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Abstract

We consider the estimation of the total number N of species based
on the abundances of species that have been observed. We adopt a non
parametric approach where the true abundance distribution p is only
supposed to be convex. From this assumption, we propose a definition
for convex abundance distributions. We use a least-squares estimate of
the truncated version of p under the convexity constraint. We deduce
two estimators of the total number of species, the asymptotic distri-
bution of which are derived. We propose three different procedures,
including a bootstrap one, to obtain a confidence interval for N . The
performances of the estimators are assessed in a simulation study and
compared with competitors. The proposed method is illustrated on
several examples.

Keywords: Abundance distribution; Bootstrap; Convex abundance distri-
bution; Least squares estimator; Nonparametric estimation ; Species rich-
ness estimation.
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1 Introduction

Estimation of abundance is one of the oldest way to evaluate the diversity
of species in a given area. The problem traces back to Fisher et al. (1943),
who first proposed to estimate the distribution of abundance in a Gamma-
Poisson framework. Several approaches have been considered and various
sampling theoretic frameworks may be considered for modelling observations
of species abundance in a population, see for example the review given by
Bunge and Fitzpatrick (1993) or more recently by Bunge et al. (2014) in
the context of microbial diversity estimation.

The generic problem can be stated as follows. Considering a population
composed of N species, for each i = 1, . . . , N , let us denote by Ai the
abundance (that is, the number of observed individuals) of species i in a
sample of size n, and by Sj the number of species having abundance j:

Sj =
N∑
i=1

I(Ai = j), j ∈ {0, . . . , n}. (1)

The connection between N and the Sj ’s is that N = S0 +D, where

D =
∑
j>1

Sj =
N∑
i=1

I(Ai > 1) (2)

denotes the number of observed species. Here, S0 denotes the number of
species that are indeed present in the population but have not been observed
in the sample, so that S0 is not observable whereas Sj is observable for all j >
1, and D also is observable. The variables Ai are not completely observed:
one observes only zero-truncated counts, which means that one observes
only the Ai’s that are strictly positive. The problem is to estimate N based
on the observations Sj , j > 1, or equivalently, based on the observation of
the zero-truncated counts. We briefly describe below the main approaches
of modeling that have been investigated in the literature.

A first approach consists in considering that n individuals are sampled
from an infinite population composed of N species in proportions q1, . . . , qN .
In the case of sampling with replacement, the vector (A1, . . . , AN ) has a
multinomial distribution with parameters n and q1, . . . , qN . In this setting,
Harris (1959) considered the problem of estimating the sample coverage∑

i qiI(Ai > 1) and predicting the number of observed species in enlarged
samples. Moreover, he provided an approximation for the expected number
of unobserved species E(S0). Inspired by this approximation, Chao (1984)
proposed an estimator of a lower bound for N without any assumption on
the qi’s. Chao illustrated on some examples that his estimator can be con-
sidered as an estimator for N if n is large and most of the information is
concentrated on the triplet (D,S1, S2). Chao and Lee (1992) introduced
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an estimator based on the estimation of both the expected sample coverage
and the variation coefficient of the qi’s. Chao and Lin (2012) also consid-
ered lower bounds estimators in nonparametric models, but in contrast to
the aforementioned papers, they assume a sampling scheme without replace-
ment.

Another approach is to assume that the Ai’s are independent variates
with the same distribution p = (p0, p1, . . . , pn), so that the vector (S0, S1, . . . , Sn)
has a multinomial distribution with parameters N and p, and the zero-
truncated counts are i.i.d. with distribution given by

p+
l =

pl
1− p0

, for all integers l > 1,

conditionally on the number D of observed species (see Lemma 1 below). In
this setting, decomposing the likelihood as a product of a term that depends
only on N and p0, and a term that depends only on pj/(1 − p0), j > 1,
Sanathanan (1972) pointed out that if p were known, then the maximum
likelihood estimator of N would be

N̂p = bD/(1− p0)c, (3)

where bxc denotes the integer part of x. Postulating a parametric assump-
tion on p in order to make p0 identifiable, Sanathanan (1972) computed the
asymptotic distribution of both the maximum likelihood estimator and the
so-called conditional maximum likelihood estimator of N as N → ∞. The
results are obtained under classical regularity assumptions on the parametric
model.

Most papers adopting the point of view of independent Ai’s with common
distribution p assume, moreover, that eachAi is distributed as a Poisson with
expectation λi, the λi’s being independent variables from some distribution
ω over (0,∞) that is called a mixing distribution. Therefore,

P (Ai = l) = pl(ω) =
∫ ∞

0

λl exp(−λ)
l!

dω(λ) (4)

and such a setting is called the Poisson mixture setting. It is generally
referred as parametric if a parametric assumption is formulated on ω, and
nonparametric otherwise.

In the parametric Poisson mixture setting, Chao and Bunge (2002) esti-
mated N by the number

∑
j>2 Sj of duplicated species divided by an estima-

tor for the proportion of duplications in a sample. The estimator is shown
to be consistent in the case where ω is a Gamma distribution. An extension
of this estimator based on the first three capture counts was proposed by
Lanumteang and Böhning (2011).

Laird (1978) proved that the nonparametric maximum likelihood estima-
tor (MLE) of a mixing distribution is typically discrete with a finite number
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of points of support, but no closed-form solution exists for the MLE and the
number of points of support is not even know in advance. See also Lindsay
(1995) for a review of the MLE properties in this context. The nonpara-
metric Poisson mixture setting would enter the setting of Laird (1978) if the
abundance were completely observed. However, this is not the case since
only zero-truncated counts are available. Nevertheless, the nonparametric
MLE of (N,ω) has been investigated by several authors in the nonparamet-
ric Poisson mixture setting (note that ω is identifiable provided that ω has
no mass on zero, see Lemma 2.1 in Mao and Lindsay (2007)). In this setting,
Norris and Pollock (1998) developed the MLE of (N,ω) on real data exam-
ples as well as on simulations. They calculated the MLE using an analogous
EM-algorithm as that used by Norris and Pollock (1996) for binomial and
censored geometric mixtures in the context of capture-recapture data. They
proposed bootstrap-based tests (a test statistic being proposed, the critical
value is evaluated by bootstrap) and estimators for classical ecological di-
versity and evenness measures. Böhning and Schön (2005) considered an
alternative EM-algorithm for estimating iteratively ω and N . They selected
the number of points of support for the MLE of ω by using either the AIC
or the BIC criterion. Assuming that the MLE of N is asymptotically Gaus-
sian, they calculated confidence intervals for N using bootstrap. Wang and
Lindsay (2005) pointed out the numerical instability of earlier estimation
methods and proposed to add a penalty term to the log-likelihood function
in order to stabilize the estimation procedure. Their main focus in on test-
ing for homogeneity vs. heterogeneity, that is, testing the null hypothesis of
a degenerate mixing distribution ω. In a more recent paper, Wang (2010)
considered a continuous estimator for ω, that is coined “smooth nonpara-
metric MLE”, in order to better capture the information of species abun-
dance near zero. For example, he considered a Poisson-compound gamma
model where the distribution ω is modeled by a gamma-mixture distribution
parametrized by a shape parameter. He imposed an exponential prior for
the odds in order to stabilize the procedure, and used an empirical Bayes
method for maximizing the likelihood and a cross-validation procedure for
estimating the shape parameter.

