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Abstract
A novel practical method to conduct a Global Sensitivity Analysis (GSA) for computer models is 
proposed in this article. It is based on Partial Least Squares polynomial regression metamodeling, 
used  in  conjunction  with a  D-optimal  computer  experiment  design.  This  practical  method  is 
particularly well adapted to the following four situations: (i) when the cost of a single computer 
simulation  run is  very high (long computing  time),  limiting  computation  to just  hundreds  of 
simulation runs, whereas the usual GSA methods (typically,  those based on Latin Hypercube 
Samplings or Sobol sequences) require thousands or tens of thousands of simulation runs; (ii)  
when the inputs are not independent because some of them are stochastically linked (correlated) 
or deterministically (functionally) linked; (iii) when some inputs are of a qualitative (categorical) 
nature;  and  (iv)  when  the  outputs  are  multivariate.  This  practical  method,  proposed  in  a 
deterministic  simulation  framework,  is  useful  for  moderately  nonlinear  computer  models.  It 
makes  it  possible  to  define and compute  novel sensitivity  indices,  referred to  here under the 
general term of SIVIP, not to be confused with Sobol indices defined for independent inputs. We 
have called our new method the SIVIP method. It is applied here to the aeronautics field,  in  
particular, for the estimation of detection performances of infrared sensors and, more precisely, 
for the computation of aircraft InfraRed Signatures (IRS). 

Keywords: sensitivity indices; PLS regression; D-optimal design; aeronautics; InfraRed 
Signature. 
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1 Introduction

Global Sensitivity Analysis (GSA) is de�ned as the study of how the output un-
certainty of a computer model can be allocated to di¤erent sources of uncertainty
in the model inputs [1]. GSA leads to a quanti�cation and a ranking of the input
in�uences. A major �nal objective is the simpli�cation of the model, enabling us
to obtain a parsimonious model in the end. GSA based on variance methods has
undergone considerable development since the 1990s, with many applications in
several scienti�c areas such as applied physics and, more recently, in the biolog-
ical sciences [2]. Several books provide a good overview of the techniques used
in GSA [3,4]. Sobol�Sensitivity Indices (SSI ) [5] are intended to represent the
sensitivities for general (nonlinear) models. Almost all of the published methods
are based on Monte Carlo simulations [6,7] and require thousands or even tens of
thousands of simulation runs for computing accurate estimations of the SSI. This
is typically the case of the methods based on space-�lling designs [8]. Moreover,
these classical methods only work correctly if the random inputs of the computer
model are continuous and independent because the SSI are rigorously de�ned only
in this situation [5]. Thus, the need for a large number of simulation runs and the
necessity for the inputs to be continuous and independent constitute three major
constraints for SSI estimation.
To address the �rst of these constraints, i.e., the large number of simulations

to be carried out with Monte Carlo methods, some authors [9,10] have proposed
a completely di¤erent approach for computing the SSI, mainly based on sparse
polynomial chaos expansions. This latter approach leads to a large decrease in
the number of simulation runs to be performed. This major advantage makes it
possible to obtain the SSI, even for huge computer models where a single simu-
lation run requires several minutes or hours and where it is obvious that none of
the classical methods based on Monte Carlo simulations can be used. However,
even the methods [9,10] cannot take account of the correlations among some (or
all) of the quantitative inputs, or of linear functional relationships between them
(typically, bounded linear combinations of inputs), and the presence of qualitative
(categorical) inputs. In [11-14], the authors focus on correlated inputs, but these
inputs must be quantitative and cannot be either strictly functionally linked or
qualitative.
In this article, we consider dependent inputs: either correlated quantitative

inputs or inputs linked by some linear combinations of the general form �min �
�1X1+ :::+�KXK � �max, where K � p, p the total input number, and �min, �1,
:::, �K , �max are real numbers. Qualitative inputs can also be present in the form
of their (0/1)-indicator variables. Hence, if we are in a situation where we have to
simultaneously deal with the following three speci�c constraints - (1) Constraint
A: a number of simulation runs that must be small or moderate (relative to the
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number in Monte Carlo simulations); (2) Constraint B: quantitative inputs that
are correlated or deterministically linked by relationships of the previously men-
tioned general form; and (3) Constraint C: presence of qualitative inputs - we then
propose a novel practical approach in this paper for conducting a GSA. Moreover,
this approach also enables us to deal with multivariate outputs. Our approach is
jointly based on a Partial Least Squares Regression (PLSR) for a polynomial meta-
modeling and on a D-Optimal Computer Experiment Design (DOCED) strategy.
Consequently, the new sensitivity indices we propose here, referred to under the
general term of SIVIP (not to be confused with the SSI that are only correctly
de�ned for independent inputs), are based on a metamodeling approach. Concern-
ing the DOCED, it should be stressed that we are in a deterministic simulation
framework, i.e., the inputs are controlled (as in standard factorial designs) and
take the values determined by the DOCED. Note that some types of SIVIP pro-
posed in this paper were brie�y presented and partially de�ned in [2,15-17], but
were not statistically and mathematically justi�ed.
Other computer experiment modeling strategies obviously already exist, typ-

