a standard way,� Censored data 
an be used all the same,� A large spe
trum of dis
rete or 
ontinuous, s
alar or multivariate distributions are avail-able,� Standard transformations are implemented.No fear of non identi�ability When no information is available from the data, we are leftat the prior level of information (only for proper priors). For the same reason missing values areno more a problem. In fa
t, the viewpoint is shifted: we are not analyzing a data set, we are (i)de�ning a model on some phenomenum (establishing a prior distribution) and (ii) extra
ting theinformation relative to this model from available dataset(s) (getting the posterior distribution).For that reason, Bayesian approa
hes are very 
onvenient for statisti
al meta-analyses.A possibility to introdu
e knowledge When de�ning the prior distribution, one 
anin
orporate, with mu
h more �exibility than when de�ning the likelihood of a data set, thealready knowledge about the phenomenon under study (expert knowledge, histori
al data, et
.).This is why sometimes, Bayesian approa
hes are linked to learning pro
esses: the posterior isnaturally the prior of new statisti
al analyses.Of 
ourse, a sequential in
orporation of data via su
h a prior/posterior s
heme is equivalent toa unique global statisti
al inferen
e.Consistent inferen
e for any transformation If a 
orre
t Bayesian inferen
e is madeon some set of parameters (say θ), a transportation of the probability distribution gives us a
onsistent inferen
e to any fun
tion of it. No longer useful to de
ide if we are interested inthe standard deviation (σ), the varian
e (σ2) or the pre
ision ( 1
σ2 )! Credibility intervals will
orrespond exa
tly.Of 
ourse this is appli
able to ve
torial situations.Ease of interpretation The output (posterior distribution) is of the same nature than theinput (prior distribution) so if one is able to propose a prior, he must be able to well use theposterior. Moreover, 
ompared to the frequentist approa
h, the notion of 
redible intervals
an be seen as easier to interpret than the notion of 
on�den
e interval. Indeed, in the latter,the randomness is on the data (we 
onsider all possible data, if we were able to do manyexperiments) whereas in the 
redible interval the randomness is on the parameter side.2.1.3 Drawba
ksA prior has to be de�ned This is the main 
riti
ism again the Bayesian statisti
al pra
ti
e.A

ording to the statisti
ian de�ning the prior, results will be di�erent, then not obje
tive. Thisis true, but 
an be viewed as an advantage be
ause good statisti
ians will get better resultswhi
h is fair? Also bad statisti
ians will be wrong as well when de�ning the Likelihood? Also,de�ning the prior imply a useful 
onsideration of the model in use, whi
h is often a pro�tablespent time. 8



By the way, it is worth re
alling that the joint prior distribution on all model parameters hasto be de�ned and not only the series of s
alar marginals. This 
an be a quite tri
ky issue3,sometimes solved with a reparameterization.Di�
ult to question the model In 
lassi
al statisti
s, there are several ways to question amodel (via the study of residuals, for example) or at least to sele
t a model within a family ofmodels. This is not so easy in the Bayesian approa
h where a di�
ult point is the de�nition offair priors for di�erent models. Fair would be that the priors be equivalent at the level of everyused observation but this is rarely the 
ase be
ause the number and natures of the parameters4,is 
ompulsorily di�erent from a model to another.The 
orre
t answer would be to imagine a hierar
hy of the 
onsidered models, giving ea
h aprior probability... this is not, for the moment, easily tra
table.2.2 The biadditive model2.2.1 De�nitionThis 
lass of models is known for many years sin
e there is was des
ribed in 1923 in one of theFisher's papers [Fisher.1923℄. The terminology was proposed by Denis and Gower [Denis.1992℄and we will sti
k to it, 
onsidering only the B (m, a, b, πQ)
5 variety de�ned as

Yijk = µ+ αi + βj +
Q∑

q=1

λqγiqδjq + Eijk (2)where Yijk is the kth observation for the 
ombination of genotype i and environment j. Thenumber of observations for ea
h 
ombination, Kij , being variable (but known) in
luding zerowhi
h means missing value. Most analyses are 
arried out with Kij = 1. The number of geno-type is denoted with I, and the number of environments J . Here Q ∈ {0, ...,min (I − 1, J − 1)};when Q = 0, we are dealing with the additive model; when Q = min (I − 1, J − 1), it is thesaturated intera
tive model (no restri
tion on the intera
tive term). Eijk is the error term thatin
ludes the design e�e
t, here we will assume that these errors are independent, 
entred, withsame varian
e (σE) and normal distribution.2.2.2 ConstraintsThis is one of the di�
ult point about biadditive models, overparameterization is present andthere is a need for additional 
onstraints to determine unique values for the parameters. Wewould like 
onstraints whi
h lead to an easy interpretation of the parameters, indu
ing simplestatisti
al derivations and most often keeping the symetry between the levels of the two fa
tors.3There are two way: (i) use a multivariate distribution [θ1, θ2, θ3] or (ii) go through 
onditional de�nition
[θ1] [θ2 | θ1] [θ3 | θ1, θ2].4The number of parameters is also di�
ult to de�ne in a Bayesian framework. However, 
riteria that mimi
sthe AIC have been proposed su
h as the DIC to sele
t models. One 
an also talked about the Bayes' Fa
torbut whi
h is hard to 
ompute.5The presen
e of m indi
ates the 
onstant parameter µ, this of a the presen
e of the row main e�e
t, b forthe 
olumn main e�e
t and Q pre
ises the number of involved multipli
ative terms in the intera
tion term.When there are no intera
tion the term π vanishes and when Q = 1, only π is left.9



Let us de�ne the e�e
t term by
µij = E (Yij | µ, α, β, λ, γ, δ)

= µ+ αi + βj +
Q∑

q=1

λqγiqδjq. (3)It is well known [van_Eeuwijk.1996℄ that the parametri
 dimension of µij is (1 +Q) ((I + J)− (1 +Q))meanwhile the number of parameters in (3) is (1 +Q) (1 + I + J) so that (1 +Q) (2 +Q) ad-ditional 
onstraints have to be introdu
ed. Here we will use the standard ones:
1
′
Iα = 1

′
Jβ = 0

1
′
Iγq = 1

′
Jδq = 0 for q ∈ {1, ..., Q} (4)

γ′γ = δ′δ = IQ

λ1 ≤ λ2 ≤ ... ≤ λQ.where γq and δq are the qth 
olumns of matri
es γ and δ of respe
tive sizes (I ×Q) and (J ×Q).In fa
t this set of 
onstraints is not su�
ient sin
e they don't �x the orientations of the (γq, δq)whi
h 
an be simultaneously inverted. Most often, this indetermination is not 
onsidered. Herewe will use the non standard spe
i�
ation of orientation borrowed from [Viele.2000℄ that the
λs be not restri
ted and that γ1qs and δ1qs be always positive. Even if it looks like breaking thesymetry between the levels of the fa
tors out, giving a di�erent role to the �rst levels, we willsee later on that this is not the 
ase.2.2.3 Least squares estimationWhen the number of repli
ates is 
onstant (Kij = K > 0), with the proposed 
onstraints (4),the least squares estimates of the biadditive model are easy to obtain. Let Y be the I × Jmatrix of the mean by 
ell Yij =

1
K

∑
k Yijk.