Unfortunately, there is no theoretical result on the asymptotic distribu-
tion of the aforementioned estimators in the setting of the nonparametric
Poisson mixture model. In some sense, Mao and Lindsay (2007) proved that
no limit distribution theory could be achievable in this setting. To be more
specific, note first that as a consequence of (3), estimating N amounts to
estimate p0/(1−p0), the odds that a species is undetected in a sample. Mao
and Lindsay (2007) proved the discontinuity of the odds as a function of ω,
from which they derived that the odds has no locally unbiased and locally
informative estimator. They proved that asymptotically valid (as D →∞)
confidence intervals for the odds are necessarily one-sided, which means that
only lower bounds (for the odds as well as for N) can be calculated.
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In this paper, we propose a new nonparametric approach for estimating
N . Similar to the Poisson mixture setting, we assume that the abundances
Ai are independent with common distribution p. However, in contrast to the
Poisson mixture setting, we do not assume that the common distribution is
a mixture of Poisson distributions. Instead, we assume that p is a convex
distribution. The characterization of convex distributions as a mixture of
triangular distributions allows us to assume in fact that p is a convex abun-
dance distribution (a term coined in Durot, et al. (2013)), which means
that the first triangular component T1 is absent in the mixture. This is a
natural assumption since this component corresponds to a Dirac mass at
zero and would therefore refer to absent species in the whole population, as
the only count that could ever be observed for them is 0. Our assumption
of a convex abundance distribution is rather weak but is sufficient to make
identifiable the problem of abundance estimation, and to derive an estimate
θ̂ of θ = 1/(1− p0) for which the asymptotic distribution can be computed.
Inspired by (3), we deduce N̂ = bDθ̂c as an estimate of N . We provide the
asymptotic distribution of N̂ , so we are able to build confidence intervals
for N based on this estimator. The method is easy to implement, and the
calculation of the estimators does not depend on any tuning parameter.

The shape constraint that p is a convex abundance distribution is a mild
assumption that does not seem to be strongly violated by data sets we have
analyzed in ecology. Let us illustrate this on a few well-known examples. We
will consider the Malayan butterfly data from Fisher et al. (1943), the bird
abundance data considered by Norris and Pollock (1998), the tomato flower
data taken from Mao and Lindsay (2003), and finally the microbial species
data treated by Wang (2010). In these examples, the distribution p cannot
be observed since the abundances are zero-truncated, but the zero-truncated
distribution p+ can be observed. Under our assumption of a convex abun-
dance distribution p, p+ is convex. Figure 1 shows that, for the considered
examples, the projection of the observed zero-truncated abundance distri-
bution on the space of convex distributions suits well the data, so that the
convexity assumption is reasonable.

The paper is organized as follows. The setting is precisely defined in
Section 2. Estimators for θ and N and their asymptotic distributions are
given in Section 3. Confidence intervals for N are given in Section 4. A
simulation study is reported in Section 5 to assess the performances of our
estimators and confidence intervals. Finally, we compare our method to
competitors on the four examples presented before in Section 6. The proofs
are postponed to Section 7.
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Figure 1: Estimation of the zero-truncated distribution p+. The green curve
is the projection of the empirical frequencies onto the set of convex distribu-
tions, the red and the light blue curves are the estimated distribution under
a nonparametric Poisson mixture, and the dark blue curve is the estimation
obtained under the Poisson-compound Gamma model. For the last three
methods the cutoff value t is given.
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2 Model

2.1 The statistical problem

We consider a population composed of N species and we assume that the
data are coming from N independent and identically distributed random
variables (A1, . . . , AN ), where Ai is the abundance (that is, the number of
individuals) of species i in a sample. The distribution of Ai is denoted by
p, so that pl = P (Ai = l) for all integers l > 0. In fact, only species that are
present in the sample can be counted, which means that species for which
Ai = 0 are not observed. Thus, we only observe the zero-truncated counts
X1, . . . , XD, where D denotes the total number of observed species in the
sample. The setting can be formalized as follows:

Lemma 1 We observe X1, . . . , XD, where D is a binomial variable with
parameters N and 1 − p0, and conditionally on D, X1, . . . , XD are i.i.d.
random variables with distribution p+ defined by

p+
l =

pl
1− p0

, for all integers l > 1. (5)

Based on the observations X1, . . . , XD we aim at estimating N , the total
number of species.

2.2 The assumption of a convex abundance distribution

Without any modelling assumption on the distribution p, N is not identifi-
able. To make N identifiable, we propose a nonparametric modelling of p,
assuming that p is a convex abundance distribution, as defined in Definition
1 below.

To motivate our Definition 1, let us first recall that in various data sets
we have analysed in ecology, the assumption that p is a convex discrete
distribution is reasonable, see Section 6 for examples. Thus, we assume that
p is a convex discrete distribution on N, which means that

pi − pi−1 6 pi+1 − pi for all i > 1.

Note that p being assumed convex on N, p is also non-increasing on N. It
follows from Theorem 7 in Durot et al. (2013) that p can be decomposed
into a mixture of triangular distributions, and that this mixture is unique.
More precisely,

pi =
∑
j>1

πjTj(i), (6)

for all integers i > 0, where

πj =
j(j + 1)

2
(pj+1 + pj−1 − 2pj) for all integers j > 1 (7)
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and where Tj is the triangular distribution defined by

Tj(i) =


2(j − i)
j(j + 1)

for all i ∈ {0, . . . , j − 1}

0 for all integer i > j.

Our interpretation of the mixture (6) is that the set of species is separated
into groups, each species having probability πj to belong to the group j of
species, and the abundance distribution of all species in the group j is the
triangular distribution Tj . As the first component T1 is a Dirac mass in 0,
it refers to species for which the only abundance that could be observed is
0. This group simply defines absent species, and therefore π1 has to be zero
in an abundance distribution. This leads us to the following definition:

Definition 1 The distribution p on N is a convex abundance distribution
if there exist positive weights πj, j > 2 such that pi =

∑
j>2 πjTj(i) for all

integers i > 0.

In the sequel, we assume that the abundance distribution p is a convex
abundance distribution. It then follows from Equation (7) that

p2 + p0 − 2p1 = 0, (8)

or equivalently,
1

1− p0
= 2p+

1 − p
+
2 + 1, (9)

where p+ is the zero-truncated distribution defined by (5). The distribution
p+ is identifiable since we observe X1, . . . , XD which are i.i.d. with distri-
bution p+ conditionally on D. Therefore, it follows from (9) that 1 − p0

is identifiable and because D has a binomial distribution with parameters
N and 1 − p0, we conclude that N also is identifiable. This proves that
our assumption is sufficient to avoid identifiability problems. The precise
construction of the estimates is the aim of the following section.

3 Estimators for θ and N

In order to estimate N , we first build an estimator for

θ =
1

1− p0
. (10)

Because of (9), we consider estimators of the form

θ̂ = 2p̂+
1 − p̂

+
2 + 1, (11)
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where p̂+ is a given estimator for p+. Then, inspired by (3), we estimate N
by

N̂ = Dθ̂. (12)

In this section, we study two different estimators for p+ which result in two
different estimators for θ and N . We provide the asymptotic distribution of
both considered estimators for N .

3.1 Estimators based on the empirical estimator of p+

The more commonly used estimator for a discrete distribution is the em-
pirical estimator. In our case, the empirical estimator f of p+ is defined
by

fl =
1
D

D∑
i=1

I(Xi = l) =
Sl
D

(13)

for all integers l > 1, where we recall that Sl denotes the number of species
having abundance l, see (1). Using this estimator in (11) and (12) leads to
the estimators θ̂f = 2f1 − f2 + 1 and

N̂f = Dθ̂f = 2S1 − S2 +D. (14)

The asymptotic distribution of this estimator is easy to compute: one can
derive from the central limit theorem that

N̂f −N√
6S1

converges in law to N (0, 1), (15)

see Section 7 for details.