ically, those based on Gaussian Process (GP) models, beginning with the work
of Sacks et al. [18] (for detailed discussions of such models, see [19,8]), but they
only perform for continuous inputs and univariate outputs. A relevant article [20],
however, does exist, which also proposes taking the qualitative inputs into account
with the construction of correlation functions. Lastly, the approach of [21,22] for
multivariate outputs should also be mentioned, but no optimal computer experi-
ment strategy is given.
Our approach is simpler than [20]. It can be seen as a practical alternative

method, very di¤erent from [20-22], particularly well adapted if the computer
model nonlinearity is moderate, and useful with multivariate outputs as well.
The rest of the article is organized as follows. Section 2 presents the novel

approach. Section 3 gives statistical justi�cations of this approach. Section 4
illustrates this novel approach with a case study in aeronautics, in particular, for
the estimation of detection performances of infrared sensors and, more precisely, for
the computation of aircraft InfraRed Signatures (IRS), revealing the e¤ectiveness
of this methodology. Section 5 is the conclusion. The Appendix provides some
background on PLSR.
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2 The novel approach proposed

2.1 Postulation of a polynomial metamodel and its estima-
tion

Let M be the computer model of the "black box" type. Assume that for xi =
(Xi1; : : : ; Xip), a point in the p-dimensional space of the p Xj inputs, j = 1; : : : ; p,
the simulation run result of the univariate Y output is yi =M (xi). Note that p
can be large in practical applications (frequently as high as 30).
We assume that the Y output can be approximated by a (full or not) polynomial

metamodel (surrogate model) of degree d, referred to asMd, built from the p inputs
(the categorical inputs are coded with their (0/1)-indicator variables). For one
simulation run, we can write yi =M (xi) =Md (xi)+�i andMd (xi) = M̂ (xi)+"i
where �i is a deterministic model error becauseMd is a deterministic polynomial
approximation ofM, and all of the xi form a deterministic design. Moreover, "i
is a residual due to the estimation method chosen.
With several yi obtained fromM at several xi, the estimation of the � vector

of the Md coe¢ cients is computed by PLSR (see Appendix for details on this
regression method), leading to the estimated metamodel, M̂d;PLS, that will be
simply referred to as M̂ in the text. Therefore, we obtain M̂ = X�̂PLS as the
estimation ofM, where X is the design model matrix ofMd. The value of d and
the monomials present in Md are chosen beforehand by the user. For practical
applications of moderate nonlinearity, a value of 2 or 3 for d is generally used.

2.2 Building strategy of an e¢ cient DOCED

Our basic idea for determining an optimal computer experiment design is inspired
by the theory of optimal design of real (non-computer) experiments for linear
models (see the book by Atkinson and Donev [23] for a very clear introduction to
this theory).
We now explain how to determine a small-size computer experiment design

formed by computer experiments selected from a large candidate computer exper-
iment set that we will refer to as the XC set. This selection is made according
to the D-optimality criterion [24]. A DOCED is associated with a model,Md in
this case. The following two steps are therefore required to determine a DOCED*.
This DOCED* will be considered as a deterministic design.

Step 1: Construction of the XC candidate set
This construction depends on the (quantitative or qualitative) nature of the

p inputs, as well as on the constraint types (correlations or linear combinations).
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Let p1 be the quantitative input number and p2 be the qualitative input number,
with p = p1 + p2.
If we want to correlate the p1 inputs, a convenient and simple method is to

start from a space-�lling design, SFD, based on a large N0 row number (typically
N0 = 1000 � p), e.g., a Latin Hypercube Sampling (LHS) [25], and then use the
Iman and Conover method [26] to (approximately) obtain the desired correlations
among the concerned inputs. Another possible method is to use copulas [27-28] for
correlating the p1 inputs, which is the case for the application detailed in Section
4. In another situation, if the p1 inputs are linked by a linear combination (see
Introduction section), then only the rows among the N0 original rows that satisfy
this combination are selected to form a new (smaller) constrained SFD. Hence, the
number of rows of this latter SFD can be considerably decreased. The resulting
SFD remains acceptable if its row number is greater than or equal to 100 � p.
Note that this problem of functional (or structural) constraints is encountered in
the constrained optimization �eld as well. The reader may refer to the relevant
approach [29] to deal with this situation.
Let NC be the row number of this constrained SFD. Moreover, if p2 qualitative

inputs are present, then their levels are repeated and randomized until NC values
are obtained for each of the p2 inputs. Finally, we obtain a constrained SFD of
NC rows and p columns, which will be referred to as SFD* in the text.