µ =
(
1I (1

′
I1I)

−1
1
′
I

)
Y
(
1J (1

′
J1J)

−1
1
′
J

)

α = Y
(
1J (1

′
J1J)

−1
1
′
J

)

β = Y
′ (
1I (1

′
I1I)

−1
1
′
I

)and the parameters of the intera
tion terms are given by the singular ve
tors and singularvalues for the biggest Q singular values of the singular value de
omposition of the row and
olumn 
entered matrix
(
II − 1I (1

′
I1I)

−1
1
′
I

)
Y
(
IJ − 1J (1

′
J1J)

−1
1
′
J

) .2.3 Literature proposalsRe
ently some authors [Viele.2000, Crossa.2011, Perez.2011℄ have used biadditive models withina Bayesian framework. Their motivation is that the Bayesian approa
h may o�er solutions toissues that are often di�
ult to handle su
h as: unbalan
ed data, unequal 
ell size, heteros
edas-ti
 data, the di�
ult 
hoi
e of the number of relevant dimensions for the intera
tion terms, et
.Moreover, a Bayesian approa
h also o�ers distributions of any quantity of interest (to be 
om-pare with point estimates and their 
on�den
e intervals of the maximum likelihood approa
h)10



whi
h may permit to 
onstru
t 
redible areas in the biplot for example. Finally, it allows oneto take into a

ount in the analysis previous information su
h as histori
al data whi
h may bevery interesting in the analysis of genotype-environment data. We 
an remark that 
omparedto the surge of interest in using Bayesian approa
hes to study models of very distin
s types,only few proposals have been made for the biadditive models. This 
an be explained by thedi�
ulty to work in a overparametrization framework (as we will see later). More pre
isely, theproblem 
an be quite easily ta
kle for the linear terms of the model but the major di�
ulty isto put priors on the intera
tion terms taking into a

ount the 
onstraints.Viele and Srinivasan (2000) [Viele.2000℄ seems to be the �rst ones to propose a Bayesian treat-ment of su
h models. They put uniform priors on the �rst 
olumn of the matri
es γ and δ.Sin
e ea
h ve
tor has zero sum and unit length, it 
orresponds to put uniform prior on a I(respe
tively J) dimensional unit sphere. Then, they work sequentially and take as 
onditionalprior of ea
h (γq)(respe
tively (δq)) given the previous dimensions a uniform distribution onthe 
orre
t subspa
e. Of 
ourse, due to the 
onstraints (the ve
tors must be normalized andorthogonal to the previous ones), it is not easy to de�ne the supports and to sample fromuniform distributions with the 
orre
t supports. They proposed a method to do so and thenused it in a spe
i�
 Gibbs sampler. On a real data set [Crossa.2011℄, their approa
h seemsquite promising and o�ers 
on�den
e regions helping in the interpretation of the results .Spheri
al uniform distribution is a spe
ial 
ase of von Mises-Fisher [VMF℄ distributions (see �B).Su
h distributions exist also for matri
es. More pre
isely, the set of orthonormal matri
es is
alled the Stiefel manifold [Chikuse.2002℄. The von Mises-Fisher distributions are distributionsover this manifold. [Ho�.2012, Ho�.2009, Smidl.2007℄ used these distributions in a Bayesiantreatment of models based on singular value de
ompositions of parti
ular matri
es su
h asmodels for Prin
ipal Components Analysis. From a 
omputational point of view, these modelsare 
losed to the linear-bilinear ones, the main di�eren
e being that the linear part is notin
luded. More pre
isely, [Ho�.2012, Ho�.2009, Smidl.2007℄ proposed to use as prior the uniformdistributions for matri
es γ and δ, indeed a spe
ial 
ase of von Mises-Fisher distributions. Usingsu
h priors allow them to ensure the orthonormality 
onstraints at the posterior level sin
e theposterior distributions are also VMF distributions6. More details about the method and theasso
iated algorithm is given in appendix �D.Very re
ently, in the framework of the analysis of genotype-environement data, [Perez.2011℄proposed also to use as prior distributions for matri
es γ and δ spe
i�
 von Mises-Fisher dis-tributions. Their method detailled in appendix �D remains to put priors onto the 
ells of thematrix Y .3 De�ning a priorOne of the major di�
ulty to ta
kle the biadditive model is to ensure a prior on the parameterstaking into a

ount the over-parameterization and the asso
iated 
onstraints. As far as the
onstraints are linear, it is not too mu
h problemati
. But for the bilinear 
onstraints on γand δ matri
es to be a set of Q orthonormal 
olumns, no standard solution is at hand. In thatse
tion, we propose a straightforward solution having the great advantage to be implementablein the standard bugs softwares.6but no more uniform ones.
11



3.1 Using prior in an overparameterized frameworkIn the appendix (�C) we have 
onsidered the overparameterization di�
ulty with a reparameter-ization 
learly separating the involved parameters into two transformed subsets (φ1 (θ) , φ2 (θ));the �rst is su�
ient to de�ne the data likelihood [Y | θ] = [Y | φ1 (θ)] and the se
ond is left re-dundant on
e the �rst is taken into a

ount [φ2 (θ) | Y, φ1 (θ)] = [φ2 (θ) | φ1 (θ)]. More, for multi-normal priors, we a
hieved a 
lear separation getting the independen
e, i.e. [φ1 (θ) , φ2 (θ)] =
[φ1 (θ)] [φ2 (θ)] whi
h implies that the prior and posterior distributions of φ2 (θ) are identi
al,no information is given by the data onto the φ2 (θ) parameters.It 
an be also argued that the overparemeterization problem is identi
al to the missing valuesituation. Indeed, let us take the very simple example of one way fa
tor without repli
ateand with known varian
e. Let the parameters be {θ1, θ2, ..., θI} and 
onsider a prior-likelihood
ouple as

[θi] ∼ N (50, 2) whatever is i = 1, ..., I independent,
[Yi | θi] ∼ N (θi, 1) whatever is i = 1, ..., I independent.There is no overparameterization in the sense that every modi�
ation of any non 
onstantfun
tion of the θi modi�es the likelihood. But if we remove Y1 from the data set, θ1 
an bemodi�ed without 
hange in the likelihood indu
ing overparameterization. Nevertheless there isno harm for the Bayesian statisti
ian, the joint distribution over parameters and data 
an be
al
ulated and the posterior dedu
ed. Of 
ourse, it is obvious that [θ1 | (Yi)i=1,...,I

]
= [θ1], theposterior of θ1 is equal to its prior, no information have been born onto this parameter by thedata, logi
al enough.The same 
an 
an be proposed for every overparameterized model. The fun
tions of the parame-ters asso
iated to the ne

essary 
onstraints of the type f (θ) = 0 to prevent the indeterminationdoes not in�uen
e the likelihood.But we 
ould imagine that some data be asso
iated to them, produ
ing 
omplete identi�abilityof the parameter set. Why not to argue that these data are missing? And that only their priorwill be identi
al to their posterior.Taking the 
ase of the B (m, a, b, π2) model with no repli
ates:

Yij ∼ N (µ+ αi + βj + λ1γi1δj1 + λ2γi2δj2, 1) for i = 1, ..., I and j = 1, ..., J ,we 
an say that are missing some observations to repla
e the 
onstraints, for instan
e
Y10 ∼ N (µ+ α1, 1)

Y01 ∼ N (µ+ β1, 1)

Y−1,−1 ∼ N (λ1)

Yi,−1 ∼ N (λ1γi1, 1) for i = 1, ..., 2

Y−1,j ∼ N (λ1δj1, 1) for j = 1, ..., 2

Y−2,−2 ∼ N (λ2)

Yi,−2 ∼ N (λ2γi2, 1) for i = 1, ..., 3

Y−2,j ∼ N (λ2δj2, 1) for j = 1, ..., 3And it is 
lear that they ensure that all parameters (and every fun
tions of them) are informed.So in prin
iple a good algorithm to produ
e the posterior will work even with these valuesmissing. 12



And at the moment of the interpretation we will be free to 
onsider only fun
tions of theparameters whi
h are identi�able, that is with a posterior di�erent from the prior. The �rst
andidates are
µij = µ+ αi + βj + λ1γi1δj1 + λ2γi2δj2 for i = 1, ..., I and j = 1, ..., Jand we will use them (see the model 
ode in �E) and base our interpretations from fun
tionsof them.3.2 Standard 
omplete proposalWe will use7 the following independent normal distributions as priors plus a uniform for theerror varian
e.

µ ∼ N
(
m, s2µ

)

αi ∼ N
(
0, s2α

)

βj ∼ N
(
0, s2β

)

(λq)q=1...Q ∼ ordered sample of Q independent N (
0, s2λ

) (5)
γ1q ∼ HN (0, 1)

γiq ∼ N (0, 1) for i > 1

δ1q ∼ HN (0, 1)

δjq ∼ N (0, 1) for j > 1

σE ∼ U (0, SME)where HN (0, 1) stands for the half-normal distribution (trun
ation of N (0, 1) on the positivevalues). Only �ve hyparameters are used for the de�nition8; their interpretation9 is:� m the guessed mean value of the studied variable,� sµ quanti�es the un
ertainty we believe to have about m,� sα quanti�es the variability we believe the genotype main e�e
ts have got,� sβ quanti�es the variability we believe the environment main e�e
ts have got,� sλ quanti�es the variability we believe the ge intera
tion is on its di�erent Q10 
ompo-nents11,7Even if it does not matter, it would have been more 
onsistent to use γiq ∼ N
(
0, I−1