3.2 Estimators based on the constrained least-squares esti-
mator of p+

The estimator (14) exploits the convexity assumption only through the iden-
tity (9). On the other hand, it immediatly follows from its definition that
p+ is convex under our assumption. We might obtain better estimates by
incorporating this information into our estimation procedure, so instead of
the empirical estimator, we consider here a convex estimator of p+. Pre-
cisely, we consider the constrained least-squares estimator p̂+ of p+, defined
as the unique solution to the following optimisation problem:

Q(p̂+) = inf
q∈C

Q(q), where Q(q) =
∑
l>1

(ql − fl)2 (16)

and where C denotes the set of all convex sequences q on N having
∑

j>1 q
2
j <

∞.
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It follows from the results in Durot et al. (2013) that p̂+ exists, has a
finite support, and is a probability mass function. Thus, p̂+ is the convex
probability function that is the closest to f in the `2-sense. Moreover, an
algorithm for computing p̂+ in a finite number of steps is described in Durot
et al. (2013). It is based on the support reduction algorithm proposed by
Groeneboom et al. (2008).

In the sequel, we denote by θ̂ and N̂ the estimators defined by (11)
and (12), where p̂+ denotes the constrained least-squares estimator defined
by (16).

3.3 Asymptotic distributions of θ̂ and N̂

To compute the limit distributions of θ̂ and N̂ , we need to introduce the
following definition.

Definition 2 1. An integer i > 2 is called a knot of p+ if p+
i − p

+
i−1 <

p+
i+1 − p

+
i .

2. An integer i > 2 is called a double-knot of p+ if both i and i + 1 are
knots of p+.

Let us notice that p+ necessarily has at least one finite knot since it is a
convex probability mass function. However, double-knots of p+ may not
exist.

Let us introduce some more notation.

• Let τ be the maximum of the support of p+ if p+ has a finite support,
and τ =∞ otherwise.

• Let κ be the smallest double-knot of p+ if p+ has at least one double-
knot, and let κ =∞ otherwise.

• For a given integer k > 2 and a given set I ⊂ {1, . . . , k} that contains
1 and k, let CI be the set of sequences q ∈ Rk that are convex in all
i 6∈ I, with no constraint at points i ∈ I, and let ΦI be the function
defined for all vectors t = (t1, t2, . . . , tk) ∈ Rk by

ΦI(t) = arg min
q∈CI

k∑
l=1

(ql − tl)2 .

To be more formal, denoting by 1 = i1 < i2 < . . . < iI = k the points in
I, CI is defined by

CI =
{
q ∈ Rk such that q is convex on {ij−1, . . . , ij} for all j = 2, . . . , I

}
.
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Note that CI is a closed convex cone in Rk, so ΦI(t) is uniquely defined for
all t ∈ Rk.

In what follows, we assume that either p+ has a finite support, or p+ has
at least one double knot. This amounts to assume that min{τ, κ} <∞. The
following theorem proves that both limit distributions of θ̂ and N̂ depend
on the distribution of ΦI(W ) for a given set I and a given Gaussian vector
W .

Theorem 1 Let θ̂ and N̂ be defined by (11) and (12), with p̂+ defined
by (16). Assume that p+ is convex with

min{τ, κ} <∞ (17)

and consider a finite integer k > min{τ + 1, κ}. Denoting by W a centered
Gaussian vector in Rk with covariance matrix Γ defined as Γll = p+

l (1− p+
l )

and Γll′ = −p+
l p

+
l′ for all 1 6 l, l′ 6 k and l < l′, and by I = {1, k} ∪ J

where J is the set of knots of p+ that are smaller than k, we have:

1.
√
D
(
θ̂ − θ

)
converges in law to 2ΦI(W )1 − ΦI(W )2 as N goes to

infinity,

2. (N̂ −N)/
√
D converges in law to 2ΦI(W )1 −ΦI(W )2 + T as N goes

to infinity, where T is a N(0, θ(θ−1)) variable independent of ΦI(W ).

Let us give a few comments:

• The fact that k can be chosen in an arbitrary way provided that k >
min{τ + 1, κ} could be of practical interest. Indeed, if one wants to
estimate the asymptotic distribution of either θ̂ or N̂ , then one has
to choose a convenient value for k and under our assumptions, any
large enough k suits (the precise value of min{τ + 1, κ} need not to
be known, and only an upper bound is needed). Let us notice that
the choice k = τ̂ f + 1, where τ̂ f is the maximum of the support of
the empirical estimator, suits in all cases where the support of p+ is
finite. In order to save computational time, one can choose a smaller
k provided that he is confident that the choosen k has k > κ.

• We have assumed for simplicity that κ is the smallest double-knot of
p+ (if p+ has some) but κ could in fact denotes any double-knot of p+

(if p+ has some).

• If p+ is a triangular distribution, then τ is finite, k > τ + 1, and we
have p+

l = 0 for all l > τ+1 so that the l-th component of W is almost
surely equal to 0 for all l = τ + 1, . . . , k.
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The limit distribution of the convex least squares estimator of a discrete
distribution has been established by Balabdaoui et al. (2014) in the case
where the true distribution has a finite support. Their results could be used
to prove our Theorem 1 in that case, but this would not be straightforward
since in our case, the empirical estimator of p+ defined by Equation (13)
is based on a random number D of observations. Moreover, this would not
cover the case of an infinite support. Therefore, we provide a complete and
original proof of Theorem 1 in Section 7.3.

It is worth mentioning that whereas the limit distributions of θ̂ and N̂
take a quite complicated form in the general case, those limit distributions
are Gaussian in the particular case where min{τ + 1, κ} = 2, that is, when
either p+ is the dirac measure at point 1, or p+ has a double knot at point
2. To be more precise, note that considering k = 2 yields ΦI(W ) = W , so
that 2ΦI(W )1 − ΦI(W )2 = 2W1 −W2. Thus, 2ΦI(W )1 − ΦI(W )2 as well
as 2ΦI(W )1 −ΦI(W )2 + T are Gaussian variables. Thanks to Equality (9)
the variance of these variables can be computed according to the following
corollary.

Corollary 1 In the particular case where min{τ + 1, κ} = 2 we have:

1.
√
D
(
θ̂ − θ

)
converges in law to N (0, 6p+

1 − θ(θ − 1)) as N goes to
infinity,

2. (N̂ −N)/
√
D converges in law to N (0, 6p+

1 ) as N goes to infinity.

If we knew in advance that min{τ+1, κ} = 2, then the limit distributions of
θ̂ and N̂ would be easy to estimate, using the estimator p̂+ for p+ together
with the estimator θ̂ for θ. Unfortunately, min{τ + 1, κ} is not known in
advance so one has to estimate the limit distributions in the general case
in order to build confidence intervals. This is developed in the following
section.

4 Confidence intervals

In this section, we investigate several constructions of confidence intervals
for N .

4.1 Estimation based on the empirical frequencies

If N is large and if the quantities Np1 and N(1 − p1) are not too small,
then it follows from (15) that a confidence interval for N can be calculated
assuming that the distribution of (N̂f −N)/

√
6S1 can be approximated by

that of a standard Gaussian variable. This leads to the following confidence
interval

CIf =
[
N̂f − ν1−α/2

√
6S1 , N̂

f + ν1−α/2
√

6S1

]
, (18)
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where α ∈ (0, 1) is fixed and ν1−α/2 is the (1−α/2)-quantile of the standard
Gaussian law. According to (15), the asymptotic level of the interval is 1−α.

