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.

A �rst version of this tehnial report has been prepared for a talk given at the extraordinaryMIAJ seminar of April, 4. (25 avril 2012)2



AbstratSo alled biadditive models (most ommonly known as ammi models for additive main e�etand multipliative interation) are frequently used to interpret the main traits of two waysdata, for instane for the interpretation of genotype by environment interations. Linked withpa tehnis, they provide e�ient empirial desriptions of matrix strutures.The use of Bayesian approahes in statistial analysis in inreasing for many statistial modelsdue to the new omputer apaities and the existene of speialized algorithms to draw intoposterior distributions.Some work was already presented to deal with biadditive models in a Bayesian way. Here, weonsider the point, proposing a new solution diretly on the overparameterized model whihallows one the use of standard softwares, for instane bugs implementations.We �rst give a detailed presentation of our proposal and then apply it to a real data set omingfrom the litterature, fousing on the interpretation.In the appendix, the proposal to deal with overparameterized models is developped for anytype of models.
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RésuméLes modèles biadditifs (souvent appelés modèles ammi pour additivemain e�et andmultipliativeinteration) sont fréquemment employés pour l'interprétation de tableaux de données à deuxentrées, par exemple pour l'interprétation des interation génotype-milieu. Prohes des analy-ses de données fatorielles, ils représentent un outil e�ae pour une desription parimonieusede struture matriielles.D'autre part, l'utilisation d'approhes bayésienne en statistique se généralise. C'est la on-séquene de la puissane arue des alulateurs et de la disponibilité d'algorithmes spéialiséspour tirer des éhantillons dans les distributions a posteriori.Plusieurs travaux ont déjà été réalisés pour traiter les modèles biadditifs de manière bayésienne.Dans e rapport, nous proposons une nouvelle approhe qui prend diretement en ompte unedé�nition surparamétrée de es modèles. Son prinipal avantage est de permettre l'utilisationd'algorithmes génériques, omme eux proposés dans les logiiels de la famille bugs.Un exemple de données de la litérature est traité de manière détaillée après une présentationformalisée de la proposition.Dans l'annexe, la prise en ompte de la surparamétrisation d'un modèle dans une approhebayésienne est traitée de manière omplètement générale.

Mots lef biadditif - bayésien - ammi - surparaméterisation - igm - bugs4
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1 IntrodutionBiadditive models [Denis.1992, Denis.1994, Denis.1996, Denis.1998℄ are frequently used to in-terpret the interation between two fators. For instane in plant breeding, it is usual to studythe interation between varieties and environments for di�erent purposes suh as the seletionof new varieties. Biadditive models present several advantages ompared with the usual anal-ysis of variane models with interation terms: (i) simpli�ation of the interation sheme, (ii)better estimation beause all results are used for the estimation of a unique ombination1, (iii)the possibility to have an idea of the interation and estimate the error variane when repliatesare absent, even with missing values.In some reent papers [Perez.2011, Crossa.2011℄, it an be observed that the Bayesian approahwas proposed for biadditive models. Most of the good properties of the Bayesian approahesare the onsequenes of a lear separation between the modelling on parameters (de�nition ofpriors) and the statistial analysis (getting information from the data set). In this report, wewill have a look at that possibility, get some experiene on it and propose a new treatment ofsuh models with the Bayesian point of view.2 Reminders2.1 About Bayesian statistis2.1.1 The Bayesian paradigmLet [Y | θ] be the likelihood distribution2 of a data set Y de�ned through a vetorial parameter
θ. In Bayesian statistis, θ is not onsidered as having a �xed and unknown value but as beinga random variable, the distribution of whih haraterizes the degree of ertainty we have onthe values it an take. So to omplete the desription model, the marginal distribution of θ,
[θ], must be provided. This is the a priori distribution, or prior for shortness.Performing a Bayesian statistial analysis is no more that applying twie the so-alled Bayestheorem to get [θ | Y ] denominated a posteriori distribution :

[θ | Y ] =
[Y | θ] [θ]

[Y ]
(1)whih is possible sine the numerator is the joint distribution allowing the omputation of [Y ],the marginal distribution of Y .2.1.2 AdvantagesMore freedom about used probability distributions Thanks to stohasti algorithms(most known are MCMC), a lot of distributions are at hand. Among the points to underlinewhen using a BUGS faility (see the Jags manual [Plummer.2011℄), one an hek that1When a saturated interative modelling is used the estimation of the expetation of one variety-environmentombination relies only on the available observations for this ombination.2Square brakets stand for density distribution of a random variable; vertial bar for the onditioning oper-ator. Then [Y | θ] reads as the density distribution of Y onditioned by θ.7



� Trunated distributions an be inorporated in a standard way,� Censored data an be used all the same,� A large spetrum of disrete or ontinuous, salar or multivariate distributions are avail-able,� Standard transformations are implemented.No fear of non identi�ability When no information is available from the data, we are leftat the prior level of information (only for proper priors). For the same reason missing values areno more a problem. In fat, the viewpoint is shifted: we are not analyzing a data set, we are (i)de�ning a model on some phenomenum (establishing a prior distribution) and (ii) extrating theinformation relative to this model from available dataset(s) (getting the posterior distribution).For that reason, Bayesian approahes are very onvenient for statistial meta-analyses.A possibility to introdue knowledge When de�ning the prior distribution, one aninorporate, with muh more �exibility than when de�ning the likelihood of a data set, thealready knowledge about the phenomenon under study (expert knowledge, historial data, et.).This is why sometimes, Bayesian approahes are linked to learning proesses: the posterior isnaturally the prior of new statistial analyses.Of ourse, a sequential inorporation of data via suh a prior/posterior sheme is equivalent toa unique global statistial inferene.Consistent inferene for any transformation If a orret Bayesian inferene is madeon some set of parameters (say θ), a transportation of the probability distribution gives us aonsistent inferene to any funtion of it. No longer useful to deide if we are interested inthe standard deviation (σ), the variane (σ2) or the preision ( 1
σ2 )! Credibility intervals willorrespond exatly.Of ourse this is appliable to vetorial situations.Ease of interpretation The output (posterior distribution) is of the same nature than theinput (prior distribution) so if one is able to propose a prior, he must be able to well use theposterior. Moreover, ompared to the frequentist approah, the notion of redible intervalsan be seen as easier to interpret than the notion of on�dene interval. Indeed, in the latter,the randomness is on the data (we onsider all possible data, if we were able to do manyexperiments) whereas in the redible interval the randomness is on the parameter side.2.1.3 DrawbaksA prior has to be de�ned This is the main ritiism again the Bayesian statistial pratie.Aording to the statistiian de�ning the prior, results will be di�erent, then not objetive. Thisis true, but an be viewed as an advantage beause good statistiians will get better resultswhih is fair? Also bad statistiians will be wrong as well when de�ning the Likelihood? Also,de�ning the prior imply a useful onsideration of the model in use, whih is often a pro�tablespent time. 8



By the way, it is worth realling that the joint prior distribution on all model parameters hasto be de�ned and not only the series of salar marginals. This an be a quite triky issue3,sometimes solved with a reparameterization.Di�ult to question the model In lassial statistis, there are several ways to question amodel (via the study of residuals, for example) or at least to selet a model within a family ofmodels. This is not so easy in the Bayesian approah where a di�ult point is the de�nition offair priors for di�erent models. Fair would be that the priors be equivalent at the level of everyused observation but this is rarely the ase beause the number and natures of the parameters4,is ompulsorily di�erent from a model to another.The orret answer would be to imagine a hierarhy of the onsidered models, giving eah aprior probability... this is not, for the moment, easily tratable.2.2 The biadditive model2.2.1 De�nitionThis lass of models is known for many years sine there is was desribed in 1923 in one of theFisher's papers [Fisher.1923℄. The terminology was proposed by Denis and Gower [Denis.1992℄and we will stik to it, onsidering only the B (m, a, b, πQ)
5 variety de�ned as