) and δjq ∼ N
(
0, J−1

)to sti
k to the 
hoosen 
onstraints (4).8They are supposed to be numeri
al values, so expressed with latin letters.9In the following we give a pre
ise meaning to the terms variability and un
ertainty. Variability is thevariation linked to a random variable we are interested in. For instan
e, if we are interested in the yield of nextyear some variability has to be introdu
ed as a 
onsequen
e of the not known and in�uential 
limate e�e
t.Un
ertainty is related to a la
k of knowledge about some value of interest, it 
ould be de
reased by a
quiringadditional relevant data. When a volume of grains is sampled to get the wetness of the 
rop, taking a greatervolume will 
ertainly redu
e the un
ertainty we have about the humidity of the total 
rop.10The determination of the number of multipli
ative 
omponents is a di�
ult question, we will see in Figure7 how this 
an be approa
hed from the posterior distributions to redu
e their number.11Of 
ourse, di�erent distributions 
ould have been used for the di�erent λq, if some knowledge is available.13



� SME quanti�es both the remaining variability not taken into a

ount previously and theun
ertainty of the measurement12.Noti
e that� we spoke about un
ertainty only for the parameter µ sin
e it represents the parameterinsuring the translation invarian
e of the model (no need to have variability on it, it 
anbe in
orporated into the main e�e
ts).� from our point of view, if we would like to introdu
e un
ertainty on the other parameters,either an expe
tation has to be introdu
ed as a random variable, and/or the standarddeviation parameter has to be supposed random. Taking the example of the genotypemain e�e
t:
αi | α0i ∼ N

(
α0i, s

2
α

) and α0i ∼ N
(
0, s2uα

)or
αi | ςα ∼ N

(
0, ς2α

) and ςα ∼ U (0, SMα)or both. The distribution of the newly introdu
ed α0i and/or ςα 
ould be interpreted asun
ertainty.Important remark When looking at the de�nition of the von Mises-Fisher distribution (�B),it is 
lear that the distributions indu
ed by our proposal onto the orthonormal matri
es γ and
δ are indeed von Mises-Fisher distributions: the uniform distributions onto their spa
es.3.3 Prior marginal distribution of the dataWe believe that it is quite important to look at what represents the information put in the priorde�nition step. In order to do that, the more natural way is to look, using the likelihood, at theindu
ed prior distribution on the data set. This is done integrating the joint [θ, Y ] distributionover θ.Due to the presen
e of the bilinear terms, it is not possible to obtain in 
lose form the distri-bution of Yijk but it is possible to expli
it expressions for their �rst two moments and also tosimulate them. As de�ned in (2) and with the retained priors (5), one 
an 
he
k that (usingresults presented in �A.3 and �A.2) that

E (Yijk) = m

V (Yijk) = s2µ + s2α + s2β + s2λ +
1

3
S2
ME

Cov (Yijk, Yijk′) = s2µ + s2α + s2β + s2λ

Cov (Yijk, Yij′h) = s2µ + s2α

Cov (Yijk, Yi′jh) = s2µ + s2β

Cov (Yijk, Yi′j′h) = s2µNoti
e that these results apply equally well when i = 1 or/and j = 1, even if the 
omputation isslightly di�erent. This is why we said in �2.2.2 that the symetry was not lost with the proposed
onstraints.12Gamma distributions were often used for varian
e parameters, but re
ent works show that it is possible andmore e�
ient to put uniform priors 14



Figure 1: Dire
ted A
y
li
 Graph asso
iated to the Bayesian approa
h. Rounded re
tanglesare used for loops. Cir
led nodes are random variables. Re
tangular nodes are 
onstant. Ar
sindi
ate the dire
t relationships between the nodes. mu is used for µ, al for α,...
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4 A

essing to the posterior distribution4.1 Algebrai
allyNo 
lose form of posterior 
an be imagined13, espe
ially in the 
ase of a non equally repli
ateddesign where even LS estimators are not known. Nevertheless, there is no di�
ulty (in all trialswe did) to get simulated values from the posterior using Jags [Plummer.2011℄ one of the bugssoftwares.4.2 Graphi
al presentation: the dagTo better understand the me
hanism of the modelling, it is of interest to build the underlyingdire
ted a
y
li
 graph, so 
alled dag; it is presented in Figure 1. It emphasizes the 
entral role13as a 
onsequen
e of the bilinear terms. 15



Table 1: Parameter values used for the simulation in �4.3
µ = 100

(αi) = (−1,−1, 0, 1, 1)
(βj) = (−4,−3,−2,−1, 0, 1, 2, 3, 4)

λ = 12

(γi) =
(

2√
10
, 1√

10
, 0,− 1√

10
,− 2√

10

)

(δj) =
(
1
2
, 1
2
, 0, 0, 0, 0, 0,−1

2
,−1

2

)

σE = 3
2Table 2: anova table of the parameter values given in Table 1 only based on the expe
tation.The error varian
e being equal to 2.25. df SS MSrow e�e
t 4 36 9.0
olumn e�e
t 8 300 37.5intera
tion e�e
t 32 144 4.5of µij, the expe
tation of the observed variable in a frequentist approa
h. We will see in �5.7that a Bayesian approa
h allows one to play between �xed and random e�e
t a�e
tation.4.3 Simulation studyIn order to 
he
k that in pra
ti
al situations, a Bayesian approa
h is e�e
tive for biadditive mod-els, we performed a small simulation study. From a B (m, a, b, π) biadditive expe
tation14 weadded a normal random error with identi
al standard deviations (σE) and �tted a B (m, a, b, π2)model. This was done a number of times, to es
ape a favorable (or unfavorable) 
ase.More pre
isely, we did 49 simulations, with a posterior sample of 50 draws with a thinning
oe�
ient of 200 to avoid auto
orrelations; not be
ause the 
omputation are lengthy: theylast 140 se
onds but be
ause we wanted to display the results graphi
ally. The introdu
edparameter values are shown in Table 1 resulting in the anova table given in Table 2.The results of the simulation study are given in Figures 2 (study of the suggested number ofmultipli
ative terms), 3 (inferring the row main e�e
ts), 4 (inferring the row �rst intera
tivee�e
ts) and 5 (inferring the row se
ond intera
tive e�e
ts).Figure 2 displays the joint posterior distributions of (λ1, λ2). The values of λ1 are positive forall the simulations, whereas λ2 takes a 
ontinuum of values negative or positive. This is a 
learindi
ation that the 
redible region of λ1 does not in
lude the zero value, 
ontrary to its of λ2.Consequently, we 
an say that most often the Bayesian analysis 
orre
tly assess one multipli
a-tive term (ex
ept in simulation 48 where the 
on
lusion would be two multipli
ative terms anda not so 
lear 
on
lusion for simulation number 11 but still in favor of one multipli
ative term).Here we 
an see an advantage to let the singular values being negative: it would have been less
lear if the absolute value of the singular values have been used as 
ommonly done.The pro�le study of the row e�e
ts proposed in Figures 3, 4 and 5 would be mu
h 
learer if thebundle of the 50 pro�les were repla
ed by the quantile pro�les of a greater number of pro�les.Straightforword (but tedious) algorithms 
an be implemented for that.14additive part plus intera
tion with a unique multipli
ative term.16



Figure 2: Simulation study: number of multipli
ative terms. For ea
h of the 49 simulations,the simulated joint posterior density of λ1 (abs
issae) and λ2 (ordinates) is displayed with 50draws. The red 
ir
le indi
ates the true value (λ1 = 12, λ2 = 0). Due to the indetermination ofthe parameterization, negative values are equivalent to positive values.
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Nevertheless α and γ1 parameters seems well assessed. More heterogeneity o

urs for γ1 whereparti
ularly the already mentionned simulation number 11 has a few opposite pro�les. Lookingthis 
ase with attention, ones 
an noti
e that the γ11 parameter15 is very 
lose to zero andsometimes fautly; a free attribution would have given two sets of pro�le, one similar to the truepro�le and the other one opposite. The errati
 behavior of γ2 pro�les (Figure 5) is 
onsistentwith the found unique dimension. Here too with the ex
eption of simulation 48 whi
h tendedto propose two dimensions, where the bundle of pro�les has got a systemati
 