Step 2: Construction of a sequence of several DOCED and choice of
a DOCED*
Firstly, using SFD*, a design model matrix is built depending on d and the

chosen monomials. The modalities of the p2 inputs are replaced by their (0/1)-
indicator variables, and the construction of eventual interactions are then per-
formed with some quantitative inputs. Let X be this design model matrix of NC
and P columns, where P corresponds to the number of chosen monomials inMd,
i.e., main e¤ects of the quantitative inputs, indicator variables of the qualitative
inputs, interaction terms, quadratic terms, and cubic terms, if necessary.
The DOCED sequence to be constructed is referred to as (�Dn�P , n = P (= n0);

P + 1; :::; NC � 1), where each DOCED, �Dn�P , is a (n � P ) matrix. Every �Dn�P
is optimal in the sense of the D-optimality criterion [24], i.e., among all n size
designs drawn from SFD* � forming the so-called �n set � it is the one with
the largest normalized determinant �n =

�
det(XT

nXn)
�
=nP where XT

nXn is the
so-called information matrix. It was generally found that n is very small compared
to NC , which is the major advantage of the method, therefore satisfying constraint
A. Several speci�c (discrete) algorithms exist for �nding a �Dn . The well-known
Fedorov [24] and Mitchell [30] exchange algorithms can be used, and they can be
easily and e¢ ciently put into practice by means of [31].
An important remark must be made here about �nding a D-optimal design
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with algorithms of [24]. These algorithms require the inversion of the information
matrices. However, strong correlations between quantitative inputs and/or the
presence of all of the indicator variables (resulting from the qualitative inputs)
lead to the non-invertibility of these information matrices. Before using these
algorithms, we propose, in this case, to replace the X matrix by the orthogonal
matrix formed by its principal components (obtained from a Principal Component
Analysis), by retaining a number of components corresponding to at least 99% of
the explained inertia. This prior transformation was achieved for the application
in Section 4.
Finally, on the graph of the normalized determinants (or their logarithms)

versus n, we can detect a good compromise between a high level of the D-optimality
criterion and a reasonable value of n (see Figure 1 in the Application section). Let
n� be this optimal value of n. The DOCED*, �Dn��P , is therefore found.

2.3 The novel Sensitivity Indices

These new sensitivity indices, which we refer to under the general term of SIV IP
in this article, are based on the V IP statistics obtained in PLSR outputs. The
V IP statistics are de�ned by formula (14) given in the Appendix. We propose
two types of SIV IP :

� the Individual Sensitivity Index de�ned for each k monomial term among
the P monomial terms ofMd, for univariate and multivariate output, by:

ISIV IPk = V IP
2
k =P (1)

If the output is multivariate, we refer to it as the Generalized Individual
Sensitivity Index in this case, or GISIV IPk.

� the Total d�order Sensitivity Index de�ned for each of the p original
inputs, for univariate and multivariate output, by:

TdSIV IPj =
JX
u=1

ISIV IP
ju (2)

where 
ju is the uth index set where a j index appears, J is the total num-
ber of these 
ju, and ISIV IP
ju is the corresponding monomial individual
sensitivity index. For example, with three inputs, X1, X2, X3, and d = 2,
the Total 2�order Sensitivity Index for X1 is expressed as T2SIV IP (X1)
= ISIV IP (X1) + ISIV IP (X2

1 ) + ISIV IP (X1X2) + ISIV IP (X1X3). If
the output is multivariate, we refer to it as theGeneralized Total d�order
Sensitivity Index in this case, or GTdSIV IPj.5



We emphasize here that the GISIV IPk and the GTdSIV IPj are particularly
useful from a practical point of view. Indeed, they can reveal several strong or
weak inputs for all the outputs studied simultaneously, which is especially useful
when the multivariate output is a spectrum, e.g., infra-red spectrum.