Yijk = µ+ αi + βj +
Q∑

q=1

λqγiqδjq + Eijk (2)where Yijk is the kth observation for the ombination of genotype i and environment j. Thenumber of observations for eah ombination, Kij , being variable (but known) inluding zerowhih means missing value. Most analyses are arried out with Kij = 1. The number of geno-type is denoted with I, and the number of environments J . Here Q ∈ {0, ...,min (I − 1, J − 1)};when Q = 0, we are dealing with the additive model; when Q = min (I − 1, J − 1), it is thesaturated interative model (no restrition on the interative term). Eijk is the error term thatinludes the design e�et, here we will assume that these errors are independent, entred, withsame variane (σE) and normal distribution.2.2.2 ConstraintsThis is one of the di�ult point about biadditive models, overparameterization is present andthere is a need for additional onstraints to determine unique values for the parameters. Wewould like onstraints whih lead to an easy interpretation of the parameters, induing simplestatistial derivations and most often keeping the symetry between the levels of the two fators.3There are two way: (i) use a multivariate distribution [θ1, θ2, θ3] or (ii) go through onditional de�nition
[θ1] [θ2 | θ1] [θ3 | θ1, θ2].4The number of parameters is also di�ult to de�ne in a Bayesian framework. However, riteria that mimisthe AIC have been proposed suh as the DIC to selet models. One an also talked about the Bayes' Fatorbut whih is hard to ompute.5The presene of m indiates the onstant parameter µ, this of a the presene of the row main e�et, b forthe olumn main e�et and Q preises the number of involved multipliative terms in the interation term.When there are no interation the term π vanishes and when Q = 1, only π is left.9



Let us de�ne the e�et term by
µij = E (Yij | µ, α, β, λ, γ, δ)

= µ+ αi + βj +
Q∑

q=1

λqγiqδjq. (3)It is well known [van_Eeuwijk.1996℄ that the parametri dimension of µij is (1 +Q) ((I + J)− (1 +Q))meanwhile the number of parameters in (3) is (1 +Q) (1 + I + J) so that (1 +Q) (2 +Q) ad-ditional onstraints have to be introdued. Here we will use the standard ones:
1
′
Iα = 1

′
Jβ = 0

1
′
Iγq = 1

′
Jδq = 0 for q ∈ {1, ..., Q} (4)

γ′γ = δ′δ = IQ

λ1 ≤ λ2 ≤ ... ≤ λQ.where γq and δq are the qth olumns of matries γ and δ of respetive sizes (I ×Q) and (J ×Q).In fat this set of onstraints is not su�ient sine they don't �x the orientations of the (γq, δq)whih an be simultaneously inverted. Most often, this indetermination is not onsidered. Herewe will use the non standard spei�ation of orientation borrowed from [Viele.2000℄ that the
λs be not restrited and that γ1qs and δ1qs be always positive. Even if it looks like breaking thesymetry between the levels of the fators out, giving a di�erent role to the �rst levels, we willsee later on that this is not the ase.2.2.3 Least squares estimationWhen the number of repliates is onstant (Kij = K > 0), with the proposed onstraints (4),the least squares estimates of the biadditive model are easy to obtain. Let Y be the I × Jmatrix of the mean by ell Yij =

1
K

∑
k Yijk.

µ =
(
1I (1

′
I1I)

−1
1
′
I

)
Y
(
1J (1

′
J1J)

−1
1
′
J

)

α = Y
(
1J (1

′
J1J)

−1
1
′
J

)

β = Y
′ (
1I (1

′
I1I)

−1
1
′
I

)and the parameters of the interation terms are given by the singular vetors and singularvalues for the biggest Q singular values of the singular value deomposition of the row andolumn entered matrix
(
II − 1I (1

′
I1I)

−1
1
′
I

)
Y
(
IJ − 1J (1

′
J1J)

−1
1
′
J

) .2.3 Literature proposalsReently some authors [Viele.2000, Crossa.2011, Perez.2011℄ have used biadditive models withina Bayesian framework. Their motivation is that the Bayesian approah may o�er solutions toissues that are often di�ult to handle suh as: unbalaned data, unequal ell size, heterosedas-ti data, the di�ult hoie of the number of relevant dimensions for the interation terms, et.Moreover, a Bayesian approah also o�ers distributions of any quantity of interest (to be om-pare with point estimates and their on�dene intervals of the maximum likelihood approah)10



whih may permit to onstrut redible areas in the biplot for example. Finally, it allows oneto take into aount in the analysis previous information suh as historial data whih may bevery interesting in the analysis of genotype-environment data. We an remark that omparedto the surge of interest in using Bayesian approahes to study models of very distins types,only few proposals have been made for the biadditive models. This an be explained by thedi�ulty to work in a overparametrization framework (as we will see later). More preisely, theproblem an be quite easily takle for the linear terms of the model but the major di�ulty isto put priors on the interation terms taking into aount the onstraints.Viele and Srinivasan (2000) [Viele.2000℄ seems to be the �rst ones to propose a Bayesian treat-ment of suh models. They put uniform priors on the �rst olumn of the matries γ and δ.Sine eah vetor has zero sum and unit length, it orresponds to put uniform prior on a I(respetively J) dimensional unit sphere. Then, they work sequentially and take as onditionalprior of eah (γq)(respetively (δq)) given the previous dimensions a uniform distribution onthe orret subspae. Of ourse, due to the onstraints (the vetors must be normalized andorthogonal to the previous ones), it is not easy to de�ne the supports and to sample fromuniform distributions with the orret supports. They proposed a method to do so and thenused it in a spei� Gibbs sampler. On a real data set [Crossa.2011℄, their approah seemsquite promising and o�ers on�dene regions helping in the interpretation of the results .Spherial uniform distribution is a speial ase of von Mises-Fisher [VMF℄ distributions (see �B).Suh distributions exist also for matries. More preisely, the set of orthonormal matries isalled the Stiefel manifold [Chikuse.2002℄. The von Mises-Fisher distributions are distributionsover this manifold. [Ho�.2012, Ho�.2009, Smidl.2007℄ used these distributions in a Bayesiantreatment of models based on singular value deompositions of partiular matries suh asmodels for Prinipal Components Analysis. From a omputational point of view, these modelsare losed to the linear-bilinear ones, the main di�erene being that the linear part is notinluded. More preisely, [Ho�.2012, Ho�.2009, Smidl.2007℄ proposed to use as prior the uniformdistributions for matries γ and δ, indeed a speial ase of von Mises-Fisher distributions. Usingsuh priors allow them to ensure the orthonormality onstraints at the posterior level sine theposterior distributions are also VMF distributions6. More details about the method and theassoiated algorithm is given in appendix �D.Very reently, in the framework of the analysis of genotype-environement data, [Perez.2011℄proposed also to use as prior distributions for matries γ and δ spei� von Mises-Fisher dis-tributions. Their method detailled in appendix �D remains to put priors onto the ells of thematrix Y .3 De�ning a priorOne of the major di�ulty to takle the biadditive model is to ensure a prior on the parameterstaking into aount the over-parameterization and the assoiated onstraints. As far as theonstraints are linear, it is not too muh problemati. But for the bilinear onstraints on γand δ matries to be a set of Q orthonormal olumns, no standard solution is at hand. In thatsetion, we propose a straightforward solution having the great advantage to be implementablein the standard bugs softwares.6but no more uniform ones.
11



3.1 Using prior in an overparameterized frameworkIn the appendix (�C) we have onsidered the overparameterization di�ulty with a reparameter-ization learly separating the involved parameters into two transformed subsets (φ1 (θ) , φ2 (θ));the �rst is su�ient to de�ne the data likelihood [Y | θ] = [Y | φ1 (θ)] and the seond is left re-dundant one the �rst is taken into aount [φ2 (θ) | Y, φ1 (θ)] = [φ2 (θ) | φ1 (θ)]. More, for multi-normal priors, we ahieved a lear separation getting the independene, i.e. [φ1 (θ) , φ2 (θ)] =
[φ1 (θ)] [φ2 (θ)] whih implies that the prior and posterior distributions of φ2 (θ) are idential,no information is given by the data onto the φ2 (θ) parameters.It an be also argued that the overparemeterization problem is idential to the missing valuesituation. Indeed, let us take the very simple example of one way fator without repliateand with known variane. Let the parameters be {θ1, θ2, ..., θI} and onsider a prior-likelihoodouple as