on
ave shape.15The one for
ed to be positive due to our 
onstraint system.
17



Figure 3: Simulation study: row main e�e
ts. For ea
h of the 49 simulations, the simulatedjoint posterior density of the αi pro�les is displayed with 50 draws. A pro�le is de�ned as thelines linking (i, αi); the red line indi
ates the true pro�le.
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Figure 4: Simulation study: �rst intera
tive row e�e
ts. For ea
h of the 49 simulations, thesimulated joint posterior density of the γi1 pro�les is displayed with 50 draws. A pro�le isde�ned as the lines linking (i, γi1); the red line indi
ates the true pro�le.
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Figure 5: Simulation study: se
ond intera
tive row e�e
ts. For ea
h of the 49 simulations,the simulated joint posterior density of the γi2 pro�les is displayed with 50 draws. A pro�leis de�ned as the broken line linking (i, γi2); there is no true pro�le sin
e there is no se
ondmultipli
ative term in the proposed expe
tation; the red line is the null pro�le.
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5 Using posterior simulations: a worked exampleWhen analyzing a real genotype-environment data, �ve main questions16 arise:Q1 What is the genotype with the best performan
es a
ross all the environments?Q2 What is the genotype with the best performan
e for a spe
i�
 environment?Q3 Are the genotypes stable a
ross all the environments?Q4 Is it possible to rank the genotypes?Q5 Could we assign a probability that a genotype will give more than a 
ertain threshold?Of 
ourse, the symetri
al questions (
onsidering genotype instead of environments) are also ofvalue.In this part, we try to address these questions. Moreover, in the 
lassi
al statisti
al approa
hwhere estimates (and pre
ision of them) of the biadditive model are obtained, it is not thateasy to interpret the results. One 
an wonder if it would not be worst in a Bayesian 
ontextwhere distributions have to be handled instead of estimations? We would like to show that not.To illustrate our purpose, we use a worked example using the data set proposed by [Crossa.1991℄whi
h 
omprises I = 18 genotypes and J = 25 environments, all 
ombinations, no repli
ates.More pre
isely we will analyse it in four versions :redu
ed using only the 40 
ombinations of the �rst 5 genotypes with the �rst 8 environments,
omplete the 
omplete data set,redu
ed_missing the redu
ed data set where 4 values, randomly 
hoosen, were 
onsideredmissing,
omplete_missing the 
omplete data set where 45 values, randomly 
hoosen, were 
onsideredmissing.Table 3 gives general features about the 
onsidered 
ases. From the anova tables, one 
an
on
lude that important values have been eliminated when 
reating a 10% missing s
heme inthe redu
ed missing 
ase; less obvious for the 
omplete 
ase.The standard output of a m
m
 algorithm is a simulation of the parameters from their posteriordistribution. We will use a supers
ript s varying from 1 to S to indi
ate it. For instan
e αs
iwill be the sth simulation of the parameter αi.Be
ause we are fan of them, we present the interpretation with graphs, but this also 
ould bedone with numeri
al values in tables.5.1 Comparing prior versus posteriorAs seen in �2.1.3, the major 
riti
isms made to the Bayesian approa
h is the ne
essity to de�nea prior on the model parameters. Two pre
autions have to be taken with this respe
t.21



Table 3: Some 
hara
teristi
s of the four data 
ases. The four 
omputations were made withthe same 
omputer; 105 iterations were used for the burn-in phase; 104 were drawn with asystemati
 sampling of 10−2 giving 102 retained simulations.
ase anova duration (s)redu
ed df SS MSGeno 4 1.0 0.25Envi 7 95.6 13.7Geno:Envi 28 5.7 0.20 3
omplete Geno 17 18.1 1.1Envi 24 2369.5 98.7Geno:Envi 408 132.5 0.32 86redu
ed missing Geno 4 3.9 0.96Envi 7 66.4 9.5Geno:Envi 24 3.7 0.15 2.7
omplete missing Geno 17 16.1 0.95Envi 24 2122.4 88.4Geno:Envi 363 115.66 0.32 75

Table 4: Prior de�nitions: used 
onstant values referring to the distributions introdu
ed in (5).Take 
are that impli
itely all priors are supposed to be sto
hasti
ally independent.
onstants
m = 5, sµ = 0.8

sα = 0.5
sβ = 0.5

sλ = 0.5
√
IJ

SME = 2

22



First the prior distribution has to be dis
ussed with the experts of the �eld in order to in
or-porate to the priors as mu
h as possible knowledge in them. Here, we dire
tly used the rathervague priors shown in Table 4.Se
ond, a 
areful examination of the prior distributions has to be 
ondu
ted on the quantitiesof interest. It 
an o

ur that prior on parameters lead to prior on observation out of relevan
e!17This is a 
lear indi
ation that something is wrong and must be 
hanged. Also the 
omparisonbetween priors and posteriors is needed to assess the level of involment of the data set in theposterior. In Figure 6 one 
an see that 
onsistently with the used priors (Table 4) no e�e
t isvisible in the prior dimension, whi
h is not the 
ase for the posterior dimension where threedistin
t 
lusters appear. Probably, it would be logi
al to redu
e the variability of the prior sin
enegative yields are proposed for almost every µij together with upper values also not sensible.5.2 Looking for a sensible number of multipli
ative termsFigure 7 displays the joint posterior distributions of (λ1, λ2) for the redu
ed and 
omplete
ases. The redu
ed 
ase is interesting be
ause we 
an noti
e that the S = 100 simulationsare distributed in two groups: the most numerous for negative values of λ1, the other one forpositive values of λ2. In ea
h group, λ2 takes a 
ontinuum of values negative or positive. Thisis a 
lear indi
ation that the 
redible region of λ1 does not in
lude the zero value, 
ontrary toits of λ2. The 
on
lusion is that only one multipli
ative is needed for the redu
ed 
ase. For the
omplete 
ase, a glan
e at the s
ales show that no doubt is left, both 
redible intervals are veryfar from zero and at least the �rst two dimensions have to be kept. As we didn't introdu
e athird term, nothing 
an be said about its ne
essity18.5.3 Interpreting the parametersLet us 
on
entrate our attention towards the genotypes; the same 
ould be made for the envi-ronment fa
tor.The most straightforward use of the simulations is to draw s
atter plots of a fa
tor with the pa-rameter depending on it. For instan
e19 (αi

√
J, λ1γi,1

), but instead of one point for genotypes,we will get S points providing a dire
t view of the variability/un
ertainty: Bayesian statisti
sreturns a distribution20, not a point estimate with possibly a 
on�den
e interval. This is donein Figure 8 for the 
omplete 
ase and the �rst nine genotypes. They look impressively distin
t.No overlapping for any pair of genotypes (this does not seem the 
onsequen
e of the very re-du
ed number of simulations: 100). Among these genotypes, the 6th looks attra
tive with thestrongest main e�e
t and limited intera
tion, then among the most stables.16as suggested by Fred van Eeuwijk (Prof. at Wageningen University, NL) during a workshop on statisti
alinterpretation of Genotype-Environment intera
tion, 2012, Inra, Jouy en Josas.17Strongly negative or exagerated yields...18Noti
e that in [Crossa.1991℄, three multipli
ative terms have been introdu
ed, we 
onsider only two for thesake of the exposure simpli
ity. Nevertheless the model 
ode provided in �E has got a NQ variable whi
h 
antake any value. As underlined in �2.1.3, a �aw of Bayesian approa
hes is the la
k of tools to sele
t a modelamong a set of models. In 
ase of nested models, 
redibility regions 
an be used to de
ide if some parameterstake values asso
iated to some submodels.19The multipli
ation of α by √
J and of γq by λq provides them a squared norm equal to the sum of squaresexplained by the asso
iated terms in the model whi
h seems a fair way to relate them. More pre
isely SSGeno =

J
∑

i α̂
2
i and SSG×E(1) = λ2

1 = λ2
1

∑
i γ̂i,1

2, in the orthogonal 
ase.20Here with the means of simulations, then an empiri
al distribution.23



Figure 6: Prior-posterior 
redible boxes for the µij for the redu
ed data set. 2.5% and 97.5%quantiles were used to de�ne the boxes around the median position. The red line is the �rstbisse
tor.
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Figure 7: Posterior distributions of the λs for the redu
ed (left) and 
omplete (right) 
ases.
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Taking into a

ount the easy interpretation given to the parameters asso
iated to ea
h genotype(sin
e there is only one multipli
ative term), it is possible to answer most of the questions risenat the beginning of this se
tion. Among the nine displayed in Figure 8, genotype 6 has got thebetter performan
e a
ross the set of all environments (Q1), it as also in the group of the stablegenotypes {6,8,7} (Q3), 
ertainly it deserves the �rst rank meanwhile genotype 3 is on the lastposition (Q4).5.4 Interpreting the genotype responses a
ross the environmentsBut, as the 
lear interpretation of the parameters identi�ed in (2) is not always unambiguous, wesuggest to always start from the matrix (µij) de�ned in (3) and indi
ated in the dag of Figure1. The proposal is to show the genotype response for the spe
trum of studied environments.For that, we think that a random 
urve for ea
h genotype along the E
(
1
I