3 Justi�cations of the novel approach proposed

3.1 Justi�cation of the PLSR choice

Firstly, we can observe that the PLSR metamodel deals with partial covariances
for constructing its th components, h = 1; :::; H. This aspect is clear if we exam-
ine the developped vectorial structure of a th component given in formula (9) of
the Appendix. Indeed, the term cov (Fh�1;Eh�1;j) is a covariance between the
Fh�1 residual matrix and the Eh�1;j residual vector and is therefore a partial co-
variance by de�nition. Formula (9) thus explains why the multicolinearity among
the monomials can be correctly taken into account. Moreover, PLSR leads to
the approximation F̂0 =

PH
h=1 thr

T
h , and we therefore obtain for the Yl univariate

output:

var(Ŷl) = var(Yl)
HX
h=1

r2lhvar(th); l = 1; :::; L (3)

which is an empirical orthogonal decomposition of the total variance of Ŷl. More-
over, since Yl � Ŷl, formula (3) gives an approximation of an empirical orthogonal
decomposition of the Yl output. We can then see with formula (9) that the de-
composition (3) is linked to the partial covariances between the Yl output and the
monomial inputs.

3.2 Justi�cation of the D-optimality choice

If we use Ordinary Least Squares Regression (OLSR) for estimating the �P�1
coe¢ cient vector of Md with n real data, the variance of the OLS estimator,
�̂OLS, has the following well-known form:

var
�
�̂OLS

�
= �2

�
XT
nXn

��1
(4)

where �2 is a constant, unknown, experimental variance. On the basis of (4), we
can see that in order to minimize the variances and covariances of the �̂OLS vector
components, which we always want to do, a D-optimal design, �Dn�P , is a good
choice because
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�Dn�P = Arg

�
max

�n�P ��n

�
det

�
XT
nXn

���
= Arg

�
min

�n�P ��n
[det

�
XT
nXn

��1
]

�
(5)

regardless of the value of the unknown �2.
In the computer experiment framework, if the metamodel is �xed, then �2 is

based on the "i residuals (see Section 2.1), and formula (4) can then makes sense
as well.
Now, if we want to prove that it is also relevant to use D-optimal designs in

the PLSR context� strictly de�ned in the framework of OLSR � then it might be
proven that the determinant of an approximation (no exact formula exists) of the
�̂PLS variance will be decreased if Xn was based on a D-optimal design instead of
on just any design. This is an open problem at that time. Only some numerical
studies show an advantage of using D-optimal designs in the PLS context.
Lastly, it should be emphasized here that the choice of the D-optimality cri-

terion is appropriate only if the postulated model is correct. It is for this reason
that we assumed a moderate nonlinearity for the computer model and, therefore,
a polynomial approximation with d � 3.

3.3 Justi�cation of the VIP-based Sensitivity Indices choice

A �rst justi�cation of the V IP -based Sensitivity Indices, instead of a choice based
on �̂PLS, for example, can be warranted by the fact that it has been observed for
many years and in many studies that the V IP remains much more stable than
�̂PLS when h increases. Moreover, the following two important arguments can be
given in favor of this choice.

Deriving the SSI
It is possible to directly derive the SSI in the case of independent inputs in

some particular situations. If the computer design is orthogonal, Q2G = 1, and
L = 1 (one univariate output Yl is considered), then only one PLS component will
be extracted. Its corresponding vectorial form will then be t1 = E01w11 + � � � +
E0Pw1P , and formula (8) becomes F0l = w11 + � � � + w1P because the r vector
becomes the scalar r = 1 and var(E0j) = 1; j = 1; ::: ; P . These w21j are equal
to cor2(F0l; E0j) = cor2(Yl; Zj). In this case, we can prove that w21j is the SSI for
the input Zj. For an input Zj, we have:

ISIV IPj = V IP 2j =P = P
�1
�
P
�
cor2 (Yl; t1)

��1
cor2 (Yl; t1)w

2
1j

�
= w21j (6)

= cor2(Yl; Zj) = V (E(YljZj))=V (Yl) = SSIj
7



Summation of the ISIV IPj
As a result of the property given in the Appendix, in the general case (uni-

variate or multivariate outputs), for dependent or independent inputs, we havePP
j=1 ISIV IPj = 1, which is a very convenient formula from a practical point

of view if we wish to compare the ISIV IPj to each other. It is analog to the
Sobol� theoretical summation [7] for independent inputs

PQ
j=1 SSIj = 1, where

Q = 2p � 1:

Illustration of the SIVIP method for the Ishigami function
In GSA, this function is a very well known test function with three independent

inputs [9]. Even if the SIVIP method is speci�cally designed for dependent inputs,
it can be relevant to apply it in this situation. Therefore, with a DOCED* of only
32 computer experiments (sampled in a 64-Legendre orthogonal array) and several
(not full) M3 polynomial metamodels, we obtained accurate estimations of the
three analytical total sensitivity indices (ATSI). For example, with a polynomial
metamodel formed by the 11 monomials X1; X3; X1X2; X1X3; X2X3; X