4.2 The plug-in procedure on N̂

The limit distribution of N̂ given in Theorem 1 depends on p+ through k, I,
the covariance matrix Γ of the Gaussian vector W , and the variance θ(θ−1)
of T . We estimate θ(θ − 1) by θ̂(θ̂ − 1) where θ̂ is defined in (11) with p̂+

the constrained least-squares estimator of p+, and we estimate all unknown
quantities depending on p+ by similar quantities with p+ replaced by p̂+.
For simplicity, we consider k = min{τ + 1, κ} and we estimate k and I as
follows. Let us denote by ŝ the first double knot of p̂ if it exists. In the case
where such a double knot does not exist we use the convention that ŝ =∞.
Let τ̂ be the maximum of the support of p̂+. From Theorem 1 in Durot et al.
(2013) we know that τ̂ is finite. Therefore, k̂ = min {ŝ, τ̂ + 1} is finite and I
is estimated by Î, the set consisting of 1 and the knots of p̂+ before k̂. Then,
the estimated quantiles of the random variable 2ΦI(W )1−ΦI(W )2 +T , say
λ̂1−α/2 and λ̂α/2, are calculated by simulation. The calculation of ΦI(W )
is done using the algorithm proposed by Dykstra (1983) for restricted least
squares regression; see Balabdaoui et al. (2014) for more details. Then we
consider the confidence interval for N given by

CI =
[
N̂ − λ̂1−α/2

√
D, N̂ − λ̂α/2

√
D
]
. (19)

The obvious advantage of the interval (18) as compared to (19) lies in its
computational simplicity, due to the fact that it is based on the empirical
frequencies rather than on the constrained estimator p̂+. However, it is not
clear in the general case which of those two intervals has better length or
coverage probability. Such a comparison can easily be performed only in the
particular case where min{τ + 1, κ} = 2. Indeed, since D is distributed as
a Binomial variable with parameters N and 1 − p0 = 1/θ, it follows from
Corollary 1 that (N̂ −N)/

√
N converges in law to N (0, 6p1) as N goes to

infinity. This can be compared to the similar convergence result (22) for
N̂f : in the case where k = 2, N̂ and N̂f have the same limit distribution, so
the difference between the two intervals mainly relies in the way we estimate
the unknown parameters in the limit distribution, and on the chosen center
N̂f or N̂ for the interval . The comparison between these two intervals will
be studied in the next section.

An alternative to the plug-in method is to use a bootstrap procedure for
estimating the quantiles of the limit distribution of N̂ .

4.3 The bootstrap procedure on N̂

The bootstrap procedure consists in creating a bootstrap sample as follows:
we first draw D∗ as a binomial variable with parameters N̂ and 1/θ̂. Then
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we draw (X∗1 , . . . , X
∗
D∗), a D∗-sample with distribution p̂+.

We calculate the statistics f∗l =
∑D∗

i=1 I(X∗i = l)/D∗ and the bootstrap
estimator of p+ by minimizing

∑
l>1(ql − f∗l )2 over q ∈ C. Finally we get

θ̂∗, the bootstrap estimator of θ. For a fixed β ∈ (0, 1), the β-quantile
ζβ of (N̂ −N)/

√
D is estimated by the β-quantile ζ∗β of the distribution of

(D∗θ̂∗−N̂)/
√
D∗. Finally the bootstrap confidence interval for N is written

CI∗ =
[
N̂ −

√
Dζ∗1−α/2 , N̂ −

√
Dζ∗α/2

]
, (20)

5 Simulation study

We designed a simulation study to assess the performances of the proposed
estimators and of the associate confidence intervals for N . We considered
the convex estimator N̂ and the empirical one N̂f , and the three confidence
intervals CIf , CI and CI∗ defined respectively at Equations (18), (19), (20).
In the second part of this study we compare our procedure to other methods
already proposed in the literature.

5.1 Simulation design

Convex abundance distribution We considered a Poisson mixture set-
ting, which means that the distribution p in our simulations takes the form
(4), where we considered a Gamma mixing distribution ω. For this choice,
we were motivated by the fact that all methods to which we will compare are
either based on that assumption, or are proved to give consistent estimators
of N under this assumption, or consider a statistical modeling that covers
this distribution. Precisely, p is a Gamma-Poisson distribution that takes
the form

pj =
Γ(j + ν)
Γ(ν)j!

µν(1− µ)j (21)

for some unknown ν > 0 and µ ∈ (0, 1). Note that for such distributions,
p0 = µν and p+

j = pj/(1− µν) for j > 1.
We focused on the case where p is a convex abundance distribution which

is satisfied when

ν > 1 and 1− µ =
2ν −

√
2ν(ν − 1)

ν(ν + 1)
,

(see Section 7.4 for a proof of this result).

Simulation parameters and evaluation criteria To cover a wide range
of possible applications to ecological, microbial and other similar data, we
choose N in the set{

50, 100, 200, 400, 800, 1500, 3000, 5000, 10000
}
.
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We considered several values of ν, ν ∈ {1.01, 1.05, 1.1, 1.3, 1.5, 1.75} corre-
sponding to the following values of p0: {0.073, 0.16, 0.218, 0.33, 0.382, 0.42}.
All confidence intervals are computed at level α = 0.05.

All simulation results are based on 1000 samples. The quantiles of the
bootstrap distribution – denoted (ζ∗α/2, ζ

∗
1−α/2) – and those of the asymptotic

distribution where the unknown parameters have been replaced by their
estimators – denoted (λ̂α/2, λ̂1−α/2) – are also calculated on the basis of 1000
simulations. The simulation were carried out with R (www.r-project.org).
The R functions are available at the following web address http://w3.jouy.
inra.fr/unites/miaj/public/perso/SylvieHuet_en.html.

The accuracy of an estimate N̂ is measured in terms of bias, standard-
error and prediction error. The bias of an estimator N̂ , defined as N−E(N̂),
is estimated by bias = N − N̂•, where N̂• =

∑
s N̂s/1000 with N̂s being

the estimate of N at simulation s. The standard-error of N̂ is estimated
by se =

√∑
s(N̂s − N̂•)2/1000, and the (squared) error of prediction by

EP2 = bias2 + se2.
The quality of the confidence intervals is measured in terms of non-

coverage probability at each of their endpoints. Namely, for a given interval
[Binf ,Bsup], we estimated the left and the right non-coverage probabilities
– defined respectively by P (N < Binf) and P (N > Bsup) – by

∑
s I(N <

Bs,inf)/1000 and
∑

s I(N > Bs,sup)/1000, respectively, where Bs,inf and
Bs,sup stand for the bounds obtained at simulation s.

5.2 Comparison of N̂ and N̂ f

The relative bias, standard-error and mean squared error of prediction for
both estimators N̂ and N̂f are shown on Figure 2. For p0 = 0.218 (respec-
tively N = 200), we display the relative quantities bias/N , se/N and EP/N
versus N (respectively versus p0). The graphs for other values of p0 and N ,
being similar to those two, are omitted.

While N̂f is nearly unbiased, N̂ tends to over estimate N for small values
of N and p0. However, N̂ has a smaller standard-error than N̂f , and finally
a smaller prediction error. Both estimators become more accurate when N
increases, and when p0 decreases. Indeed, when p0 is small, almost all the
species have been observed, leading to a smaller value of the standard-error.

5.3 Comparison of confidence intervals

The estimated non-coverage probabilities of the confidence intervals are
given at Figures 3 and 4. We remind that they are to be compared with
2.5%. Note however that the standard-error of the estimated non-coverage
probabilities based on 1000 simulations equals√

0.025(1− 0.025)
1000

≈ 0.5%,
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Figure 2: Relative bias, standard-errors and prediction error versus N for
p0 = 0.218 on the left side, versus p0 for N = 200 on the right side.

so the estimated non-coverage probabilities are expected to lie typically
within 1.5% and 3.5%.

• Lower bound of the confidence intervals. For the smallest values of
p0, the estimated values of P (N < Binf) are smaller than 2.5%, which
means that the lower bounds of the confidence intervals are too conser-
vative. This tendancy vanishes when N increases. The three methods
are nearly equivalent.