∑
i µij

) is of value.To take into a

ount the un
ertainty linked with the posterior distribution, we propose torepresent ea
h genotype with a bundle of S 
urves (one for ea
h simulation) obtained by joiningthe J points of 
oordinates (1
I

∑
i µ

s
ij, µij − 1

I

∑
i µ

s
ij

). With the adopted 
onstraints (�2.2.2), itis (µs + βs
j , α

s
i +

∑Q
q=1 λ

s
qγ

s
iqδ

s
js

). Other proposals 
an be think of, this one has the advantageof proposing non 
ommon terms between abs
issae and ordinates, eliminating noise e�e
ts ofsystemati
 
orrelations.This is proposed in Figures 9 and 10.Indeed very strong di�eren
es appear and we retrieve the very good behavior of genotype 6.Using this diagram, we 
an also determine whi
h are the best genotypes for a given environment(Q2). After genotype 6 whi
h is de�nitively the best for all environments, the �rst one is themore advisable for poor environement ne
essarily pla
ed on the left side of the abs
issae.
25



Figure 8: Genotype e�e
ts (additive with αi, intera
tive with γi,1) for the 
omplete 
ase. Ea
hgenotype is drawn in a di�erent plot; only the �rst nine genotypes are shown (out of 18).
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Figure 9: Posterior genotype pro�les for the 
omplete 
ase (One to Nine)
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Figure 10: Posterior genotype pro�les for the 
omplete 
ase (Ten to Eighteen)
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Figure 11: Posterior genotype pro�les (Ten to Eighteen) in 
ase of 45 missing values
0 20 40 60 80 120

−
6

−
2

2
4

6
POSTERIOR Geno = 10

Mu+Beta[j]

M
U

[1
0,

j] 
−

 (
M

U
+

B
et

a[
j])

0 20 40 60 80 120

−
6

−
2

2
4

6

POSTERIOR Geno = 11

Mu+Beta[j]
M

U
[1

1,
j] 

−
 (

M
U

+
B

et
a[

j])

0 20 40 60 80 120

−
6

−
2

2
4

6

POSTERIOR Geno = 12

Mu+Beta[j]

M
U

[1
2,

j] 
−

 (
M

U
+

B
et

a[
j])

0 20 40 60 80 120

−
6

−
2

2
4

6

POSTERIOR Geno = 13

Mu+Beta[j]

M
U

[1
3,

j] 
−

 (
M

U
+

B
et

a[
j])

0 20 40 60 80 120

−
6

−
2

2
4

6
POSTERIOR Geno = 14

Mu+Beta[j]

M
U

[1
4,

j] 
−

 (
M

U
+

B
et

a[
j])

0 20 40 60 80 120

−
6

−
2

2
4

6

POSTERIOR Geno = 15

Mu+Beta[j]
M

U
[1

5,
j] 

−
 (

M
U

+
B

et
a[

j])

0 20 40 60 80 120

−
6

−
2

2
4

6

POSTERIOR Geno = 16

Mu+Beta[j]

M
U

[1
6,

j] 
−

 (
M

U
+

B
et

a[
j])

0 20 40 60 80 120

−
6

−
2

2
4

6

POSTERIOR Geno = 17

Mu+Beta[j]

M
U

[1
7,

j] 
−

 (
M

U
+

B
et

a[
j])

0 20 40 60 80 120

−
6

−
2

2
4

6
POSTERIOR Geno = 18

Mu+Beta[j]

M
U

[1
8,

j] 
−

 (
M

U
+

B
et

a[
j])

5.5 Missing valuesOne of the strong points of the Bayesian approa
h is that missing values are no more a problem.Let's inspe
t the results obtained in su
h a situation. An intriguing fa
t appears in Table 3:the m
m
 seems faster with missing values than without! In fa
t, this 
an be explained. TheBayesian statisti
al approa
h is no more than de�ning a joint probability distribution onto thewhole set of parameters and data (prior and likelihood de�nitions) before 
onditioning with theobserved data (posterior 
al
ulation). Missing values are not missing, they are not 
onditioningvariable sin
e not observed. One 
an then admit that more missing values there are, easier isthe 
onditioning task!The ten per
ent missing values does not alter the interpretation obtained from the 
ompletedata set, as it 
an be 
he
ked with Figure 11.
29



5.6 Ex
eeding a thresholdThe previous diagrams does not allow to answer the last question (Q5): 
ould we assign aprobability that a genotype will give more than a 
ertain threshold?, a quantitative question!Indeed, the bayesian framework is quite adapted to answer su
h a question!First we have to be more pre
ised about the question: is the yield for a given environment or forthe range of all possible environments? If we are interested in a pre
ise environment and thatwe have information about it, either be
ause it was experimented or be
ause we 
an predi
t itsresponse through our modelling using pertinent 
ovariables, then we 
an propose an answer tothe question. But let us suppose that we are asking for a response a
ross a set of environmentswhi
h is not exa
tly represented by the experimental set. Let us also suppose that we are ableto give relative weights (wj) for ea
h of our experimented environments to unbias the results,i.e. that
πi =

∑

j

wjµijis the performan
e of genotype i that we are looking for. One 
an see that if all wj are zeroex
ept one of them, we will get the answer for a pre
ised environment.Then we 
an easily introdu
e this new variable into our model and be interested into theproportion of posterior simulations where the given threshold is ex
eeded, also it is of interestto look at the density of πi, just to see where is the threshold. This was done for wj=1,...,5 =
1
20
, wj=6,...,10 = 1

10
, w11 = 1

4
and wj=12,...,25 = 0 with a threshold of 8. Results are displayedin Figure 12 where it 
an be seen that only the �rst and sixth genotype 
an have a positiveprobability (respe
tively estimated to 0.1 and 1 by the posterior expe
tation of the proportions.)5.7 Random versus �xed e�e
ts?Genotype Environement data are often analyzed either by mixed models or by biadditive models(with a frequentist point of view). One of the most dis
ussed point when de�ning su
h modelsis the 
hoi
e between �xed or random status for the two fa
tors. This is not so obvious. Indeed,when looking at the �rst question (Q1), the fa
tor environement may be 
onsidered as random:we are not interested in one environement in parti
ular and with the �subset� of environementwe dispose, we want to tell what is the best genotype a
ross all the possible environements (asdone in �5.6). However, when regarding the se
ond question, the fa
tor environement mustbe 
onsidered as �xed: within this spe
i�
 environment (and not another one) what is theperforman
e of the genotypes? Using �xed e�e
ts model or random e�e
ts model is mainly the
onsequen
e of di�erent questions21 implying di�erent models and then di�erent results.Within the Bayesian framework, there is no more unknown �xed parameters but only randomvariables and the inferen
e 
ould be denominated the art of 
onditioning. Consequently, we
an pretend to keep with the general model and by some 
onditioning (for instan
e �xing theenvironment or not) adopt the right viewpoint to answer a pre
ised question.From a te
hni
al point of view, there are links between shrinking estimation, mixed models andBayesian statisti
s: what is observed is not 
onsidered as unbiased truth.21of 
ourse supposing that the data is pertinent to answer them.
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Figure 12: Performan
es of the �rst nine genotype in a target set of environments
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Figure 13: Similar Figure of Figure 7 with Perez et al.'s algorithm
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5.8 Comparison with Perez et al. proposalAs explained in �2.3 other proposals already exist. In that se
tion, we show the results obtainedwith the [Perez.2011℄ approa
h, using the R s
ript of them.For easier 
omparison the results obtained with [Perez.2011℄'s algorithm are displayed withequivalent diagrams: Figures 13, 14, 15 and 16. Apart from the singular values, the results forthe main e�e
ts ad the intera
tions seems very 
losed on this dataset. This is 
onsistent withthe fa
t that we used the same type of priors.6 Con
lusionWe have proposed an easy Bayesian treatment of the Biadditive model whi
h seem to providegoods results based on a small simulation study and results 
omparable to the ones obtained32