3
1 ; X

2
1X2;

X1X
2
2 ; X

3
2 ; X2X

2
3 and X

3
3 , we obtained the following estimations (in %) \ATSI1 =

44:91 (44:83), \ATSI2 = 35:62 (35:58), and \ATSI3 = 19:47 (19:59); the analytical
values are given in brackets.
However, we do not have any e¢ cient algorithm for �nding these correct mono-

mials at this time. Only an exhaustive analysis enabled us to �nd them here. In
any case, it is not the aim of the SIVIP method to compute sensitivity indices in
the situation of independent inputs.

4 A case study in aeronautics

4.1 Presentation of the problem

This methodology has been applied to aircraft InfraRed Signature (IRS) analysis,
within the framework of detection performances of infrared sensor estimation [32].
For an aircraft in a given atmospheric environment, the �rst order e¤ects on the
IRS are related to the spectral range, the presentation geometry, the aircraft speed
and the engine power setting. Several sources of variability lead to a dispersion of
the values likely to be observed: weather, aircraft aspect angles, aircraft type and
optical properties. These uncertainties in the input data are propagated through
the computer model to the output data. Therefore, the simulated result is an
interval of possible IRS that should include the IRS measured at a given moment.
Note that a single run with the computer model takes approximately 3 minutes
(on a 64 bit Sun Fire workstation with four Intel Xeon processors).
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Since many of the input factors of our IRS simulation were uncertain, we used a
GSA to identify the most important ones. We considered a daylight air-to-ground
full-frontal approach in France by a generic aircraft �ying at low altitude (800-1200
ft). The infrared sensor was located on the ground, at a distance of 20 kilometers
from the aircraft, in the �ight direction. The aircraft was assumed to be spatially
unresolved by the sensor.

4.2 De�nition of inputs and outputs

Sixteen uncertain original inputs were analyzed. Eight were related to �ight con-
ditions and IR optical properties of aircraft surfaces: altitude (ALTI), Mach num-
ber (MACH), engine power setting (POWERS), emissivity of air intake (EAI),
and to aspect angles of the aircraft: cap (CAP), yaw (YAW), roll (ROLL) and
pitch angles (PITCH). Eight were related to atmospheric conditions: visibility
(VIS), relative humidity (RH), ground air temperature (TA), atmospheric model
(MODEL), aerosol model (IHAZE), cloud presence (CLOUDS), base altitude of
the cloud layer (HBASE), and hour to compute solar position (HOUR). The three
inputs, MODEL, IHAZE and CLOUDS, were qualitative, with two, three and two
levels, respectively. The three aerosol models are the modalities of the IHAZE
qualitative input: urban (IHAZE1), maritime (IHAZE2) and rural (IHAZE3). By
using the three indicator variables of IHAZE, we had a total of 18 inputs. The
modalities of MODEL and CLOUDS were coded as 0/1.
The outputs analyzed were the sensor di¤erential irradiances between the target

and the background, and we focused both on: (i) the 3-5 �m spectrally integrated
target intensity, which corresponds to typical infrared sensor spectral ranges, des-
ignated as IRStot hereafter; and (ii) a multispectral intensity, integrated on 14
spectral bands equally spaced in the wave-number domain. The usefulness of mul-
tispectral or hyperspectral sensors for remote sensing assignments has been proven
[33-35], and some studies [36-38] emphasize their potential for target detection.
We are currently working on the speci�cation of a multispectral sensor for

di¤erent missions such as aircraft detection or classi�cation, and being able to
perform a sensitivity analysis on a multispectral infrared signature is therefore of
the utmost importance.

4.3 Construction of the dependent candidate set

We started by building a type of SFD by sampling 20,000 candidate experiments
using the estimated distribution of variables related to atmospheric conditions,
except for HOUR, and a Sobol low discrepancy sequence for the nine other vari-
ables: ALTI, MACH, POWERS, EAI, CAP, YAW, ROLL, PITCH and HOUR, as
explained in [3,8].
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RH, TA and HBASE were correlated, and their distribution was estimated on
the basis of 3200 measured data using a non-parametric kernel reconstruction of
marginal distributions, coupled with a dependence modeling based on a Normal
copula [39,40]. This modeling was performed using the scienti�c library Open-
TURNS (http://www.openturns.org/).
We also obtained a non-parametric reconstruction for the distribution of VIS