• Upper bound of the confidence intervals. For the largest values of p0,
the estimated values of P (N > Bsup) are greater than 2.5%, and tend
to decrease with N up to 2.5%. This means that when N is small, the
upper bounds of the confidence intervals are too small. The empirical
procedure seems to be the most appropriate in that case. For the
smallest values of p0, the interval CIf based on the empirical procedure
gives very high values of the non-coverage probability when N is small.
When N increases, the estimated P (N > Bsup) fluctuate around 4%.
To verify if these values tend to 2.5% when N increases, we completed
the simulation study by considering N = 105, respectively N = 5 ×
105, with p0 = 0.218. The estimated values of of the non-coverage
probabilities P (N > Bsup) are then equal to 2.6%, respectively 2.4%,
for the interval CI based on the plug-in procedure.
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Figure 3: Comparison of confidence intervals. Estimated values of P (N <
Binf) versus N for each value of p0. The legend is the following : ♦ is for
CIf (see Equation (18)), • is for CI (see at Equation (19)), and ∗ is for the
bootstrap confidence interval CI∗ (see Equation (20)).
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Figure 4: Comparison of confidence intervals. Estimated values of P (N >
Bsup) versus N for each value of p0. The legend is the following : ♦ is for
CIf (see Equation (18)), • is for CI (see at Equation (19)), and ∗ is for the
bootstrap confidence interval CI∗ (see Equation (20)).
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Which method to choose among the empirical procedure, the bootstrap
or the plug-in procedure? The interval based on the empirical procedure is
very easy to calculate and gives reasonable results provided that N is high
and p0 not too small. In some cases, the plug-in procedure gives better
results, especially when p0 is small. The bootstrap procedure does not seem
to give better results than the plug-in in this simulation study. Therefore we
recommend to use either the empirical procedure or the plug-in procedure.
Obviously the computation time for the plug-in method is higher than for the
empirical one, and depends on both N and ν. In our simulation study, the
worse case is for N = 800 and ν = 1.01 (which corresponds to p0 = 0.0731),
where the mean computation time over 1000 simulations is 70 s using an
algorithm written in R on a 64 bits processor with 48 Go of RAM.

5.4 Comparison with other methods

Let us now compare our methods to those proposed in the litterature. In
the sequel, we will denote by Emp the method that consists in estimating N
using the estimator Nf and the confidence interval CIf defined respectively
in (14) and (18), and we will denote by CvxPi the method that consists in
estimating N using the estimator N̂ based on the convex least-squares esti-
mator, and the confidence interval CI defined in (19). Because we consider
a non-parametric point of view, we focus our comparison on methods that
do not need to estimate a parametric distribution of the abundance dis-
tribution. This includes the methods proposed by Chao (1984), Chao and
Lee (1992), Chao and Bunge (2002), and Lanunteang and Böhning (2011)
that will be denoted chao84, ChaoLee, ChaoBunge, LB. We will also consider
the following methods based on the maximum likelihood estimation of N
and p+ under the assumption of a Poisson mixture model, or a Poisson-
compound Gamma model: unpmle proposed by Norris and Pollock (1996,
1998), pnpmle proposed by Wang and Lindsay (2005, 2008) and pcg pro-
posed by Wang (2010). The simulation were carried out using the library
SPECIES in R, Wang (2011).

As for the simulation design, we restricted our simulation study to two
values of N , namely N = 100 and N = 5000, and two values of α, namely
α = 1.01 and α = 1.75. The methods available in the R function pcg,
pnpmle, and unpmle failed to converge on several simulations and are there-
fore omitted. We will come back to the comparison with these methods in
Section 6.

The results are given in Table 1. The methods Emp and CvxPi outperform
the other methods in almost all considered situations in terms of the error
of prediction. Moreover, the non-coverage probabilities are not too far from
2.5%, especially for N = 5000. They are typically much closer to 2.5% than
the other methods. For the other methods, the behavior of the bias and
standard-error depend strongly on the considered case. When N is large, for
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Figure 5: Representation pf distributions p and q, showing how q deviates
from convexity.

all these methods except ChaoBunge with p0 = 0.42, the confidence intervals
are shifted to the left, the upper bound being smaller than N . This behavior
is less marked for the LB method.

5.5 Robustness to convexity

As already noticed in the introduction, the assumption of convexity on p+

seems reasonable when looking at the observed zero-truncated abundance
distributions in several examples. Nevertheless, convexity of p+ does not
imply the convexity of p. To evaluate the robustness of our procedure to
convexity of p, we carried out a simulation study considering distributions
q defined as follows:

q0 = (p0 + p1)/2, and qj = pj
1− q0
1− p0

for j > 1

where the probabilities pj , for j > 0 are defined at Equation (21). These
distribution are represented on Figure 5.

The results are given at Table 2. As expected, our procedures lead to
negatively biased estimators, particularly in the case where q0 = 0.354, but
the standard-errors are not affected by the lack of convexity. The confidence
intervals are shifted to the right, the lower bound of the confidence interval
being always larger than N in the case N = 5000 and q0 = 0.354. The
behavior of the other methods depends strongly on the values of (N, q0).
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Table 1: Comparison of several methods for estimating N : bias, standard-
error, prediction error and non-coverage probabilities are reported, for N =
100 and N = 5000, considering p0 = 0.073 and p0 = 0.42.

N = 100, p0 = 0.073
Emp CvxPi ChaoBunge chao84 ChaoLee LB

bias/N -0.002 -0.02 0.041 0.02 0.042 -0.31
se/N 0.061 0.041 0.033 0.057 0.031 2.24
EP/N 0.061 0.046 0.052 0.061 0.052 2.26
P (Binf > N) 0.8 0.6 0 1 0 0
P (Bsup < N) 6.7 2.7 38 6.9 40 22

N = 100, p0 = 0.42
Emp CvxPi ChaoBunge chao84 ChaoLee LB

bias/N -0.0007 -0.011 -0.123 0.124 0.06 -0.22
se/N 0.133 0.121 1.69 0.158 0.194 1.20
EP/N 0.133 0.122 1.69 0.201 0.203 1.22
P (Binf > N) 1.6 1.6 0 0.4 1 0
P (Bsup < N) 3.9 4.4 6.5 13.6 8 20

N = 5000, p0 = 0.073
Emp CvxPi ChaoBunge chao84 ChaoLee LB

bias/N -0.0001 -0.0025 0.045 0.036 0.045 0.016
se/N 0.0091 0.0066 0.0044 0.0060 0.0045 0.014
EP/N 0.0091 0.007 0.045 0.036 0.045 0.022
P (Binf > N) 2.5 2.2 0 0 0 0
P (Bsup < N) 2.8 2.8 100 100 100 33

N = 5000, p0 = 0.42
Emp CvxPi ChaoBunge chao84 ChaoLee LB

bias/N 0.0002 0.0002 0.008 0.153 0.085 0.053
se/N 0.018 0.018 0.04 0.019 0.025 0.054
EP/N 0.018 0.018 0.041 0.154 0.089 0.076
P (Binf > N) 2.3 2.3 0.9 0 0 0.2
P (Bsup < N) 2.6 2.6 4.3 100 89 23
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Table 2: Comparison of several methods for estimating N when the abun-
dance distribuition is non convex: bias, standard-error, prediction error and
non-coverage probabilities are reported, for N = 100 and N = 5000, consid-
ering q0 = 0.0707 and q0 = 0.354.