Figure 14: Similar Figure of Figure 8 with Perez et al.'s algorithm
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Figure 15: Similar Figure of Figure 9 with Perez et al.'s algorithm
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Figure 16: Similar Figure of Figure 10 with Perez et al.'s algorithm
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by [Perez.2011℄ on a real dataset. The proposal solves the problem of overparametrization
onsidering overparametrization as dire
tly tra
table with standard m
m
 algorithms.Regarding missing values, it would be interesting to 
ompare the proposition to 
lassi
al ap-proa
hes where weighted least squares pro
edures are used to estimate the parameters froman in
omplete dataset. One 
an argue that with the Bayesian point of view, we will obtaindire
tly 
redible regions for the �estimated� data as well as for the fa
tor e�e
ts whi
h is veryappealing.Another point whi
h deserve more resear
h is the 
hoi
e of the appropriate number of multi-pli
ative terms whi
h is a 
ore issue in biadditive models. In our proposal, it is possible byinspe
ting the posterior distribution to de
ide how many terms to keep. More work has to bedone using a simulation study for example in order to assess this pro
edure. Another pathto investigate may be the use of "Bayesian Model Averaging", an empiri
al proposal to ta
klemodels with di�erent parametri
 dimensions in a Bayesian way. As the term suggests, per-form as many Bayesian analyses as possible models and then take a syntheti
 posterior simplyaveraging ea
h of them.A Mis
ellaneous formulaeA.1 Conditional expe
tation and varian
eIt is well known that
E (Y ) = EX (EY (Y | X))

V (Y ) = EX (VY (Y | X)) + VX (EY (Y | X))A.2 First two moments of EijkWhen E | σE ∼ N (0, σ2
E) and σE ∼ U (0, SME), just applying formulae given in �A.1, oneobtains

E (E) = 0

V (E) =
1

3
S2
MEA.3 First two moments of a triple produ
tLet three independent variables A, B and C su
h that their expe
tations be respe
tively a, b, cand their standard deviation α, β, γ. Then

E (ABC) = abc

V (ABC) =
(
a2 + α2

) (
b2 + β2

) (
c2 + γ2

)
− a2b2c2
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B von Mises-Fisher distributionB.1 De�nitionFollowing [De_Waal.2006℄, let X be a random matrix of size I ×Q (Q ≤ I) be multinormallydistributed with
E (X) = µ

V (ve
 (X)) = Ψ⊗ Σwhere µ is any I × Q matrix, Σ is a I × I p.s.d. matrix, Ψ is a Q × Q p.s.d. matrix and theoperator ve
 transforms a matrix into a ve
tor by sta
king its 
olumns.Then X | X ′X = s is distributed as a generalization of the von Mises-Fisher distribution withdistribution given by the density
C exp

(tr (Σ−1xΨ−1µ′
)
− 1

2
tr (Σ−1xΦ−1x′

))when x′x = s.It is appealing that the 
onstraint x′x = s does not intervene in the density but for the de�nitionof the support...The von Mises-Fisher distribution o

urs when Σ = II ,Ψ = s = IQ; its density is thende�ned to exp (tr (xµ′)) for x′x = IQ.
k exp (tr (xµ′))when x′x = IQ.The normalizing 
onstant, k, 
an be expressed as an in�nite series of Hayakawa polynomials.B.2 Interpretation of the von Mises-Fisher distributionSome interesting fa
ts 
an be emphasized:� The matrix µ is the only parameter of the distribution.� Matrix µ is no more than the expe
tation of the initial matrix X not restri
ted to lieon the hyper-sphere unity but due to 
urved spa
e where is the restri
ted variable, itsexpe
tation does not belong to the hypersphere but is inside it. Nevertheless, µ plays therole of a 
entrality parameter for the dire
tion of the normalized X .� When I = 2 ou 3, and Q = 1 one 
an get hints, imagining the density fun
tion of a

N (µ, II) interse
ted with the 
ir
le or sphere of radius one. The maximum density willbe in the dire
tion of µ; indeed what indi
ates tr (xµ′) = x′µ sin
e x and µ are ve
tors.The same reasonning applies when I > 3.� Indeed for I = 2 and Q = 1, a simple reparameterization gives more insights. We 
anwrite x′ = (cos (θ) , sin (θ)) and µ = λ (cos (ν) , sin (ν)) then the density is proportional to
exp (λ cos (θ − ν)) and 
an be easily drawn.37



� When I = 2 and Q = 2, due to the orthogonality 
onstraint, still the matrix x dependsonly of θ and reads
x =


 cos (θ) cos

(
θ + π

2

)

sin (θ) sin
(
θ + π

2

)

so with obvious notation the density is proportional to

exp
(
λ1 cos (θ − ν1) + λ2 cos

(
θ +

π

2
− ν2

))whi
h also 
an be easily represented with iso
ontour diagrams.� When I = 3, similar 
onsiderations 
an be obtained with a parameterization with Qparameters by means of the Euler angles, for Q = 3, it reads
x =




c1c2 −s1c2c3 + s2s3 s1c2s3 + s2c3
s1 c1c3 c1

−c1s2 s1s2c3 + c2s3 −s1s2s3 + c2c3


where ci = cos (θi) and si = sin (θi).� When I > 3, it is not that easy but, in prin
iple, Euler angles 
an still be obtained bysu

essive rotations around the 
anoni
al axis.� The uniform distribution onto the hypersphere is obtained for tr (x′µ) = 0, whi
h impliesthat µ = 0I×Q.� When µ is of rank R < Q, then it seems that R out of the Q ve
tors of x will be 
lose tothe dire
tions 
omprised into µ and that the other ones will be let free on the orthogonal
omplement subspa
e? This rises the question if one 
annot impose µ to be de�ned withorthogonal 
olumns?� It is 
lear that µ and kµ gives the same density, 
an other type of invarian
e be exhibitedto allow a easier de�nition of the parameter µ?C Prior/posterior with overparameterized modelsC.1 Linear tiny 
aseC.1.1 De�nitionIn order to see the ideas and to be able to get all algebrai
al derivations, let us 
onsider �rsta single 
ase of overparameterization with two data values and three parameters to infer. Letbe Y = (Y1, Y2) and its expe
tation de�ned with three parameters (µ, α1, α2). The supposedindependent priors are

µ ∼ N (m, 1)

α1 ∼ N (0, 1)

α2 ∼ N (0, 1)38



(where m is a known numeri
al value) and the likelihood is given by
(

Y1

Y2

∣∣∣∣∣µ, α1, α2

)
∼ N

((
µ+ α1

µ+ α2

)
,

(
1 0
0 1

))Some easy 
omputations due to the multinormal framework gives as joint distribution



µ
α1

α2

Y1

Y2




∼ N







m
0
0
m
m



,




1 0 0 1 1
0 1 0 1 0
0 0 1 0 1
1 1 0 3 1
1 0 1 1 3






.

C.1.2 ReparameterizationIn order to distinguish what is rea
hable (or not) by the data, we 
an modify the parameterde�nition in the following linear way



θ1
θ2
θ3


 =




2 1 1
0 1 −1
1 −1 −1







µ
α1

α2


 .The transformation matrix being full rank, the two parameterizations are equivalent, in thesense that we 
an use one or the other, keeping the same modelling. One 
an noti
e that the�rst two θs 
an be expressed from the 
onditional expe
tation of Y :

θ1 = E (Y1 | (µ, α1, α2)) + E (Y2 | (µ, α1, α2))

θ2 = E (Y1 | (µ, α1, α2))− E (Y2 | (µ, α1, α2))and that there is no hope to express the last new parameter in su
h a way, sin
e θ3 is independentfrom (θ1, θ2), the new joint distribution reading



θ1
θ2
θ3
Y1

Y2




∼ N







2m
0
0
m
m



,




6 0 0 1 1
0 2 0 1 −1
0 0 3 0 0
3 1 0 3 1
3 −1 0 1 3






. (6)As a 
onsequen
e, the new Bayesian reformulation of the model eviden
es the useless of pa-rameter θ3, indeed the new parameters are independent and

θ1 ∼ N (2m, 6)

θ2 ∼ N (0, 2)

θ3 ∼ N (0, 3)also the likelihood given by
(

Y1

Y2

)
| (θ1, θ2, θ3) ∼ N

((
θ1+θ2

2
θ1−θ2

2

)
,

(
2 1
1 2

)) ,does not depend on θ3.A noti
eable point is that the two Y s are no more 
onditionally independent to the parameters.But why not? In fa
t, it is possible to linearly transform the data(Y1, Y2) in an equivalent pair
(Z1, Z2) su
h the the Zs be 
onditionally independent of the parameters.39



C.1.3 Posterior in the new parameterizationFrom (6), the posterior 
an be written applying the 
onditional formula of the multinormaldistribution: 