[θi] ∼ N (50, 2) whatever is i = 1, ..., I independent,
[Yi | θi] ∼ N (θi, 1) whatever is i = 1, ..., I independent.There is no overparameterization in the sense that every modi�ation of any non onstantfuntion of the θi modi�es the likelihood. But if we remove Y1 from the data set, θ1 an bemodi�ed without hange in the likelihood induing overparameterization. Nevertheless there isno harm for the Bayesian statistiian, the joint distribution over parameters and data an bealulated and the posterior dedued. Of ourse, it is obvious that [θ1 | (Yi)i=1,...,I

]
= [θ1], theposterior of θ1 is equal to its prior, no information have been born onto this parameter by thedata, logial enough.The same an an be proposed for every overparameterized model. The funtions of the parame-ters assoiated to the neessary onstraints of the type f (θ) = 0 to prevent the indeterminationdoes not in�uene the likelihood.But we ould imagine that some data be assoiated to them, produing omplete identi�abilityof the parameter set. Why not to argue that these data are missing? And that only their priorwill be idential to their posterior.Taking the ase of the B (m, a, b, π2) model with no repliates:

Yij ∼ N (µ+ αi + βj + λ1γi1δj1 + λ2γi2δj2, 1) for i = 1, ..., I and j = 1, ..., J ,we an say that are missing some observations to replae the onstraints, for instane
Y10 ∼ N (µ+ α1, 1)

Y01 ∼ N (µ+ β1, 1)

Y−1,−1 ∼ N (λ1)

Yi,−1 ∼ N (λ1γi1, 1) for i = 1, ..., 2

Y−1,j ∼ N (λ1δj1, 1) for j = 1, ..., 2

Y−2,−2 ∼ N (λ2)

Yi,−2 ∼ N (λ2γi2, 1) for i = 1, ..., 3

Y−2,j ∼ N (λ2δj2, 1) for j = 1, ..., 3And it is lear that they ensure that all parameters (and every funtions of them) are informed.So in priniple a good algorithm to produe the posterior will work even with these valuesmissing. 12



And at the moment of the interpretation we will be free to onsider only funtions of theparameters whih are identi�able, that is with a posterior di�erent from the prior. The �rstandidates are
µij = µ+ αi + βj + λ1γi1δj1 + λ2γi2δj2 for i = 1, ..., I and j = 1, ..., Jand we will use them (see the model ode in �E) and base our interpretations from funtionsof them.3.2 Standard omplete proposalWe will use7 the following independent normal distributions as priors plus a uniform for theerror variane.

µ ∼ N
(
m, s2µ

)

αi ∼ N
(
0, s2α

)

βj ∼ N
(
0, s2β

)

(λq)q=1...Q ∼ ordered sample of Q independent N (
0, s2λ

) (5)
γ1q ∼ HN (0, 1)

γiq ∼ N (0, 1) for i > 1

δ1q ∼ HN (0, 1)

δjq ∼ N (0, 1) for j > 1

σE ∼ U (0, SME)where HN (0, 1) stands for the half-normal distribution (trunation of N (0, 1) on the positivevalues). Only �ve hyparameters are used for the de�nition8; their interpretation9 is:� m the guessed mean value of the studied variable,� sµ quanti�es the unertainty we believe to have about m,� sα quanti�es the variability we believe the genotype main e�ets have got,� sβ quanti�es the variability we believe the environment main e�ets have got,� sλ quanti�es the variability we believe the ge interation is on its di�erent Q10 ompo-nents11,7Even if it does not matter, it would have been more onsistent to use γiq ∼ N
(
0, I−1

) and δjq ∼ N
(
0, J−1

)to stik to the hoosen onstraints (4).8They are supposed to be numerial values, so expressed with latin letters.9In the following we give a preise meaning to the terms variability and unertainty. Variability is thevariation linked to a random variable we are interested in. For instane, if we are interested in the yield of nextyear some variability has to be introdued as a onsequene of the not known and in�uential limate e�et.Unertainty is related to a lak of knowledge about some value of interest, it ould be dereased by aquiringadditional relevant data. When a volume of grains is sampled to get the wetness of the rop, taking a greatervolume will ertainly redue the unertainty we have about the humidity of the total rop.10The determination of the number of multipliative omponents is a di�ult question, we will see in Figure7 how this an be approahed from the posterior distributions to redue their number.11Of ourse, di�erent distributions ould have been used for the di�erent λq, if some knowledge is available.13



� SME quanti�es both the remaining variability not taken into aount previously and theunertainty of the measurement12.Notie that� we spoke about unertainty only for the parameter µ sine it represents the parameterinsuring the translation invariane of the model (no need to have variability on it, it anbe inorporated into the main e�ets).� from our point of view, if we would like to introdue unertainty on the other parameters,either an expetation has to be introdued as a random variable, and/or the standarddeviation parameter has to be supposed random. Taking the example of the genotypemain e�et:
αi | α0i ∼ N

(
α0i, s

2
α

) and α0i ∼ N
(
0, s2uα

)or
αi | ςα ∼ N

(
0, ς2α

) and ςα ∼ U (0, SMα)or both. The distribution of the newly introdued α0i and/or ςα ould be interpreted asunertainty.Important remark When looking at the de�nition of the von Mises-Fisher distribution (�B),it is lear that the distributions indued by our proposal onto the orthonormal matries γ and
δ are indeed von Mises-Fisher distributions: the uniform distributions onto their spaes.3.3 Prior marginal distribution of the dataWe believe that it is quite important to look at what represents the information put in the priorde�nition step. In order to do that, the more natural way is to look, using the likelihood, at theindued prior distribution on the data set. This is done integrating the joint [θ, Y ] distributionover θ.Due to the presene of the bilinear terms, it is not possible to obtain in lose form the distri-bution of Yijk but it is possible to expliit expressions for their �rst two moments and also tosimulate them. As de�ned in (2) and with the retained priors (5), one an hek that (usingresults presented in �A.3 and �A.2) that

E (Yijk) = m

V (Yijk) = s2µ + s2α + s2β + s2λ +
1

3
S2
ME

Cov (Yijk, Yijk′) = s2µ + s2α + s2β + s2λ

Cov (Yijk, Yij′h) = s2µ + s2α

Cov (Yijk, Yi′jh) = s2µ + s2β

Cov (Yijk, Yi′j′h) = s2µNotie that these results apply equally well when i = 1 or/and j = 1, even if the omputation isslightly di�erent. This is why we said in �2.2.2 that the symetry was not lost with the proposedonstraints.12Gamma distributions were often used for variane parameters, but reent works show that it is possible andmore e�ient to put uniform priors 14



Figure 1: Direted Ayli Graph assoiated to the Bayesian approah. Rounded retanglesare used for loops. Cirled nodes are random variables. Retangular nodes are onstant. Arsindiate the diret relationships between the nodes. mu is used for µ, al for α,...
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4 Aessing to the posterior distribution4.1 AlgebraiallyNo lose form of posterior an be imagined13, espeially in the ase of a non equally repliateddesign where even LS estimators are not known. Nevertheless, there is no di�ulty (in all trialswe did) to get simulated values from the posterior using Jags [Plummer.2011℄ one of the bugssoftwares.4.2 Graphial presentation: the dagTo better understand the mehanism of the modelling, it is of interest to build the underlyingdireted ayli graph, so alled dag; it is presented in Figure 1. It emphasizes the entral role13as a onsequene of the bilinear terms. 15



Table 1: Parameter values used for the simulation in �4.3
µ = 100

(αi) = (−1,−1, 0, 1, 1)
(βj) = (−4,−3,−2,−1, 0, 1, 2, 3, 4)

λ = 12

(γi) =
(

2√
10
, 1√

10
, 0,− 1√

10
,− 2√

10

)

(δj) =
(
1
2
, 1
2
, 0, 0, 0, 0, 0,−1

2
,−1

2

)