N = 100, q0 = 0.0707
Emp CvxPi ChaoBunge chao84 ChaoLee LB

bias/N -0.004 -0.023 0.039 0.014 0.086 -0.52
se/N 0.063 0.048 0.034 0.067 0.026 3.12
EP/N 0.063 0.049 0.051 0.069 0.09 3.16
P (Binf > N) 0.4 0.2 0 2 45 0
P (Bsup < N) 7 3.7 38 6.7 38 23

N = 100, q0 = 0.354
Emp CvxPi ChaoBunge chao84 ChaoLee LB

bias/N -0.11 -0.13 -0.074 0.025 0.188 -0.288
se/N 0.13 0.12 4.44 0.16 0.102 0.77
EP/N 0.18 0.17 4.44 0.16 0.21 0.82
P (Binf > N) 9.2 9.3 0.7 1.4 96 0
P (Bsup < N) 0.4 0.6 3.3 3.4 2 12

N = 5000, q0 = 0.0707
Emp CvxPi ChaoBunge chao84 ChaoLee LB

bias/N -0.003 -0.005 0.042 0.033 0.049 0.013
se/N 0.0109 0.007 0.004 0.006 0.004 0.015
EP/N 0.010 0.009 0.043 0.034 0.049 0.0189
P (Binf > N) 5.4 5.0 0 0 0 0
P (Bsup < N) 1.7 1.23 100 100 100 26

N = 5000, q0 = 0.354
Emp CvxPi ChaoBunge chao84 ChaoLee LB

bias/N -0.11 -0.11 -0.11 0.055 0.027 0.055
se/N 0.019 0.019 0.04 0.019 0.023 0.055
EP/N 0.12 0.12 0.11 0.058 0.035 0.078
P (Binf > N) 100 100 79 0 54 10
P (Bsup < N) 0 0 0 74 0.1 0

23



6 Illustration on public datasets

In this section we come back to the examples presented in the introduction.
For each data set we estimated the zero-truncated abundance distribution
p+, the number of species N , and a confidence interval for N using all
methods described in Subsection 5.4. The results are given in Table 3 and
Figure 1.

Let us first note that some of these methods require the choice of a cutoff
value, denoted t, since only the less abundant species are used in the estima-
tion procedures. The behavior of the algorithm as well as the estimations
of N may strongly depend on the choice of t. For the methods unpmle,
pnpmle and pcg, we chose this t according to the authors recommendations
combined to the algorithm convergence, and to the goodness-of-fit of the em-
pirical frequencies. For the ChaoBunge procedure we chose t = 10 according
to the authors recommendations. In cases where the estimation of N was
negative, we decreased t such that the resulting estimator was positive.

In the Microbial and Tomato datasets, where the empirical distribution
is convex, it appears that the unpmle estimators and the pcg estimator (for
the Tomato data) are almost equal to the empirical distribution, as it is
obviously the case for our estimator. However the estimated values of N
differ a lot from a method to one another : from 4439 for our estimator, to
7417 for the unpmle estimator, up to 13960 for the pcg one.

In the Malayan Butterfly datasets, the empirical distribution is nearly
convex for the less abundant species, and this is the case for all estimators.
The estimated values of N are less variable than for the two preceding
examples, our method giving the highest value.

In the Bird example, the empirical distribution is non convex, and in
particular, f1 < f2. Nevertheless, the estimator of p+ based on the pcg
method is convex. The estimators based on the two non-parametric Poisson
mixture methods are non convex but p̂+

1 and p̂+
2 are far above f1 and f2.

It is not easy to decide based on Figure 1 which estimate of p+ should be
preferred.

7 Proofs

7.1 Proof of Lemma 1

It follows from (2) that D is distributed as a binomial variable with param-
eters N and 1− p0. Now, let {T1, T2, . . . , TD} be the indices of the observed
species. This means that we observe AT1 , . . . , ATD

, and that Ai = 0 for all
i 6∈ {T1, T2, . . . , TD}. The set {T1, T2, . . . , TD} is random and takes values
in SN,D, the set of all subsets of {1, . . . , N} with cardinality D. For all
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Table 3: Estimation of N and 95% confidence intervals (between parenthe-
sis). The values of the parameter t are given in Figure 1 for the three last
methods. For the ChaoBunge method, t = 10 for the Butterfly and Bird
data sets, and t = 3 for the two others. The confidence interval could not be
caculated in three of the four examples, because of convergence difficulties.

Microbial Butterfly Bird Tomato
Emp 1211 (1117, 1305) 782 (730, 834) 82 (66, 98) 4439 (4257, 4621)
Cvx 1211 (1117, 1305) 782 (730, 834) 87 (71, 96) 4439 (4257, 4621)
ChaoBunge 2269∗ (1213, 4821) 757 (698, 826) 80 (72, 92) 7166∗ (5330, 9947)
ChaoLee 2511 (1878, 3434) 737 (693, 787) 80 (72, 91) 9554 (7778, 11858)
chao1984 1631 (1326, 2050) 714 (679, 770) 77 (73, 92) 5888 (5275, 6610)
LB 3987 ( 915, 7060) 754 (629, 878) 78 (65, 93) 11520 (7047, 15993)
pcg 3000 NA 744 NA 86 (75, 95) 13960 NA
pnpmle 2035 (1523, 2758) 724 (686, 843) 79 (73, 100) 7257 (5899, 9167)
upnpmle 2169 (1620, > 106) 722 (687, 913) 76 (74, 86) 7417 (6009, > 107)

d = 0, . . . , N and all integers ai > 1, i = 1, . . . d, we have

P (AT1 = a1, . . . , ATD
= aD|D = d)

=
1

P (D = d)
P (AT1 = a1, . . . , ATd

= ad, and Ai = 0 for all i 6∈ {T1, . . . , Td})

=
∑

{i1,...,id}∈SN,d

1
P (D = d)

P (Ai1 = a1, . . . , Aid = ad, and Ai = 0 for all i 6∈ {i1, . . . , id}) .

The Ai’s are i.i.d. with distribution p, and D is a binomial variable with
parameters N and 1 − p0, so denoting by CdN the cardinality of SN,d, we
obtain

P (AT1 = a1, . . . , ATD
= aD|D = d) =

∑
{i1,...,id}∈SN,d

pa1 × · · · × pad
× pN−d0

CdN (1− p0)dpN−d0

=
∑

{i1,...,id}∈SN,d

p+
a1
× · · · × p+

ad

CdN

= p+
a1
× · · · × p+

ad
.

This proves that conditionally on D, the observations AT1 , . . . , ATD
are i.i.d

with distribution p+. Setting Xi = ATi for all i = 1, . . . , D completes the
proof of the lemma.
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7.2 Proof of (15)

Thanks to (8), we have E(N̂f ) = N . Moreover,

N̂f = 2S1 − S2 + S1 + S2 + S3 + ...

= 3S1 +
∑
j>3

Sj ,

so that

V(N̂f ) = 9Np1(1− p1) +Np>3(1− p>3)− 6Np1p>3 = 6Np1,

where p>3 =
∑

j>3 pj = 1− 3p1. From the central limit theorem, it follows
that

N̂f −N√
N

converges in law to N (0, 6p1), (22)

as N → ∞. Since S1 is distributed as a binomial variable with parameters
N and p1, this yields (15).

7.3 Proof of Theorem 1

For the sake of simplicity the function ΦI will be denoted by Φ.
Consider the random vectors Y , Z and U defined as follows:

Y =
√
D
(
p̂+,k − p+,k

)
, Z =

√
D
(

Φ(fk)− p+,k
)
, U =

√
D
(
fk − p+,k

)
where p+,k =

(
p+
1 , . . . , p

+
k

)
, p̂+,k =

(
p̂+
1 , . . . , p̂

+
k

)
, and fk = (f1, . . . , fk), with

fl = Sl/D denoting the empirical estimator of p+
l for all l = 1, . . . , k. In

order to prove the theorem, we will prove the following assertions:

1. The random vector Z satisfies Z = Φ(U).

2. The function Φ is continuous.

3. The probability that (Z1, Z2) = (Y1, Y2) tends to one as N →∞.

4. The random vector (U, Vk+1) converges in distribution to (W,T0) as
N → ∞, where Vk+1 = (Dθ − N)/

√
N(θ − 1) and T0 s a standard

Gaussian variable independent of W .