θ1
θ2
θ3


 | (Y1, Y2) ∼ N







Y1+Y2

4
+ 3

2
m

Y1−Y2

2
−m

0


 ,




1
2

0 0
0 1 0
0 0 3





 .C.1.4 Con
lusionIf the statisti
al analysis is made with the se
ond parameterization, it is observed that [θ3 | (Y1, Y2)]is no more than the prior [θ3]. This parameter 
an be eliminated and the overparameterizationis no more present.C.2 Additive 
aseSimilar results are easily found with the additive model following the same steps that in �C.1.C.2.1 De�nition

E (Yij | µ, αi, βj) = µ+ αi + βjwith prior22 and likelihood:
µ ∼ N (0, 1)

αi ∼ N (0, 1) i = 1, ..., I

βi ∼ N (0, 1) j = 1, ..., J

Yij | (µ, α, β) ∼ N (µ+ αi + βj , 1) i = 1, ..., I ; j = 1, ..., J .Here, we have 1 + I + J parameters whose priors are de�ned independent and IJ data inde-pendent 
onditionally to the parameters. But it is well known that the parametri
 dimensionof su
h additive model is I + J − 1 so that we have to �nd 2 (here linear) fun
tions of theparameters whi
h are independent of the data, and su
h that no information will be addedwhen going from the prior to the posterior.C.2.2 First reparameterizationIt would be mu
h more di�
ult to get a set of 1 + I + J independent orthogonal parameters
θ1, θ2, ..., θ1+I+J su
h that the last two be independent of the Yij as done in the tiny 
ase. Butwe propose the following, let

θij = µ+ αi + βj when i = 1 and/or j = 1.The number of θs is I + J − 1, and
µ+ αi + βj = θ1j + θi1 − θ1122Assuming that m = 0 and all varian
es unity. 40



whatever is (i, j) showing that the θs generates all expe
tations of the data set. It now su�
eto get two additional linear 
ombinations of the (µ, αi, βj) independent from them. Followingthe indi
ation given in �C.1.2, a possibility is
ρ1 = µ−

∑

i

αi

ρ2 = µ−
∑

j

βjTo better see what is behind the transformation, let us detail the 
ase for I = 3 and J = 4.The new parameters are obtained from the basi
 ones from the following linear mapping



θ11
θ12
θ13
θ14
θ21
θ31
ρ1
ρ2




= PA ×




µ
α1

α2

α3

β1

β2

β3

β4


where

PA =




1 1 0 0 1 0 0 0
1 1 0 0 0 1 0 0
1 1 0 0 0 0 1 0
1 1 0 0 0 0 0 1
1 0 1 0 1 0 0 0
1 0 0 1 1 0 0 0
1 −1 −1 −1 0 0 0 0
1 0 0 0 −1 −1 −1 −1


giving

V ar




θ11
θ12
θ13
θ14
θ21
θ31
ρ1
ρ2




= PA × P ′
A

=




3 2 2 2 2 2 0 0
2 3 2 2 1 1 0 0
2 2 3 2 1 1 0 0
2 2 2 3 1 1 0 0
2 1 1 1 3 2 0 0
2 1 1 1 2 3 0 0
0 0 0 0 0 0 4 1
0 0 0 0 0 0 1 5


41



C.2.3 Se
ond reparameterizationJust to show that many reparameterizations are possible, again for I = 3 and J = 4. The newparameters are obtained from the basi
 ones from the following linear mapping
PB ×




µ
α1

α2

α3

β1

β2

β3

β4




=




17 4 4 4 3 3 3 3
1 0 1 0 0 0 0 0
1 0 0 1 0 0 0 0
1 0 0 0 0 1 0 0
1 0 0 0 0 0 1 0
1 0 0 0 0 0 0 1
0 3 0 0 −4 0 0 0
1 0 −1 −1 0 −1 −1 −1




×




µ
α1

α2

α3

β1

β2

β3

β4


giving

PB× P ′
B =




373 21 21 20 20 20 0 0
21 2 1 1 1 1 0 0
21 1 2 1 1 1 0 0
20 1 1 2 1 1 0 0
20 1 1 1 2 1 0 0
20 1 1 1 1 2 0 0
0 0 0 0 0 0 25 0
0 0 0 0 0 0 0 6


C.3 General formulationAs the derivation in �C.2.2 is done, one 
an think that it is mainly based on the linear re-lationship between the parameters and the expe
tions of the data: in fa
t not. It is onlybased on the prior multinormality of the parameters. Let us now try to get the essen
e of theoverparameterization behaviour.C.3.1 De�nition of overparametrizationLet a model be de�ned with θ, the set of parameters and some data Y . Let [θ] be the prior and

[Y | θ] the likelihood probability distributions. We will say that there is overparameterizationwhen not all the parameters are ne
essary to de�ne the likelihood, that is when it exists φt (θ) areparameterization with a smaller parametri
 dimension23, equivalently de�ning the likelihood.More pre
isely:
[Y | θ] = [Y | φt] (7)pd (φt) < pd (θ) .Intuitively, there is su�
ient information into φt to provide the 
omplete determination of thelikelihood.23We are not at ease of how de�ne the parametri
 dimension of φt, we suspe
t that it is linked with the rankof the Ja
obian ∂φt

∂θ
.
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Figure 17: Prior and posterior forms of the joint distribution as dags
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C.3.2 Dealing with overparameterizationThere is at least two ways to prevent the overparameterization di�
ulty: (i) use a transfor-mation of type φt with minimal parametri
 dimension restri
ting the parameter spa
e; (ii) addadditionnal 
onstraints onto the initial parameter sets φc (θ) = 0 su
h θ |φc(θ)=0 be equivalentto some minimal φt. The �rst solution eliminates the di�
ulty but most of the time loosingsome interesting symetri
al properties. The interpretation of the parameters is then less easyand interesting, so most often the se
ond way is preferred.Assuming that for a given model, we are able to �nd (φt (θ) , φc (θ)) su
h that φt is su�
ient tode�ne the likelihood and has got the minimum parametri
 dimension. So we have (7) and
(θ) ⇐⇒ (φt, φc) . (8)Then the initial model 
an be written into this new equivalent parameterization:prior : [φt, φc] = [φt] [φc | φt] ,likelihood : [Y | φt] .The joint distribution is then the produ
t of both:

[Y | φt] [φt] [φc | φt] = [Y ] [φt | Y ] [φc | φt] . (9)Both forms are given in the two three-nodes Bayesian networks of Figure 17. The right handside of Equation (9) gives the posterior form while the left one is the prior form. From (9), weobtain that the posterior distribution of the parameters as
[(φt,φc)|Y ] = [φt | Y ] [φc | φt] . (10)This does not mean that the posterior of φc does not depend on Y but that it depends on Yonly through φt and more that this dependen
e is identi
al to the one de�ned at the prior level.It is the 
onsequen
e of the d-separation operated by φt between the random variables Y and

φc. 43



C.3.3 Con
lusionUse of an overparameterized model with a prior onto the 
omplete set of parameters is without
onsequen
e. One is dealing with more random variables than ne
essary, no more. And experi-mental observations tends to think that it is a more e�
ient way, possibly due to a symmetri
alrepartition of the roles between the parameters.When the prior on the 
omplete set 
an be de
omposed into independent (φc) and ne
essary(φt) transformed subsets, then the prior and the posterior of φc are identi
al. This is 
onvenientbut not required.C.4 Biadditive 
aseOf 
ourse this applies to the biadditive 
ase. Wihtout entering into a general treatment if we
onsider the model B (∗, ∗, ∗, π) provided with the following prior and likelihood:
λ ∼ N (0, 1)

γi ∼ N (0, 1) i = 1, ..., I

δj ∼ N (0, 1) j = 1, ..., J

Yij | (λ, γ, δ) ∼ N (λγiδj , 1) i = 1, ..., I ; j = 1, ..., J .One 
an noti
e that the 
omplete set of parameters is identi
al to the additive 
ase. As the priorare similar and as ne
essary transformed subsets are identi
al (isomorphism between additiveform and multipli
ative form), it is possible to get the same kind of independant parameters aswe obtained in �C.2.2 and �C.2.3. The two 
onditions to 
he
k are:1. equivalent priors,2. equivalen
e of the identi�ability in the likelihood fun
tion.This has to be generalized for any type of biadditive models, but we 
an wonder the utility (interm of data interpretation) of su
h results sin
e we are interested into the a
tive parametersnot in the redundant ones.D Gibbs sampling algorithms used in the literature pro-posalsD.1 Brief reminder about Gibbs samplingWhen it is not possible to 
ompute dire
tly the posterior [θ | Y ] most of the time the di�
ulty
an be break down in smaller pie
es, this is the Gibbs sampling te
hnique. The parameter ve
toris partioned into 
onvenient subsets θ = {θ1, θ2, ..., θP} and an iterative s
heme is applied by
y
ling over the P subsets to get draws into the global posterior.
[θ1 | Y, {θ − θ1}]
[θ2 | Y, {θ − θ2}]