σE = 3
2Table 2: anova table of the parameter values given in Table 1 only based on the expetation.The error variane being equal to 2.25. df SS MSrow e�et 4 36 9.0olumn e�et 8 300 37.5interation e�et 32 144 4.5of µij, the expetation of the observed variable in a frequentist approah. We will see in �5.7that a Bayesian approah allows one to play between �xed and random e�et a�etation.4.3 Simulation studyIn order to hek that in pratial situations, a Bayesian approah is e�etive for biadditive mod-els, we performed a small simulation study. From a B (m, a, b, π) biadditive expetation14 weadded a normal random error with idential standard deviations (σE) and �tted a B (m, a, b, π2)model. This was done a number of times, to esape a favorable (or unfavorable) ase.More preisely, we did 49 simulations, with a posterior sample of 50 draws with a thinningoe�ient of 200 to avoid autoorrelations; not beause the omputation are lengthy: theylast 140 seonds but beause we wanted to display the results graphially. The introduedparameter values are shown in Table 1 resulting in the anova table given in Table 2.The results of the simulation study are given in Figures 2 (study of the suggested number ofmultipliative terms), 3 (inferring the row main e�ets), 4 (inferring the row �rst interativee�ets) and 5 (inferring the row seond interative e�ets).Figure 2 displays the joint posterior distributions of (λ1, λ2). The values of λ1 are positive forall the simulations, whereas λ2 takes a ontinuum of values negative or positive. This is a learindiation that the redible region of λ1 does not inlude the zero value, ontrary to its of λ2.Consequently, we an say that most often the Bayesian analysis orretly assess one multiplia-tive term (exept in simulation 48 where the onlusion would be two multipliative terms anda not so lear onlusion for simulation number 11 but still in favor of one multipliative term).Here we an see an advantage to let the singular values being negative: it would have been lesslear if the absolute value of the singular values have been used as ommonly done.The pro�le study of the row e�ets proposed in Figures 3, 4 and 5 would be muh learer if thebundle of the 50 pro�les were replaed by the quantile pro�les of a greater number of pro�les.Straightforword (but tedious) algorithms an be implemented for that.14additive part plus interation with a unique multipliative term.16



Figure 2: Simulation study: number of multipliative terms. For eah of the 49 simulations,the simulated joint posterior density of λ1 (absissae) and λ2 (ordinates) is displayed with 50draws. The red irle indiates the true value (λ1 = 12, λ2 = 0). Due to the indetermination ofthe parameterization, negative values are equivalent to positive values.
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Nevertheless α and γ1 parameters seems well assessed. More heterogeneity ours for γ1 wherepartiularly the already mentionned simulation number 11 has a few opposite pro�les. Lookingthis ase with attention, ones an notie that the γ11 parameter15 is very lose to zero andsometimes fautly; a free attribution would have given two sets of pro�le, one similar to the truepro�le and the other one opposite. The errati behavior of γ2 pro�les (Figure 5) is onsistentwith the found unique dimension. Here too with the exeption of simulation 48 whih tendedto propose two dimensions, where the bundle of pro�les has got a systemati onave shape.15The one fored to be positive due to our onstraint system.
17



Figure 3: Simulation study: row main e�ets. For eah of the 49 simulations, the simulatedjoint posterior density of the αi pro�les is displayed with 50 draws. A pro�le is de�ned as thelines linking (i, αi); the red line indiates the true pro�le.
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Figure 4: Simulation study: �rst interative row e�ets. For eah of the 49 simulations, thesimulated joint posterior density of the γi1 pro�les is displayed with 50 draws. A pro�le isde�ned as the lines linking (i, γi1); the red line indiates the true pro�le.
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Figure 5: Simulation study: seond interative row e�ets. For eah of the 49 simulations,the simulated joint posterior density of the γi2 pro�les is displayed with 50 draws. A pro�leis de�ned as the broken line linking (i, γi2); there is no true pro�le sine there is no seondmultipliative term in the proposed expetation; the red line is the null pro�le.
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5 Using posterior simulations: a worked exampleWhen analyzing a real genotype-environment data, �ve main questions16 arise:Q1 What is the genotype with the best performanes aross all the environments?Q2 What is the genotype with the best performane for a spei� environment?Q3 Are the genotypes stable aross all the environments?Q4 Is it possible to rank the genotypes?Q5 Could we assign a probability that a genotype will give more than a ertain threshold?Of ourse, the symetrial questions (onsidering genotype instead of environments) are also ofvalue.In this part, we try to address these questions. Moreover, in the lassial statistial approahwhere estimates (and preision of them) of the biadditive model are obtained, it is not thateasy to interpret the results. One an wonder if it would not be worst in a Bayesian ontextwhere distributions have to be handled instead of estimations? We would like to show that not.To illustrate our purpose, we use a worked example using the data set proposed by [Crossa.1991℄whih omprises I = 18 genotypes and J = 25 environments, all ombinations, no repliates.More preisely we will analyse it in four versions :redued using only the 40 ombinations of the �rst 5 genotypes with the �rst 8 environments,omplete the omplete data set,redued_missing the redued data set where 4 values, randomly hoosen, were onsideredmissing,omplete_missing the omplete data set where 45 values, randomly hoosen, were onsideredmissing.Table 3 gives general features about the onsidered ases. From the anova tables, one anonlude that important values have been eliminated when reating a 10% missing sheme inthe redued missing ase; less obvious for the omplete ase.The standard output of a mm algorithm is a simulation of the parameters from their posteriordistribution. We will use a supersript s varying from 1 to S to indiate it. For instane αs
iwill be the sth simulation of the parameter αi.Beause we are fan of them, we present the interpretation with graphs, but this also ould bedone with numerial values in tables.5.1 Comparing prior versus posteriorAs seen in �2.1.3, the major ritiisms made to the Bayesian approah is the neessity to de�nea prior on the model parameters. Two preautions have to be taken with this respet.21



Table 3: Some harateristis of the four data ases. The four omputations were made withthe same omputer; 105 iterations were used for the burn-in phase; 104 were drawn with asystemati sampling of 10−2 giving 102 retained simulations.ase anova duration (s)redued df SS MSGeno 4 1.0 0.25Envi 7 95.6 13.7Geno:Envi 28 5.7 0.20 3omplete Geno 17 18.1 1.1Envi 24 2369.5 98.7Geno:Envi 408 132.5 0.32 86redued missing Geno 4 3.9 0.96Envi 7 66.4 9.5Geno:Envi 24 3.7 0.15 2.7omplete missing Geno 17 16.1 0.95Envi 24 2122.4 88.4Geno:Envi 363 115.66 0.32 75

Table 4: Prior de�nitions: used onstant values referring to the distributions introdued in (5).Take are that impliitely all priors are supposed to be stohastially independent.onstants
m = 5, sµ = 0.8

sα = 0.5
sβ = 0.5

sλ = 0.5
√
IJ

SME = 2

22



First the prior distribution has to be disussed with the experts of the �eld in order to inor-porate to the priors as muh as possible knowledge in them. Here, we diretly used the rathervague priors shown in Table 4.Seond, a areful examination of the prior distributions has to be onduted on the quantitiesof interest. It an our that prior on parameters lead to prior on observation out of relevane!17This is a lear indiation that something is wrong and must be hanged. Also the omparisonbetween priors and posteriors is needed to assess the level of involment of the data set in theposterior. In Figure 6 one an see that onsistently with the used priors (Table 4) no e�et isvisible in the prior dimension, whih is not the ase for the posterior dimension where threedistint lusters appear. Probably, it would be logial to redue the variability of the prior sinenegative yields are proposed for almost every µij together with upper values also not sensible.5.2 Looking for a sensible number of multipliative termsFigure 7 displays the joint posterior distributions of (λ1, λ2) for the redued and ompleteases. The redued ase is interesting beause we an notie that the S = 100 simulationsare distributed in two groups: the most numerous for negative values of λ1, the other one forpositive values of λ2. In eah group, λ2 takes a ontinuum of values negative or positive. Thisis a lear indiation that the redible region of λ1 does not inlude the zero value, ontrary toits of λ2. The onlusion is that only one multipliative is needed for the redued ase. For theomplete ase, a glane at the sales show that no doubt is left, both redible intervals are veryfar from zero and at least the �rst two dimensions have to be kept. As we didn't introdue athird term, nothing an be said about its neessity18.5.3 Interpreting the parametersLet us onentrate our attention towards the genotypes; the same ould be made for the envi-ronment fator.The most straightforward use of the simulations is to draw satter plots of a fator with the pa-rameter depending on it. For instane19 (αi