By continuity of Φ, we derive from 4 that (Φ(U), Vk+1) converges in law
to (Φ(W ), T0). Thanks to 1, this implies that (Z, Vk+1) converges in law
to (Φ(W ), T0). We then conclude from 3 that (Y1, Y2, Vk+1) converges in
law to (Φ(W )1,Φ(W )2, T0). In particular, the variable

√
D(θ̂ − θ) = 2Y1 −
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Y2 converges in distribution to 2Φ(W )1 − Φ(W )2, which proves the first
assertion. Moreover, we have

N̂ −N√
D

= (1 + oP (1))
Dθ̂ −N√

D

= (1 + oP (1))
Dθ −N√

D
+ (1 + oP (1))

√
D(θ̂ − θ)

= (1 + oP (1))
Dθ −N√
N(1− p0)

+ (1 + oP (1))
√
D(θ̂ − θ),

since D has a binomial distribution with parameters N and 1 − p0 (see
Lemma 1). We conclude that (N̂ − N)/

√
D converges in distribution to

2Φ(W )1−Φ(W )2 +T , where T is a centered Gaussian variable with variance
(θ−1)/(1−p0) = θ(θ−1), independent of 2Φ(W )1−Φ(W )2. This concludes
the proof of Theorem 1. �

Proof of 1 Both q−
√
Dp+,k and q +

√
Dp+,k belong to CI for all q ∈ CI

since p+,k is linear on each interval [ij−1, ij ] for j = 1, . . . , I. Therefore we
have

Φ(U) = arg min
q∈CI

k∑
l=1

(
ql +
√
Dp+

l −
√
Dfl

)2

= arg min
q∈CI

k∑
l=1

(
ql −
√
Dfl

)2
−
√
Dp+,k.

Therefore, Φ(U) =
√
DΦ(fk)−

√
Dp+,k = Z.

Proof of (2) By definition, Φ is the projection operator from Rk to the
closed convex subset CI of Rk, so

k∑
l=1

(Φ(t)l − Φ(u)l)2 6
k∑
l=1

(tl − ul)2

for all t, u ∈ Rk (see (3) in Durot et al. (2013) for similar arguments).
Therefore, the left hand side tends to zero as soon as the right hand side
tends to zero, which proves that Φ is continuous.

Proof of (3) Using notation of Section 2.1, we can write

fl =
1
D

N∑
i=1

I(Ai = l),
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where the Ai’s are i.i.d. with distribution p, where D =
∑N

i=1 I(Ai > 0)
is a binomial variable with parameters N and 1 − p0. The variable D/N
converges in probability to 1− p0 as N →∞, so we have

fl = (1 + oP (1))
1

(1− p0)N

N∑
i=1

I(Ai = l).

From the law of large numbers, we conclude that

fl converges in probability to
pl

1− p0
= p+

l (23)

for all l > 1, as N →∞.
Now, let us define q̂ as follows: denoting by k0 the min{τ + 1, κ} so

that k > k0, let q̂l = Φ(fk)l for all l ∈ {1, . . . , k0} and let q̂l = p̂+
l for all

l > k0 + 1. From the definition of Φ together with the convexity of p̂+, it
follows that q̂ is piecewise convex and the only points of non-convexity, if
any, are k0, k0 + 1 and the points in I that are smaller than k0. This means
that the set Ibq of non-convexity points of q̂ can only contains k0, k0 + 1 and
knots of p+ that are smaller than k0. We will show that q̂ is convex with
probability that tends to one, which amounts to prove that for all l ∈ Ibq,
the probability P (∆(q̂l) > 0) tends to one as N goes to infinity, where we
set

∆(ql) = ql+1 − 2ql + ql−1

for all sequences q = (q1, q2, . . . ). Because p+,k belongs to CI , it follows from
the definition of Φ(fk) that

k∑
l=1

(
Φ(fk)l − fl

)2
6

k∑
l=1

(
p+
l − fl

)2
.

Combining this with (23) proves that Φ(fk)l−fl converges in probability to
0 for all l = 1, . . . , k, which means that Φ(fk)l converges in probability to
p+
l . A similar argument proves that p̂+

k0+1 and p̂+
k0+2 converge in probability

to p+
k0+1 and p+

k0+2 respectively, so we conclude that for all l > 1, the variable
∆(q̂l) converges to ∆(p+

l ) in probability as N → ∞. Let us notice that in
the case where k0 = τ + 1, the assumption that k0 is finite ensures that p0

has a finite support, and ∆p+
τ+1 = p+

τ > 0, whereas in the case where k0 = κ,
k0 is clearly a knot of p+. Therefore, ∆(p+

l ) > 0, for all l ∈ Ibq\{k0 + 1}.
Using that ∆(q̂l)−∆(p+

l ) tends to 0 in probability, we conclude that

P (∆(q̂l) < 0) 6 P
(
∆(q̂l)−∆(p+

l ) < −∆(p+
l )/2

)
where the right-hand side tends to 0 for all l ∈ Ibq\{k0 + 1}. This shows
that P (∆(q̂l) > 0) tends to 1 for all l ∈ Ibq\{k0 + 1}. It remains to prove
that with probability tending to one, q̂ is convex at k0 + 1. To do this, we
consider two cases.
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• If k0 < τ+1, then k0 is a double knot of p+, so that ∆(p+
k0+1) > 0. Fol-

lowing the same argument as before, we conclude that P (∆(q̂k0+1) > 0)
tends to one.

• If k0 = τ + 1, then ∆(q̂k0+1) = p̂+
k0+2 − 2p̂+

k0+1 + q̂k0 converges in
probability to ∆(p+

k0+1) = 0 so the above arguments do not apply. In
that case, the support of p+ is finite and with probability that tends
to one, the maximum of the support of p̂+

n is either τ or τ + 1, see
Balabdaoui et al. (2014). This implies that ∆(q̂k0+1) = q̂k0 with
probability that tends to one. It can be proved that q̂k0 > 0 (see the
proof of Lemma 1 in Durot et al. (2013) for similar arguments), so
P (∆(q̂k0+1) > 0) tends to one.

Now that we have proved that q̂ is convex with probability that tends
to one, note that from the definition of p̂+, it follows that with probability
tending to one, ∑

l>1

(
p̂+
l − fl

)2
6
∑
l>1

(q̂l − fl)2 ,

or equivalently,

k0∑
l=1

(
p̂+
l − fl

)2
6

k0∑
l=1

(
Φ(fk)l − fl

)2
. (24)

Now, let us define r̂ as follows: denoting by I0 the set of all points in I
that are smaller than or equal to k0, let r̂l = ΦI0(fk0)l for all l ∈ {1, . . . , k0}
and let r̂l = Φ(fk)l for all l with l > k0 + 1 and l 6 k (note that r̂ = Φ(fk)
in the particular case where k = k0). Similar arguments as above prove that
with probability that tends to one, r̂ ∈ I so that

k∑
l=1

(
Φ(fk)l − fl

)2
6

k∑
l=1

(r̂l − fl)2

or equivalently,

k0∑
l=1

(
Φ(fk)l − fl

)2
6

k0∑
l=1

(
ΦI0(fk0)l − fl

)2
.

But, (Φ(fk)1, . . . ,Φ(fk)k0) ∈ CI0 so it follows from the definition of ΦI0 that

k0∑
l=1

(
ΦI0(fk0)l − fl

)2
6

k0∑
l=1

(
Φ(fk)l − fl

)2
.
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Therefore, we have an equality with probability that tends to one, and
combining this with (24) yields

k0∑
l=1

(
ΦI0(fk0)l − fl

)2
=

k0∑
l=1

(
Φ(fk)l − fl

)2

>
k0∑
l=1

(
p̂+
l − fl

)2
.