and CLOUDS. A discrete uniform distribution was associated with the qualita-
tive MODEL. The three aerosol models, IHAZE1, IHAZE2 and IHAZE3, are not
equally probable in France, and we considered a {0.45; 0.1; 0.45} probability law.
At this stage, the SFD* was obtained. With these 18 inputs, we built the

design model matrix, X, from this SFD*, by postulating an incomplete Md of
158 monomials: the 13 original continuous inputs, their 13 squared terms, their
13 cubic terms, and the 114 two-input and three-input interaction terms speci�ed
by the infrared signature expert. Therefore, the dimensions of X were 20,000 rows
and 158 (= P ) columns.

4.4 Construction of the DOCED*

Firstly, since the information matrices, XT
nXn, built with Xn selected in the pre-

ceding X, were generally not invertible, this X matrix was replaced by the Z ma-
trix formed by the �rst 50 principal components of a principal component analysis
(these 50 components represented 99% of inertia). A DOCED sequence was ex-
tracted from the SFD*, from n = n0 = 50 to n = 1000. A good compromise was
obtained in 180 experiments between the maximization of the (log) normalized
determinant (see Step 2 in Section 2.2) and the number of runs, if we observe
Figure 1. The DOCED*, �Dn�=180;P=158, was then formed with n

� = 180.

4.5 Results and discussion

We focused here on the total indices, the T3SIV IP and the GT3SIV IP , since it
was quite di¢ cult to analyze all of the 158 monomial ISIVIP. However, it should
be noted that the 20 largest ISIVIP and GISIVIP were associated with terms
involving VIS or IHAZE2, and that the largest one-degree monomials were also
associated with VIS and IHAZE2. The bar plot of Figure 2 presents the T3SIV IP
(in %) associated with the 18 variables.
The total IHAZE input contribution can be computed by summing the T3SIV IP

corresponding to the IHAZE1, IHAZE2 and IHAZE3 indicator variables. The
T3SIV IP associated with IHAZE is then 10.65, corresponding to the second high-
est T3SIV IP in comparison with the others. Thus, two variables are particularly
predominant: VIS and IHAZE and, more precisely, the maritime model of aerosol
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Figure 1: Evolution of the normalized determinant logarithm versus the number of
experiments n.

IHAZE2, since indices associated with the two other models, IHAZE1 and IHAZE3
(urban and rural), are the lowest ones. This can be explained by the fact that ur-
ban and rural aerosols are quite similar and very di¤erent from the maritime one.
Three additional variables also have an important impact on IRS variability: RH,
TA and HOUR. It is then di¢ cult to discriminate among the following eight vari-
ables in terms of total indices: MODEL, CAP, HBASE, EAI, MACH, POWERS,
ALTI and PITCH. CLOUDS, ROLL and YAW have relatively negligible contri-
butions to IRS variability since their total indices represent less than 10% of sum
of all of the indices.

If we now focus on the multispectral infrared signature, the bar plot of Figure
3 presents the GT3SIV IP (in %) associated with the 18 variables. As previously
mentioned, the GT3SIV IP associated with the total IHAZE contribution is com-
puted by summing the GT3SIV IP corresponding to the IHAZE1, IHAZE2 and
IHAZE3 indicator variables. Their sum is 10.8 and corresponds to the second
highest GT3SIV IP in comparison with the others. Hence, as in the IRStot case,
the two predominant variables are VIS and IHAZE. The three additional variables
that also have an important impact on IRS variability are unchanged: RH, TA
and HOUR. The main di¤erence with IRStot stems from the higher indices corre-
sponding to the three angles: PITCH, which extends from rank 13 up to rank 8,
and, to a lesser extent, YAW and ROLL, which remain without in�uence. A possi-
ble explanation is that some of the 14 bands signi�cantly emphasize the impact of
phenomena that vary with aspect angles, such as the plume emission contribution
or the airframe re�ected light from the surrounding background.
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Figure 2: The 18 T3SIV IP (in %) corresponding to the 18 inputs for the IRStot
univariate output.

Finally, only �ve variables among the whole set actually in�uence the spectrally
integrated and the multispectral infrared signature variability for the scenario con-
sidered, and they are all atmosphere-related factors. If we want to reduce the IRS
uncertainty, we can thus combine the optics sensor with some detectors that can
measure these atmospheric data. By virtue of the scenario chosen, a full frontal
approach, large variations in IRS due to changes in aircraft aspect angle are ex-
cluded. The variations in aspect may dominate the rest of the variables. Hence,
by essentially �xing the aspect to focus on, the variability of the meteorological
phenomena may be given more importance in the overall IRS than if viewed from
a di¤erent angle. Secondly, the low aircraft altitude and the long path between the
sensor and the aircraft lead to an optical path that crosses the lowest atmospheric
layers.