√
J, λ1γi,1

), but instead of one point for genotypes,we will get S points providing a diret view of the variability/unertainty: Bayesian statistisreturns a distribution20, not a point estimate with possibly a on�dene interval. This is donein Figure 8 for the omplete ase and the �rst nine genotypes. They look impressively distint.No overlapping for any pair of genotypes (this does not seem the onsequene of the very re-dued number of simulations: 100). Among these genotypes, the 6th looks attrative with thestrongest main e�et and limited interation, then among the most stables.16as suggested by Fred van Eeuwijk (Prof. at Wageningen University, NL) during a workshop on statistialinterpretation of Genotype-Environment interation, 2012, Inra, Jouy en Josas.17Strongly negative or exagerated yields...18Notie that in [Crossa.1991℄, three multipliative terms have been introdued, we onsider only two for thesake of the exposure simpliity. Nevertheless the model ode provided in �E has got a NQ variable whih antake any value. As underlined in �2.1.3, a �aw of Bayesian approahes is the lak of tools to selet a modelamong a set of models. In ase of nested models, redibility regions an be used to deide if some parameterstake values assoiated to some submodels.19The multipliation of α by √
J and of γq by λq provides them a squared norm equal to the sum of squaresexplained by the assoiated terms in the model whih seems a fair way to relate them. More preisely SSGeno =

J
∑

i α̂
2
i and SSG×E(1) = λ2

1 = λ2
1

∑
i γ̂i,1

2, in the orthogonal ase.20Here with the means of simulations, then an empirial distribution.23



Figure 6: Prior-posterior redible boxes for the µij for the redued data set. 2.5% and 97.5%quantiles were used to de�ne the boxes around the median position. The red line is the �rstbissetor.
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Figure 7: Posterior distributions of the λs for the redued (left) and omplete (right) ases.
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Taking into aount the easy interpretation given to the parameters assoiated to eah genotype(sine there is only one multipliative term), it is possible to answer most of the questions risenat the beginning of this setion. Among the nine displayed in Figure 8, genotype 6 has got thebetter performane aross the set of all environments (Q1), it as also in the group of the stablegenotypes {6,8,7} (Q3), ertainly it deserves the �rst rank meanwhile genotype 3 is on the lastposition (Q4).5.4 Interpreting the genotype responses aross the environmentsBut, as the lear interpretation of the parameters identi�ed in (2) is not always unambiguous, wesuggest to always start from the matrix (µij) de�ned in (3) and indiated in the dag of Figure1. The proposal is to show the genotype response for the spetrum of studied environments.For that, we think that a random urve for eah genotype along the E
(
1
I

∑
i µij

) is of value.To take into aount the unertainty linked with the posterior distribution, we propose torepresent eah genotype with a bundle of S urves (one for eah simulation) obtained by joiningthe J points of oordinates (1
I

∑
i µ

s
ij, µij − 1

I

∑
i µ

s
ij

). With the adopted onstraints (�2.2.2), itis (µs + βs
j , α

s
i +

∑Q
q=1 λ

s
qγ

s
iqδ

s
js

). Other proposals an be think of, this one has the advantageof proposing non ommon terms between absissae and ordinates, eliminating noise e�ets ofsystemati orrelations.This is proposed in Figures 9 and 10.Indeed very strong di�erenes appear and we retrieve the very good behavior of genotype 6.Using this diagram, we an also determine whih are the best genotypes for a given environment(Q2). After genotype 6 whih is de�nitively the best for all environments, the �rst one is themore advisable for poor environement neessarily plaed on the left side of the absissae.
25



Figure 8: Genotype e�ets (additive with αi, interative with γi,1) for the omplete ase. Eahgenotype is drawn in a di�erent plot; only the �rst nine genotypes are shown (out of 18).
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Figure 9: Posterior genotype pro�les for the omplete ase (One to Nine)
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Figure 10: Posterior genotype pro�les for the omplete ase (Ten to Eighteen)
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Figure 11: Posterior genotype pro�les (Ten to Eighteen) in ase of 45 missing values
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5.5 Missing valuesOne of the strong points of the Bayesian approah is that missing values are no more a problem.Let's inspet the results obtained in suh a situation. An intriguing fat appears in Table 3:the mm seems faster with missing values than without! In fat, this an be explained. TheBayesian statistial approah is no more than de�ning a joint probability distribution onto thewhole set of parameters and data (prior and likelihood de�nitions) before onditioning with theobserved data (posterior alulation). Missing values are not missing, they are not onditioningvariable sine not observed. One an then admit that more missing values there are, easier isthe onditioning task!The ten perent missing values does not alter the interpretation obtained from the ompletedata set, as it an be heked with Figure 11.
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5.6 Exeeding a thresholdThe previous diagrams does not allow to answer the last question (Q5): ould we assign aprobability that a genotype will give more than a ertain threshold?, a quantitative question!Indeed, the bayesian framework is quite adapted to answer suh a question!First we have to be more preised about the question: is the yield for a given environment or forthe range of all possible environments? If we are interested in a preise environment and thatwe have information about it, either beause it was experimented or beause we an predit itsresponse through our modelling using pertinent ovariables, then we an propose an answer tothe question. But let us suppose that we are asking for a response aross a set of environmentswhih is not exatly represented by the experimental set. Let us also suppose that we are ableto give relative weights (wj) for eah of our experimented environments to unbias the results,i.e. that
πi =

∑

j

wjµijis the performane of genotype i that we are looking for. One an see that if all wj are zeroexept one of them, we will get the answer for a preised environment.Then we an easily introdue this new variable into our model and be interested into theproportion of posterior simulations where the given threshold is exeeded, also it is of interestto look at the density of πi, just to see where is the threshold. This was done for wj=1,...,5 =
1
20
, wj=6,...,10 = 1

10
, w11 = 1

4
and wj=12,...,25 = 0 with a threshold of 8. Results are displayedin Figure 12 where it an be seen that only the �rst and sixth genotype an have a positiveprobability (respetively estimated to 0.1 and 1 by the posterior expetation of the proportions.)5.7 Random versus �xed e�ets?Genotype Environement data are often analyzed either by mixed models or by biadditive models(with a frequentist point of view). One of the most disussed point when de�ning suh modelsis the hoie between �xed or random status for the two fators. This is not so obvious. Indeed,when looking at the �rst question (Q1), the fator environement may be onsidered as random:we are not interested in one environement in partiular and with the �subset� of environementwe dispose, we want to tell what is the best genotype aross all the possible environements (asdone in �5.6). However, when regarding the seond question, the fator environement mustbe onsidered as �xed: within this spei� environment (and not another one) what is theperformane of the genotypes? Using �xed e�ets model or random e�ets model is mainly theonsequene of di�erent questions21 implying di�erent models and then di�erent results.Within the Bayesian framework, there is no more unknown �xed parameters but only randomvariables and the inferene ould be denominated the art of onditioning. Consequently, wean pretend to keep with the general model and by some onditioning (for instane �xing theenvironment or not) adopt the right viewpoint to answer a preised question.From a tehnial point of view, there are links between shrinking estimation, mixed models andBayesian statistis: what is observed is not onsidered as unbiased truth.21of ourse supposing that the data is pertinent to answer them.
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Figure 12: Performanes of the �rst nine genotype in a target set of environments
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Figure 13: Similar Figure of Figure 7 with Perez et al.'s algorithm
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5.8 Comparison with Perez et al. proposalAs explained in �2.3 other proposals already exist. In that setion, we show the results obtainedwith the [Perez.2011℄ approah, using the R sript of them.For easier omparison the results obtained with [Perez.2011℄'s algorithm are displayed withequivalent diagrams: Figures 13, 14, 15 and 16. Apart from the singular values, the results forthe main e�ets ad the interations seems very losed on this dataset. This is onsistent withthe fat that we used the same type of priors.6 ConlusionWe have proposed an easy Bayesian treatment of the Biadditive model whih seem to providegoods results based on a small simulation study and results omparable to the ones obtained32



Figure 14: Similar Figure of Figure 8 with Perez et al.'s algorithm
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Figure 15: Similar Figure of Figure 9 with Perez et al.'s algorithm
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Figure 16: Similar Figure of Figure 10 with Perez et al.'s algorithm
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by [Perez.2011℄ on a real dataset. The proposal solves the problem of overparametrizationonsidering overparametrization as diretly tratable with standard mm algorithms.Regarding missing values, it would be interesting to ompare the proposition to lassial ap-proahes where weighted least squares proedures are used to estimate the parameters froman inomplete dataset. One an argue that with the Bayesian point of view, we will obtaindiretly redible regions for the �estimated� data as well as for the fator e�ets whih is veryappealing.Another point whih deserve more researh is the hoie of the appropriate number of multi-pliative terms whih is a ore issue in biadditive models. In our proposal, it is possible byinspeting the posterior distribution to deide how many terms to keep. More work has to bedone using a simulation study for example in order to assess this proedure. Another pathto investigate may be the use of "Bayesian Model Averaging", an empirial proposal to taklemodels with di�erent parametri dimensions in a Bayesian way. As the term suggests, per-form as many Bayesian analyses as possible models and then take a syntheti posterior simplyaveraging eah of them.A Misellaneous formulaeA.1 Conditional expetation and varianeIt is well known that
E (Y ) = EX (EY (Y | X))