By convexity of p̂+ we have (p̂+
1 , . . . , p̂

+
k0

) ∈ CI0 , so we also have

k0∑
l=1

(
ΦI0(fk0)l − fl

)2
6

k0∑
l=1

(
p̂+
l − fl

)2
,

so again, we have in fact an equality with probability tending to one. This
implies that

k0∑
l=1

(
ΦI0(fk0)l − fl

)2
=

k0∑
l=1

(
Φ(fk)l − fl

)2
=

k0∑
l=1

(
p̂+
l − fl

)2
,

with probability tending to one. Since ΦI0(fk0) is uniquely defined, this
proves that ΦI0(fk0)l = Φ(fk)l = p̂+

l for all l ∈ {1, . . . , k0} with probability
tending to one. This completes the proof of 3 since k0 > 2. �

Proof of 4 Using the notation of Section 2.1, we can write

Ul =
1√
D

N∑
i=1

(
I(Ai = l)− p+

l I(Ai > 0)
)
.

But D/N converges in probability to 1− p0 = 1/θ, so

Ul = (1 + oP (1))
1√
N

N∑
i=1

√
θ
(
I(Ai = l)− p+

l I(Ai > 0)
)
.

Here, the random variables
√
θ(I(Ai = l) − p+

l I(Ai > 0)) are i.i.d. with
mean

√
θ(pl − p+

l (1− p0)) = 0

and variance

θ
(
pl(1− pl) + (p+

l )2p0(1− p0)− 2p+
l plp0

)
= θ

(
pl(1− pl)− (p+

l )2p0(1− p0)
)

= θ
(
pl − (p+

l )2(1− p0)
)

= p+
l (1− p+

l ).
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Besides,

Vk+1 =
Dθ −N√
N(θ − 1)

=
1√

N(θ − 1)

N∑
i=1

(θI(Ai > 0)− 1),

where the variables θI(Ai > 0) − 1 are i.i.d. with mean zero and variance
θp0 = θ − 1. Dealing simultaneously with all components of (U, Vk+1), we
derive from the vectorial central limit theorem that (U, Vk+1) converges in
distribution as N → ∞ to a Gaussian random vector with mean zero and
variance matrix Γ̃ with component (l, j) defined as follows: for all j = l,

Γ̃l,l =

{
p+
l (1− p+

l ), for l = 1, . . . k
1, for l = k + 1,

and for all j < l,

Γ̃l,j =

{
θcov(I(Ai = l)− p+

l I(Ai > 0), I(Ai = j)− p+
j I(Ai > 0)), for l 6 k√

θ/(1− θ)cov(I(Ai = j)− p+
j I(Ai > 0), θI(Ai > 0)− 1), for l = k + 1

=

θE
[(
I(Ai = l)− p+

l I(Ai > 0)
)(
I(Ai = j)− p+

j I(Ai > 0)
)]
, for l 6 k√

θ/(1− θ)E
[(
I(Ai = j)− p+

j I(Ai > 0)
)
θI(Ai > 0)

]
, for l = k + 1

=

θE
[
−p+

j I(Ai = l)− p+
l I(Ai = j) + p+

j p
+
l I(Ai > 0)

)]
, for l 6 k

θ
√
θ/(1− θ)E

[
I(Ai = j)− p+

j I(Ai > 0)
]
, for l = k + 1

=

{
−p+

j p
+
l , for l 6 k

0, for l = k + 1.

Therefore,

Γ̃ =
(

Γ 0
t0 1

)
,

where 0 denotes the null vector in Rk. It follows from the assumptions on
W and T0 that (W,T0) is a centered Gaussian vector in Rk+1 with variance
matrix Γ̃. From what precedes, (U, Vk+1) thus converges in distribution to
(W,T0). This concludes the proof of 4. �

7.4 Some characteristics on the Gamma-Poisson distribution

Lemma 2 Let p be the Gamma-Poisson distribution defined for all j > 0
by

pj =
Γ(j + ν)
Γ(ν)j!

µν(1− µ)j ,
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for some ν > 0 and µ ∈ (0, 1). Then p is convex if and only if either
0 < ν < 1, or ν > 1 and 1− µ 6 r, where

r =
2ν −

√
2ν(ν − 1)

ν(ν + 1)
.

Moreover, p is a convex abundance distribution if ν > 1 and 1− µ = r.

Proof A distribution p is a convex abundance distribution if πj > 0 for
all integers j > 2 and π1 = 0, where πj is given by Equation (7). Using that
Γ(a+ 1) = aΓ(a) for all a > 0, one obtains that πj > 0 if and only if

(j + ν)(j + ν − 1)(1− µ)2 − 2(j + ν − 1)(j + 1)(1− µ) + j(j + 1) > 0.

By standard calculation we obtain that if ν < 1, then πj > 0 for all j. Let
ν > 1 and

r(j) =
(j + 1)(j + ν − 1)−

√
(j + 1)(j + ν − 1)(ν − 1)

(j + ν − 1)(j + ν)

s(j) =
(j + 1)(j + ν − 1) +

√
(j + 1)(j + ν − 1)(ν − 1)

(j + ν − 1)(j + ν)

It is easy to verify that for all j > 1, 0 < r(j) < 1 for all ν > 1 and s(j) < 1
for all ν > 2.

Therefore πj > 0 if and only if

(ν, 1−µ) ∈ {(0, 1)× (0, 1)}∪{[1, 2]× (0, r(j)]}∪{(2,∞)× {(0, r(j)] ∪ [s(j), 1)}} .

It follows that p is convex for all µ ∈ (0, 1) and 0 < ν < 1. Let us now
study the case where ν > 1: we first show that r(j) > r(1) for all j > 2.
Calculating the derivative of the function r with respect to j, we obtain

(j + ν)2√
ν − 1

r′(j) =
√
ν − 1 +

√
1

j + ν − 1

(√
j + 1− (j + ν)(ν − 2)

2(j + ν − 1)
√
j + 1

)
.

Therefore r′(j) > 0 if and only if

2(j + 1)(j + ν − 1)− (ν − 2)(j + ν)︸ ︷︷ ︸
P1(ν)

> − 2(j + ν − 1)3/2
√

(j + 1)(ν − 1)︸ ︷︷ ︸
P2(ν)

Let νj = (j + 4 +
√

9j2 + 16j + 8)/2. If 1 6 ν 6 νj , then P1(ν) > 0
and r′(j) > 0. It remains to consider the case where ν > νj . By noting
that

√
9j2 + 16j + 8 < 3j + 2, ν > νj implies that ν > 2j + 3. It is

easy to verify that P2 is a convex and a non-decreasing function of ν for
ν > 2j + 3. Moreover P2(2j + 3) > 0 and P ′2(2j + 3) = 9(j + 1)

√
(3j + 2)/2

is larger that the tangent to −P1 in νj equals to
√

9j2 + 16j + 8. This
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proves that −P1(ν) < P2(ν) for all ν > νj . Finally, putting all together, for
all j > 2, r′(j) > 0 which proves that r(j) > r(1) and that p is convex for
1− µ ∈]0, r(1)] and ν > 1.

If we calculate the derivative of the function s with respect to j, we
obtain

(j + ν)2√
ν − 1

s′(j) =
√
ν − 1−

√
1

j + ν − 1

(√
j + 1− (j + ν)(ν − 2)

2(j + ν − 1)
√
j + 1

)
∀j > 1.

The distribution p will be convex for ν > 2 and 1− µ > s(1) if s(1) > s(j)
for all j > 2. The function s will decrease with respect to j if and only if
P1(ν) > P2(ν) > 0. If ν > νj , then P1(ν) 6 0 and s′(j) > 0. It remains to
consider the case where 2 6 ν 6 νj . On that interval, P1 increases when
ν ∈ [2, j/2 + 2], and decreases up to 0 on [j/2 + 2, νj [. The function P2 is
non-decreasing, P2(2) = P1(2), and P ′2(2) = (j+1)(j+4) > P ′1(2). Therefore
P1(ν) 6 P2(ν) for all 2 6 ν 6 νj . It follows that s′(j) > 0, which proves
that p is not convex if 1− µ > r(1).

Finally p is a convex abundance distribution if p is convex and if π1 = 0
which is satisfied if and only if ν > 1 and 1− µ = r(1).
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