· · ·
[θP | Y, {θ − θP}]44



The only requirement is to be able to draw into the partial 
onditional distributions, in generala mu
h easier task. Of 
ourse there are some drawba
ks, mainly the non independen
e of thedraws, and the safety of drawing into the posterior only asymptoti
ally, then a burn-in phaseof the algorithm is ne
essary.D.2 Ho�'s proposalHo� [Ho�.2009, Ho�.2012℄ is interested in multivariate data analysis te
hniques asso
iated tothe model:
YI×J = UDV ′ + E,where UI×Q and VJ×Q are orthonormal matri
es, D a diagonal matrix and E a matrix withindependent 
omponents E = {εi,j ∼ N (0, σ2)}. This model 
an be seen as an underlyingmodel for Prin
ipal Component Analysis (PCA) and 
an be found under di�erent names in theliterature su
h as the �xed e�e
t model [Caussinus.1986℄, the �xed fa
tor s
ores model, et
.Ho� [Ho�.2009, Ho�.2012℄ proposed a Bayesian treatment of this model. With su
h a treatment,he obtained posterior expe
tation of the singular values that are 
loser to the �true� ones
ompared to the maximum likelihood estimates; he also proposed a new way to sele
t thenumber of dimensions. More pre
isely, his proposition is the following one.The likelihood is given by:

L(Y, U,D, V, σ2) ∝ exp{−1

2σ2
||Y − UDV ′||2

}
,exp{ −1

2σ2
(tr((Y − UDV ′)(Y − UDV ′)′))},exp{ −1

2σ2
(tr(Y Y ′ − Y V DU ′ − UDV ′Y ′ + UDV ′V DU ′))}.The priors for the singular ve
tors U and V are de�ned as uniform on the Stiefel manifold.Uniform distributions on this manifold 
orrespond to very simple 
ases of von Mises-Fisherdistributions (
f. �B). The expli
it form of these uniform distributions are given in [Smidl.2007℄.The priors for the singular values as well as for the noise varian
e parameter are respe
tively:

{d1, .., dQ} ∼ N (0, τ 2) ,

1/τ 2 ∼ gamma(η0/2, η0τ 20 /2),
1/σ2 ∼ gamma(ν0/2, ν0σ2

0/2).Then the model depends on the numeri
al 
onstants ν0, η0, σ0.The joint posterior distribution for the parameters is:
f(U,D, V, σ2|Y ) ∝ f(Y |U,D, V, σ2)× f(U,D, V, σ2)To make inferen
es on the quantities of interest, we need to 
onsider the marginal posteriordistributions. Sin
e no 
lose form is available for the joint posterior distribution for the pa-rameters, a Gibbs sampler, whi
h iteratively simulates ea
h parameter from its full 
onditionaldistribution, is built. 45



Sin
e the prior distribution for U is uniform, the 
onditional posterior distribution for U is
ompletely determined by the likelihood (or the 
onditional likelihood):
f(U |V,D, Y, σ2) ∝ L(U,D, V, σ2)exp{tr((Y V D/σ2)′U)}This distribution is a von Mises-Fisher distribution denoted MF (Y V D/σ2). Similarly, the
ondition posterior distribution for V is a MF (Y ′UD/σ2). The 
onditional distributions for

dq, 1/τ
2 and 1/σ2 follow respe
tively a normal, a gamma and a gamma distribution, withparameters given in [Ho�.2012℄. Initial values are taken as the maximum likelihood estimatesof the model (
orresponding to the usual least squares estimates). On a simulated example,[Ho�.2012℄ showed that the posterior mean of E (Yij) is 
loser to true population values thanthe estimation obtained by maximum likelihood.Ho�'s method requires to simulate matri
es from von Mises-Fisher distributions. To do so, heproposed a method [Ho�.2009℄whi
h is implemented in theR [RCRAN.2012℄ pa
kage rstiefel.D.3 Perez et al.'s proposalThe method proposed by [Perez.2011℄ dedi
ated to linear-bilinear models also uses von Mises-Fisher distributions but in a di�erent way. We let the linear terms out for the sake of simpli
ity.They have the same likelihood and 
onditional distributions for matri
es U and V as de�ned inthe previous se
tion (�D.2), with an additional n 
orresponding to a 
onstant number of repli-
ates for ea
h 
ombination of genotype-intera
tion and τ instead of 1/σ2, to be in a

ordan
ewith their notations. From these 
onditional likelihoods, [Perez.2011℄ de�ne its priors as:

π(U |τ) ∝ exp{tr(τn0Y0V0D0U
′)},with Y0 de�ne as the prior 
ell averages su
h that Y0 = U0D0V

′
0 . They do the same thing for V .These priors are 
onsequently distributed a

ording to a von Mises-Fisher distribution. Theprior for τ is a gamma distribution :

π(τ) ∼ gamma(a/2, s20/2)With these priors, they only need to express their beliefs in the prior 
ell average Y0, then
U0, V0, D0 follows from the SVD of Y0, as well as their beliefs about a and s20 . In order todraw samples from the marginal posteriors distribution a Gibbs sampler is also built. The
onditional posterior distribution for U is:

π(U |V,D, Y, τ) ∝ f(U |V,D, Y, τ) ∗ π(U |τ)exp{tr(τ ∗ (n0Y0V0D0 + nY V D)U ′)}This distribution is also a von Mises-Fisher distribution. The other posterior distributions aregiven in the paper [Perez.2011℄. Their algorithm is available as an R fun
tion but the 
odeis written for 
ases with repli
ates (it allows one to obtain an estimate for the varian
e σ2);however, it is possible to easily adapt the 
ode for 
ases without repetitions.E bugs 
oding of the modelHere is the bugs 
oding of the model we used for the worked example of �5.46



# 12_03_07## A biadditive model with NQ multipli
ative terms# made as general as possible to get numeri
al# example in the note written with Julie.## 
onstant to be defined are:# NI (number of genotypes)# NJ (number of environments)# NQ (number of multipli
ative terms)# m.mu (mu expe
tation)# sd.mu (mu standard deviation)# sd.alpha (alpha standard deviation)# sd.beta (beta standard deviation)# sd.lambda (lambda standard deviation)# sdm.E (maximum value of sigma.E)# w (weights for the targetted environments)# limit (threshold of interest)#model {## prior on the additive partMu ~ dnorm(m.mu,1/sd.mu^2);for (i in 1:NI) { alpha[i℄ ~ dnorm(0,1/sd.alpha^2);}for (j in 1:NJ) { beta[j℄ ~ dnorm(0,1/sd.beta^2 );}## prior on singular valuesfor (q in 1:NQ) {lambda0[q℄ ~ dnorm(0,1/sd.lambda^2);}lambda[1:NQ℄ <- sort(lambda0);## prior on row singular ve
torsfor (q in 1:NQ) {gamma[1,q℄ ~ dnorm(0,1)T(0,);for (i in 2:NI) {gamma[i,q℄ ~ dnorm(0,1);}}# prior on 
olumn singular ve
torsfor (q in 1:NQ) {delta[1,q℄ ~ dnorm(0,1)T(0,);for (j in 2:NJ) {delta[j,q℄ ~ dnorm(0,1);}}## getting the expe
tationfor (q in 1:NQ) { 47



for (i in 1:NI) {gamma0[i,q℄ <- gamma[i,q℄ * lambda[q℄;}}INTE <- gamma0 %*% t(delta);for (i in 1:NI) { for (j in 1:NJ) {MU[i,j℄ <- Mu + alpha[i℄ +beta[j℄ + INTE[i,j℄;}}## data varian
esigma.E ~ dunif(0,sdm.E);## likelihood of the data setfor (i in 1:NI) { for (j in 1:NJ) {Y[i,j℄ ~ dnorm(MU[i,j℄,1/sigma.E^2);Mup[i,j℄ <- MU[i,j℄ * w[j℄;}}## performan
e of the genotype in a# different set of environmentsfor (i in 1:NI) {pi[i℄ <- sum(Mup[i,℄);pr[i℄ <- step(pi[i℄ - limit);}}Referen
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