V (Y ) = EX (VY (Y | X)) + VX (EY (Y | X))A.2 First two moments of EijkWhen E | σE ∼ N (0, σ2
E) and σE ∼ U (0, SME), just applying formulae given in �A.1, oneobtains

E (E) = 0

V (E) =
1

3
S2
MEA.3 First two moments of a triple produtLet three independent variables A, B and C suh that their expetations be respetively a, b, cand their standard deviation α, β, γ. Then

E (ABC) = abc

V (ABC) =
(
a2 + α2

) (
b2 + β2

) (
c2 + γ2

)
− a2b2c2
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B von Mises-Fisher distributionB.1 De�nitionFollowing [De_Waal.2006℄, let X be a random matrix of size I ×Q (Q ≤ I) be multinormallydistributed with
E (X) = µ

V (ve (X)) = Ψ⊗ Σwhere µ is any I × Q matrix, Σ is a I × I p.s.d. matrix, Ψ is a Q × Q p.s.d. matrix and theoperator ve transforms a matrix into a vetor by staking its olumns.Then X | X ′X = s is distributed as a generalization of the von Mises-Fisher distribution withdistribution given by the density
C exp

(tr (Σ−1xΨ−1µ′
)
− 1

2
tr (Σ−1xΦ−1x′

))when x′x = s.It is appealing that the onstraint x′x = s does not intervene in the density but for the de�nitionof the support...The von Mises-Fisher distribution ours when Σ = II ,Ψ = s = IQ; its density is thende�ned to exp (tr (xµ′)) for x′x = IQ.
k exp (tr (xµ′))when x′x = IQ.The normalizing onstant, k, an be expressed as an in�nite series of Hayakawa polynomials.B.2 Interpretation of the von Mises-Fisher distributionSome interesting fats an be emphasized:� The matrix µ is the only parameter of the distribution.� Matrix µ is no more than the expetation of the initial matrix X not restrited to lieon the hyper-sphere unity but due to urved spae where is the restrited variable, itsexpetation does not belong to the hypersphere but is inside it. Nevertheless, µ plays therole of a entrality parameter for the diretion of the normalized X .� When I = 2 ou 3, and Q = 1 one an get hints, imagining the density funtion of a

N (µ, II) interseted with the irle or sphere of radius one. The maximum density willbe in the diretion of µ; indeed what indiates tr (xµ′) = x′µ sine x and µ are vetors.The same reasonning applies when I > 3.� Indeed for I = 2 and Q = 1, a simple reparameterization gives more insights. We anwrite x′ = (cos (θ) , sin (θ)) and µ = λ (cos (ν) , sin (ν)) then the density is proportional to
exp (λ cos (θ − ν)) and an be easily drawn.37



� When I = 2 and Q = 2, due to the orthogonality onstraint, still the matrix x dependsonly of θ and reads
x =


 cos (θ) cos

(
θ + π

2

)

sin (θ) sin
(
θ + π

2

)

so with obvious notation the density is proportional to

exp
(
λ1 cos (θ − ν1) + λ2 cos

(
θ +

π

2
− ν2

))whih also an be easily represented with isoontour diagrams.� When I = 3, similar onsiderations an be obtained with a parameterization with Qparameters by means of the Euler angles, for Q = 3, it reads
x =




c1c2 −s1c2c3 + s2s3 s1c2s3 + s2c3
s1 c1c3 c1

−c1s2 s1s2c3 + c2s3 −s1s2s3 + c2c3


where ci = cos (θi) and si = sin (θi).� When I > 3, it is not that easy but, in priniple, Euler angles an still be obtained bysuessive rotations around the anonial axis.� The uniform distribution onto the hypersphere is obtained for tr (x′µ) = 0, whih impliesthat µ = 0I×Q.� When µ is of rank R < Q, then it seems that R out of the Q vetors of x will be lose tothe diretions omprised into µ and that the other ones will be let free on the orthogonalomplement subspae? This rises the question if one annot impose µ to be de�ned withorthogonal olumns?� It is lear that µ and kµ gives the same density, an other type of invariane be exhibitedto allow a easier de�nition of the parameter µ?C Prior/posterior with overparameterized modelsC.1 Linear tiny aseC.1.1 De�nitionIn order to see the ideas and to be able to get all algebraial derivations, let us onsider �rsta single ase of overparameterization with two data values and three parameters to infer. Letbe Y = (Y1, Y2) and its expetation de�ned with three parameters (µ, α1, α2). The supposedindependent priors are

µ ∼ N (m, 1)

α1 ∼ N (0, 1)

α2 ∼ N (0, 1)38



(where m is a known numerial value) and the likelihood is given by
(

Y1

Y2

∣∣∣∣∣µ, α1, α2

)
∼ N

((
µ+ α1

µ+ α2

)
,

(
1 0
0 1

))Some easy omputations due to the multinormal framework gives as joint distribution



µ
α1

α2

Y1

Y2




∼ N







m
0
0
m
m



,




1 0 0 1 1
0 1 0 1 0
0 0 1 0 1
1 1 0 3 1
1 0 1 1 3






.

C.1.2 ReparameterizationIn order to distinguish what is reahable (or not) by the data, we an modify the parameterde�nition in the following linear way



θ1
θ2
θ3


 =




2 1 1
0 1 −1
1 −1 −1







µ
α1

α2


 .The transformation matrix being full rank, the two parameterizations are equivalent, in thesense that we an use one or the other, keeping the same modelling. One an notie that the�rst two θs an be expressed from the onditional expetation of Y :

θ1 = E (Y1 | (µ, α1, α2)) + E (Y2 | (µ, α1, α2))

θ2 = E (Y1 | (µ, α1, α2))− E (Y2 | (µ, α1, α2))and that there is no hope to express the last new parameter in suh a way, sine θ3 is independentfrom (θ1, θ2), the new joint distribution reading



θ1
θ2
θ3
Y1

Y2




∼ N







2m
0
0
m
m



,




6 0 0 1 1
0 2 0 1 −1
0 0 3 0 0
3 1 0 3 1
3 −1 0 1 3






. (6)As a onsequene, the new Bayesian reformulation of the model evidenes the useless of pa-rameter θ3, indeed the new parameters are independent and

θ1 ∼ N (2m, 6)

θ2 ∼ N (0, 2)

θ3 ∼ N (0, 3)also the likelihood given by
(

Y1

Y2

)
| (θ1, θ2, θ3) ∼ N

((
θ1+θ2

2
θ1−θ2

2

)
,

(
2 1
1 2

)) ,does not depend on θ3.A notieable point is that the two Y s are no more onditionally independent to the parameters.But why not? In fat, it is possible to linearly transform the data(Y1, Y2) in an equivalent pair
(Z1, Z2) suh the the Zs be onditionally independent of the parameters.39



C.1.3 Posterior in the new parameterizationFrom (6), the posterior an be written applying the onditional formula of the multinormaldistribution: 


θ1
θ2
θ3


 | (Y1, Y2) ∼ N







Y1+Y2

4
+ 3

2
m

Y1−Y2

2
−m

0


 ,




1
2

0 0
0 1 0
0 0 3





 .C.1.4 ConlusionIf the statistial analysis is made with the seond parameterization, it is observed that [θ3 | (Y1, Y2)]is no more than the prior [θ3]. This parameter an be eliminated and the overparameterizationis no more present.C.2 Additive aseSimilar results are easily found with the additive model following the same steps that in �C.1.C.2.1 De�nition

E (Yij | µ, αi, βj) = µ+ αi + βjwith prior22 and likelihood:
µ ∼ N (0, 1)