Consequently, the infrared transmission between sensor and aircraft and the
atmospheric radiance, which both have a strong impact on the sensor di¤erential
irradiance, are themselves in�uenced by the quantity and type of low altitude
atmospheric aerosols. Even if the sensitivity analyses of the multispectral and
the spectrally integrated IRS lead to rather similar results for our scenario, it
is especially interesting to be able to perform a sensitivity analysis in dozens of
spectral bands simultaneously. We can thereby consider di¤erent selections and
mergings of bands in order to perform the speci�cation of a multispectral sensor.
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Figure 3: The 18GT3SIV IP (in %) corresponding to the 18 inputs for the multivariate
output.

5 Conclusions

5.1 Application aspects

Thanks to the methodology proposed in this paper, we were able to identify �ve
variables that have a strong impact on integrated and multispectral IRS variability
for the chosen scenario with only 180 simulations, and we can now proceed to the
next step, the establishment of an IRS simulation metamodel, in order to be able to
estimate IRS dispersion. Since these �rst results are quite promising, it would be
interesting to extend this model to other scenarios with more uncertain variables,
and to other military objects.

5.2 Methodological aspects

Our method, designated the SIVIP method, is based on two very well-established
theories (PLS regression and D-optimal designs), and it is very simple and very
easy to put into practice by means of an SAS/IML procedure or an R-language
procedure, both available upon request to the corresponding author (the SIVIP R-
package will soon be available on the CRAN). To our knowledge, no other practical
method exists to simultaneously manage the A, B and C constraints, notably with
multivariate outputs and, therefore, no realistic comparison of our method can
be made today with an alternative method. Only scienti�c experts in the �eld
are quali�ed to validate the results at this time. This has been done in the real
application problem presented in Section 4, as well as in the application presented
in [15] with success. We hope that new competitive methods will be developed
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in the near future, which will then make it possible for the researchers involved
to test our dataset using their own methods. It should also be noted that even
with independent inputs, this method can be useful in the frequently encountered
situation of costly simulations, even if the SIVIP will generally be di¤erent from
the SSI (even in this particular situation of independent inputs).
The SIVIPmethod works correctly in the situation where the user can postulate

that the nonlinearity of the computer model is reasonable, i.e., if d � 3. Many
real applications fall within this framework. However, if no prior knowledge is
available about the nonlinearity, then neither the value of d nor the structure of
the polynomial metamodel can be assumed (no previously chosen monomials are
possible). In this situation, giving a large value to d can be a dangerous choice
because of the well-known poor behavior of high-degree polynomials in terms of
approximations. To address this di¢ culty, we propose an adaptive - and therefore
parsimonious, in terms of the total simulation run number - version of the method
for strong nonlinear computer models, which is currently being developed.

Acknowledgments: We would like to thank Gail Wagman, a professional English
language translator, who corrected the English, and Régis Lebrun, from EADS Innova-
tion Works, who performed the dependence modeling based on copulas.
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Appendix: PLSR background

A brief overview of PLSR
PLSR is a bilinear method for relating inputs to outputs, and that is very popular in the
chemometrics �eld [41-44]. It is very di¤erent (particularly from the algorithm point of
view) from the familiar Ordinary Least Squares Regression (OLSR) in that no matrix
inversion is needed. For the sake of clarity, we use input notations in this Appendix that
are di¤erent from those used in the other sections of this paper. Bold characters are
used for vectors and matrices, but standard characters are used when a general meaning
is assumed, e.g., a PLS component is designated as th, whereas in its vectorial form, it
is designated as th.

The general goal of PLSR is to model, via linear combinations, the link between R
explanatory (input) variables �j , j = 1; : : : ; R, and L (> 1) responses (outputs) Yl,
l = 1; : : : ; L, both observed on the same N objects. We can represent the PLSR model
by using the multivariate model form:

YN�L = �N�R�R�L +�N�L (7)

whereYN�L is the observed multivariate ouput matrix, �N�R is the input matrix, �R�L
is a (R�L)-matrix of coe¢ cients to be estimated, and�N�L is a (N�L)-matrix of error
terms. PLSR presents some very strong advantages over OLSR: (i) the input variables
- monomials built with these input variables can also be taken into account, including
quadratic terms, interactions terms, cubic terms, etc. - can be highly correlated or even
functionally linked, whereas the �̂PLS estimates of �R�L remain interpretable (e.g., see
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the very well illustrated example in [45] where the inputs add up to one at each row
of the design matrix); (ii) R and/or L can be larger than N ; (iii) information about
the probability distributions of the � elements is not needed (it is considered to be a
so-called distribution-free method). The �rst two cases, (i) and (ii), make it impossible
to use OLSR. The PLSR algorithm is based on a very speci�c algorithm, the NIPALS
algorithm [43,46,47]. Following are some formal elements.