αi ∼ N (0, 1) i = 1, ..., I

βi ∼ N (0, 1) j = 1, ..., J

Yij | (µ, α, β) ∼ N (µ+ αi + βj , 1) i = 1, ..., I ; j = 1, ..., J .Here, we have 1 + I + J parameters whose priors are de�ned independent and IJ data inde-pendent onditionally to the parameters. But it is well known that the parametri dimensionof suh additive model is I + J − 1 so that we have to �nd 2 (here linear) funtions of theparameters whih are independent of the data, and suh that no information will be addedwhen going from the prior to the posterior.C.2.2 First reparameterizationIt would be muh more di�ult to get a set of 1 + I + J independent orthogonal parameters
θ1, θ2, ..., θ1+I+J suh that the last two be independent of the Yij as done in the tiny ase. Butwe propose the following, let

θij = µ+ αi + βj when i = 1 and/or j = 1.The number of θs is I + J − 1, and
µ+ αi + βj = θ1j + θi1 − θ1122Assuming that m = 0 and all varianes unity. 40



whatever is (i, j) showing that the θs generates all expetations of the data set. It now su�eto get two additional linear ombinations of the (µ, αi, βj) independent from them. Followingthe indiation given in �C.1.2, a possibility is
ρ1 = µ−

∑

i

αi

ρ2 = µ−
∑

j

βjTo better see what is behind the transformation, let us detail the ase for I = 3 and J = 4.The new parameters are obtained from the basi ones from the following linear mapping



θ11
θ12
θ13
θ14
θ21
θ31
ρ1
ρ2




= PA ×




µ
α1

α2

α3

β1

β2

β3

β4


where

PA =




1 1 0 0 1 0 0 0
1 1 0 0 0 1 0 0
1 1 0 0 0 0 1 0
1 1 0 0 0 0 0 1
1 0 1 0 1 0 0 0
1 0 0 1 1 0 0 0
1 −1 −1 −1 0 0 0 0
1 0 0 0 −1 −1 −1 −1


giving

V ar




θ11
θ12
θ13
θ14
θ21
θ31
ρ1
ρ2




= PA × P ′
A

=




3 2 2 2 2 2 0 0
2 3 2 2 1 1 0 0
2 2 3 2 1 1 0 0
2 2 2 3 1 1 0 0
2 1 1 1 3 2 0 0
2 1 1 1 2 3 0 0
0 0 0 0 0 0 4 1
0 0 0 0 0 0 1 5
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C.2.3 Seond reparameterizationJust to show that many reparameterizations are possible, again for I = 3 and J = 4. The newparameters are obtained from the basi ones from the following linear mapping
PB ×




µ
α1

α2

α3

β1

β2

β3

β4




=




17 4 4 4 3 3 3 3
1 0 1 0 0 0 0 0
1 0 0 1 0 0 0 0
1 0 0 0 0 1 0 0
1 0 0 0 0 0 1 0
1 0 0 0 0 0 0 1
0 3 0 0 −4 0 0 0
1 0 −1 −1 0 −1 −1 −1




×




µ
α1

α2

α3

β1

β2

β3

β4


giving

PB× P ′
B =




373 21 21 20 20 20 0 0
21 2 1 1 1 1 0 0
21 1 2 1 1 1 0 0
20 1 1 2 1 1 0 0
20 1 1 1 2 1 0 0
20 1 1 1 1 2 0 0
0 0 0 0 0 0 25 0
0 0 0 0 0 0 0 6


C.3 General formulationAs the derivation in �C.2.2 is done, one an think that it is mainly based on the linear re-lationship between the parameters and the expetions of the data: in fat not. It is onlybased on the prior multinormality of the parameters. Let us now try to get the essene of theoverparameterization behaviour.C.3.1 De�nition of overparametrizationLet a model be de�ned with θ, the set of parameters and some data Y . Let [θ] be the prior and

[Y | θ] the likelihood probability distributions. We will say that there is overparameterizationwhen not all the parameters are neessary to de�ne the likelihood, that is when it exists φt (θ) areparameterization with a smaller parametri dimension23, equivalently de�ning the likelihood.More preisely:
[Y | θ] = [Y | φt] (7)pd (φt) < pd (θ) .Intuitively, there is su�ient information into φt to provide the omplete determination of thelikelihood.23We are not at ease of how de�ne the parametri dimension of φt, we suspet that it is linked with the rankof the Jaobian ∂φt

∂θ
.
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Figure 17: Prior and posterior forms of the joint distribution as dags
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C.3.2 Dealing with overparameterizationThere is at least two ways to prevent the overparameterization di�ulty: (i) use a transfor-mation of type φt with minimal parametri dimension restriting the parameter spae; (ii) addadditionnal onstraints onto the initial parameter sets φc (θ) = 0 suh θ |φc(θ)=0 be equivalentto some minimal φt. The �rst solution eliminates the di�ulty but most of the time loosingsome interesting symetrial properties. The interpretation of the parameters is then less easyand interesting, so most often the seond way is preferred.Assuming that for a given model, we are able to �nd (φt (θ) , φc (θ)) suh that φt is su�ient tode�ne the likelihood and has got the minimum parametri dimension. So we have (7) and
(θ) ⇐⇒ (φt, φc) . (8)Then the initial model an be written into this new equivalent parameterization:prior : [φt, φc] = [φt] [φc | φt] ,likelihood : [Y | φt] .The joint distribution is then the produt of both:

[Y | φt] [φt] [φc | φt] = [Y ] [φt | Y ] [φc | φt] . (9)Both forms are given in the two three-nodes Bayesian networks of Figure 17. The right handside of Equation (9) gives the posterior form while the left one is the prior form. From (9), weobtain that the posterior distribution of the parameters as
[(φt,φc)|Y ] = [φt | Y ] [φc | φt] . (10)This does not mean that the posterior of φc does not depend on Y but that it depends on Yonly through φt and more that this dependene is idential to the one de�ned at the prior level.It is the onsequene of the d-separation operated by φt between the random variables Y and

φc. 43



C.3.3 ConlusionUse of an overparameterized model with a prior onto the omplete set of parameters is withoutonsequene. One is dealing with more random variables than neessary, no more. And experi-mental observations tends to think that it is a more e�ient way, possibly due to a symmetrialrepartition of the roles between the parameters.When the prior on the omplete set an be deomposed into independent (φc) and neessary(φt) transformed subsets, then the prior and the posterior of φc are idential. This is onvenientbut not required.C.4 Biadditive aseOf ourse this applies to the biadditive ase. Wihtout entering into a general treatment if weonsider the model B (∗, ∗, ∗, π) provided with the following prior and likelihood:
λ ∼ N (0, 1)

γi ∼ N (0, 1) i = 1, ..., I

δj ∼ N (0, 1) j = 1, ..., J

Yij | (λ, γ, δ) ∼ N (λγiδj , 1) i = 1, ..., I ; j = 1, ..., J .One an notie that the omplete set of parameters is idential to the additive ase. As the priorare similar and as neessary transformed subsets are idential (isomorphism between additiveform and multipliative form), it is possible to get the same kind of independant parameters aswe obtained in �C.2.2 and �C.2.3. The two onditions to hek are:1. equivalent priors,2. equivalene of the identi�ability in the likelihood funtion.This has to be generalized for any type of biadditive models, but we an wonder the utility (interm of data interpretation) of suh results sine we are interested into the ative parametersnot in the redundant ones.D Gibbs sampling algorithms used in the literature pro-posalsD.1 Brief reminder about Gibbs samplingWhen it is not possible to ompute diretly the posterior [θ | Y ] most of the time the di�ultyan be break down in smaller piees, this is the Gibbs sampling tehnique. The parameter vetoris partioned into onvenient subsets θ = {θ1, θ2, ..., θP} and an iterative sheme is applied byyling over the P subsets to get draws into the global posterior.
[θ1 | Y, {θ − θ1}]
[θ2 | Y, {θ − θ2}]

· · ·
[θP | Y, {θ − θP}]44



The only requirement is to be able to draw into the partial onditional distributions, in generala muh easier task. Of ourse there are some drawbaks, mainly the non independene of thedraws, and the safety of drawing into the posterior only asymptotially, then a burn-in phaseof the algorithm is neessary.D.2 Ho�'s proposalHo� [Ho�.2009, Ho�.2012℄ is interested in multivariate data analysis tehniques assoiated tothe model:
YI×J = UDV ′ + E,where UI×Q and VJ×Q are orthonormal matries, D a diagonal matrix and E a matrix withindependent omponents E = {εi,j ∼ N (0, σ2)}. This model an be seen as an underlyingmodel for Prinipal Component Analysis (PCA) and an be found under di�erent names in theliterature suh as the �xed e�et model [Caussinus.1986℄, the �xed fator sores model, et.Ho� [Ho�.2009, Ho�.2012℄ proposed a Bayesian treatment of this model. With suh a treatment,he obtained posterior expetation of the singular values that are loser to the �true� onesompared to the maximum likelihood estimates; he also proposed a new way to selet thenumber of dimensions. More preisely, his proposition is the following one.The likelihood is given by:

L(Y, U,D, V, σ2) ∝ exp{−1

2σ2
||Y − UDV ′||2

}
,exp{ −1

2σ2
(tr((Y − UDV ′)(Y − UDV ′)′))},exp{ −1

2σ2
(tr(Y Y ′ − Y V DU ′ − UDV ′Y ′ + UDV ′V DU ′))}.The priors for the singular vetors U and V are de�ned as uniform on the Stiefel manifold.Uniform distributions on this manifold orrespond to very simple ases of von Mises-Fisherdistributions (f. �B). The expliit form of these uniform distributions are given in [Smidl.2007℄.The priors for the singular values as well as for the noise variane parameter are respetively:

{d1, .., dQ} ∼ N (0, τ 2) ,

1/τ 2 ∼ gamma(η0/2, η0τ 20 /2),
1/σ2 ∼ gamma(ν0/2, ν0σ2

0/2).Then the model depends on the numerial onstants ν0, η0, σ0.The joint posterior distribution for the parameters is:
f(U,D, V, σ2|Y ) ∝ f(Y |U,D, V, σ2)× f(U,D, V, σ2)To make inferenes on the quantities of interest, we need to onsider the marginal posteriordistributions. Sine no lose form is available for the joint posterior distribution for the pa-rameters, a Gibbs sampler, whih iteratively simulates eah parameter from its full onditionaldistribution, is built. 45



Sine the prior distribution for U is uniform, the onditional posterior distribution for U isompletely determined by the likelihood (or the onditional likelihood):
f(U |V,D, Y, σ2) ∝ L(U,D, V, σ2)exp{tr((Y V D/σ2)′U)}This distribution is a von Mises-Fisher distribution denoted MF (Y V D/σ2). Similarly, theondition posterior distribution for V is a MF (Y ′UD/σ2). The onditional distributions for

dq, 1/τ
2 and 1/σ2 follow respetively a normal, a gamma and a gamma distribution, withparameters given in [Ho�.2012℄. Initial values are taken as the maximum likelihood estimatesof the model (orresponding to the usual least squares estimates). On a simulated example,[Ho�.2012℄ showed that the posterior mean of E (Yij) is loser to true population values thanthe estimation obtained by maximum likelihood.Ho�'s method requires to simulate matries from von Mises-Fisher distributions. To do so, heproposed a method [Ho�.2009℄whih is implemented in theR [RCRAN.2012℄ pakage rstiefel.D.3 Perez et al.'s proposalThe method proposed by [Perez.2011℄ dediated to linear-bilinear models also uses von Mises-Fisher distributions but in a di�erent way. We let the linear terms out for the sake of simpliity.They have the same likelihood and onditional distributions for matries U and V as de�ned inthe previous setion (�D.2), with an additional n orresponding to a onstant number of repli-ates for eah ombination of genotype-interation and τ instead of 1/σ2, to be in aordanewith their notations. From these onditional likelihoods, [Perez.2011℄ de�ne its priors as:

π(U |τ) ∝ exp{tr(τn0Y0V0D0U
′)},with Y0 de�ne as the prior ell averages suh that Y0 = U0D0V

′
0 . They do the same thing for V .These priors are onsequently distributed aording to a von Mises-Fisher distribution. Theprior for τ is a gamma distribution :

π(τ) ∼ gamma(a/2, s20/2)With these priors, they only need to express their beliefs in the prior ell average Y0, then
U0, V0, D0 follows from the SVD of Y0, as well as their beliefs about a and s20 . In order todraw samples from the marginal posteriors distribution a Gibbs sampler is also built. Theonditional posterior distribution for U is:

π(U |V,D, Y, τ) ∝ f(U |V,D, Y, τ) ∗ π(U |τ)exp{tr(τ ∗ (n0Y0V0D0 + nY V D)U ′)}This distribution is also a von Mises-Fisher distribution. The other posterior distributions aregiven in the paper [Perez.2011℄. Their algorithm is available as an R funtion but the odeis written for ases with repliates (it allows one to obtain an estimate for the variane σ2);however, it is possible to easily adapt the ode for ases without repetitions.E bugs oding of the modelHere is the bugs oding of the model we used for the worked example of �5.46



# 12_03_07## A biadditive model with NQ multipliative terms# made as general as possible to get numerial# example in the note written with Julie.## onstant to be defined are:# NI (number of genotypes)# NJ (number of environments)# NQ (number of multipliative terms)# m.mu (mu expetation)# sd.mu (mu standard deviation)# sd.alpha (alpha standard deviation)# sd.beta (beta standard deviation)# sd.lambda (lambda standard deviation)# sdm.E (maximum value of sigma.E)# w (weights for the targetted environments)# limit (threshold of interest)#model {## prior on the additive partMu ~ dnorm(m.mu,1/sd.mu^2);for (i in 1:NI) { alpha[i℄ ~ dnorm(0,1/sd.alpha^2);}for (j in 1:NJ) { beta[j℄ ~ dnorm(0,1/sd.beta^2 );}## prior on singular valuesfor (q in 1:NQ) {lambda0[q℄ ~ dnorm(0,1/sd.lambda^2);}lambda[1:NQ℄ <- sort(lambda0);## prior on row singular vetorsfor (q in 1:NQ) {gamma[1,q℄ ~ dnorm(0,1)T(0,);for (i in 2:NI) {gamma[i,q℄ ~ dnorm(0,1);}}# prior on olumn singular vetorsfor (q in 1:NQ) {delta[1,q℄ ~ dnorm(0,1)T(0,);for (j in 2:NJ) {delta[j,q℄ ~ dnorm(0,1);}}## getting the expetationfor (q in 1:NQ) { 47



for (i in 1:NI) {gamma0[i,q℄ <- gamma[i,q℄ * lambda[q℄;}}INTE <- gamma0 %*% t(delta);for (i in 1:NI) { for (j in 1:NJ) {MU[i,j℄ <- Mu + alpha[i℄ +beta[j℄ + INTE[i,j℄;}}## data varianesigma.E ~ dunif(0,sdm.E);## likelihood of the data setfor (i in 1:NI) { for (j in 1:NJ) {Y[i,j℄ ~ dnorm(MU[i,j℄,1/sigma.E^2);Mup[i,j℄ <- MU[i,j℄ * w[j℄;}}## performane of the genotype in a# different set of environmentsfor (i in 1:NI) {pi[i℄ <- sum(Mup[i,℄);pr[i℄ <- step(pi[i℄ - limit);}}Referenes[Arminger.1998℄ G. Arminger. A Bayesian approah to nonlinear latent variable models us-ing the Gibbs sampler and the Metropolis-Hastings algorithm. Psyhometrika,63(3):271-300, 1998.[Bingham.1974℄ Ch. Bingham. An antipodally symmetri distribution on the sphere. The annalsof statistis, 2(6): 1201-1225, 1974.[Bishop.1999℄ Ch. M. Bishop. Bayesian PCA. in Advanes in Neural Information ProessingSystems (11)382:388, 1999.[Caussinus.1986℄ H. Caussinus. Models and uses of prinipal omponent analysis (with disus-sions). In Multidimensional Data Analysis. Ed. J. De Leeuw, W. J. Heiser, J. J.Meulman & F. Crithley. 149-178pp. DSWO Press. 1986.[Chikuse.2002℄ Y. Chikuse. Statistis on Speial Manifolds. Springer, 2002.[Crossa.1991℄ J. Crossa, P.N. Fox, W.H. Pfei�er, S. Rajaram and H. G. Gauh, Jr.. ammiadjustment for statistial analysis of an international wheat yield trial. Theor.Appl. Genet. , 81:27-37, 1991. 48
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