Let E0 be the centred and scaled � matrix (i.e., mean = 0 and variance = 1 for
each column); F0, the centered and scaled Y matrix; Eh, the residual matrix from the
decomposition of E0 by using h PLS components, th; Fh, the residual matrix from the
decomposition of F0 by using h PLS components; Flh, the lth column of Fh; and H , the
PLS component number retained. Therefore, the PLSR objective is to construct a linear
combination, u1 = F0c1, with columns of F0, and a linear combination, t1 = E0w1,
with columns of E0, by the maximization of the covariance between the t1 and u1
components, subject to the constraints kw1k2 = kc1k2 = 1. Hence, we obtain two
variables, u1 and t1, as correlated as possible, and best summing up E0 and F0: The
following regressions:

E0 = t1p
T
1 + E1

F0 = t1r
T
1 + F1

are then performed. The E0 and F0 are de�ated by t1pT1 and t1r
T
1 , and second linear

combinations, u2 and t2, are computed, and so on. We �nally obtain:

F0 = t1r
T
1 + : : :+ thr

T
h + Fh (8)

where the th are orthogonal between them. We can develop the vectorial form of th as:

th=

"
PX
j=1

cov2 (Fh�1;Eh�1;j)

#�1=2 PX
j=1

[cov (Fh�1;Eh�1;j)]Eh�1;j (9)

On the basis of (8), we can deduce the following norm decomposition, i.e., an em-
pirical decomposition of the output variance (because the Fl0 in F0 are centered and
scaled):

kF0k2 = kr1k2 kt1k2 + : : :+ krHk2 ktHk2 + kFHk2 (10)

For one (univariate) centered-scaled output, Fl0, we can then write:

kFl0k2 = var(Fl0) = r21 kt1k
2 + : : :+ r2H ktHk

2 + kFlHk2 (11)

The signi�cant number H of PLS components is given by means of a speci�c cross-
validation test (see the end of this Appendix).

On the basis of (8) we can obtain the PLS regression equations:

Ŷl = �̂l0 + �̂l1�1 + : : :+ �̂lM�M ; l = 1; :::; L
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De�nition of the V IP statistics in PLSR
Let the redundancy statistics be as follows:

Rd(Y ; th) =
1

L

LX
l=1

cor2 (Yl; th) , L � 1 (12)

and

Rd(Y ; t1; : : : ; tH) =
HX
h=1

1

L

LX
l=1

cor2 (Yl; th) , L � 1 (13)

The V IP (Variable Importance in the Projection) statistics [43,47] for an �j input in
the presence of a univariate or multivariate Y output is then de�ned as:

V IPHj =

"
P

Rd(Y ; t1; : : : ; tH)

HX
h=1

Rd(Y ; th)w
2
hj

#1=2
(14)

where the whj are the components of the wh vectors. Note the important propertyPP
j=1 V IP

2
Hj = P .

Obviously, the V IP statistics make sense if the value of the �tting-prediction cri-
terion, Q2G, (see below) is close enough to one, implying that M̂ = �N�R�̂R�L is a
reasonable estimated approximation of the unknown underlying model for both �tting
and prediction. In Section 2.3, we omitted the index H for the sake of brevity be-
cause non-ambiguity is possible once M̂ has been cross-validated with H components
by means of the Q2G:

Validation of the PLSR model
The PLSR model is validated by a cross-validation procedure based on the Q2Gh and
Q2G statistics (bounded between 0 and 1) computed for each univariate output, detailed
in [48]. The PLSR model is thus iteratively built, and these iterations are stopped by
means of a procedure on the th components. A commonly used procedure is the one
inspired by the rule proposed in [47]. This rule is the following: a th component (from
h = 1) is retained if Q2Gh � 1� (0:95)

2. Finally, with the H retained components, the
Q2G cumulated index is computed [47]. Thus, this Q

2
G index is a �tting-prediction type

criterion typically designed for a PLSR model. Its major advantage, in comparison to
a classical R2, is that it avoids over�tting. From a practical point of view, we have to
choose a Q2G threshold to be overtaken of at least 0.80.
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