
The method based on symmetric matrix factorization (SMF) 
 

SMF factorizes the N-matrix, as: 



N  H * D * H ' , (1) 

where H
T
 is the transpose of H. H is an m-by-nd binary matrix, where nd is the number of 

putative domains. This is the domain definition matrix: H(i,j) is 1 if domain j includes residue 

i or 0 otherwise. We assume that a residue cannot belong to more than one domain, in which 

case H is column-wise orthogonal, i.e. its column vectors are orthogonal to each other:  



H (i,a) * H (i,b)  nr (a) *  (a,b) , (2) 

where nr(a) is the number of residues in the putative domain a and 



 (a,b)  1
 
if a=b and 0 

otherwise. The H matrix is obtained by clustering the rows of N using a clustering algorithm 

described later. 

D is an nd-by-nd symmetric square matrix. Once H is known, D is obtained from N by 

inverting eq. (1): 



D  D
h

1
* H

T
* N * H * D

h

1
, (3) 

where 



D
h
 H

T
* H   is an nd-by-nd diagonal matrix (see eq. (2)). 



N
b
 H

T
* N * H  is also an 

nd-by-nd square matrix. Suppose N is divided into nd by nd blocks, of which each block (a,b) 

is made of nr(a) by nr(b) residues. Then Nb(a,b) is the sum of all the elements of N in block 

(a,b). Equation (3) then becomes 



D (a,b )  N
b
(a,b) /( nr (a) * nr (b )) , (4) 

which shows that D(a,b) is the average value of N over the block (a,b), or the density of N 

matrix in block (a,b). 

The rows of the N-matrix were first hierarchically clustered into 12 (maximum number of 

domains considered) clusters using MATLAB (http://www.mathworks.com/) with ‘cosine’ 

for distance and ‘ward’ for linkage. The result of this clustering was used as the seed for a 



'kmeans' clustering, again using ‘cosine’ as the distance, for 12 clusters. These clusters were 

then joined, a pair at a time, to produce successive trial solutions with number of domains 

from 12 to 1. The two clusters, a and b, to be joined were selected as the pair for which the 

ratio D(a,b)/min(D(a,a),D(b,b)) was the largest. 

The final solution was the one among these 12 putative solutions that had the maximum Q 

score, which was defined as 



Q  Q
3
* Q

4
* Q

5  (5) 

where 



Q
3
 0.5 * erfc ((Q

1
 c

1
) / s

1
) , (6) 



Q
4
 1  0.5 * erfc ((Q

2
 c

2
) / s

2
) , (7) 



Q
1
 max( D (a,b) /min( D (a,a ), D (b,b))) , (8) 



Q
2
 min( D (a, a)) /D

1 , (9) 

and 



Q
5
(nd )  Q

1
(nd  1)  Q

1
(nd ) . (10) 

Q3 is a smoothened switch function, which varies from 1 to 0. The midpoint of the switch 

occurs when Q1=c1 and the sharpness of the transition is controlled by s1. Q4 is also a 

smoothened switch function, but it varies from 0 to 1 according to Q2. D1 is the value of the 1-

by-1 D matrix for one-domain solution, which is equal to the overall density of points in the 

N-matrix. The values of the four parameters, c1, s1, c2, and s2 were chosen as 0.3, 0.05, 1.0, 

and 0.5 after some trials. 

Q5 measures the increase in Q1 when the number of domains (nd) is increased by 1. While 

other functions (Q1 through Q4) measure the intrinsic property of an nd-domain solution, Q5 

measures the merit (Q1) of a solution relative to the (nd+1)-domain solution in which a 

domain is split into two. Curiously, we observed that the score function that included this 

factor performed better on average than those that did not include this factor. 



One can obtain a ‘calculated’ N-matrix by 



N
c
 H * D '*H

T
 (11) 

D' is matrix D with all off-diagonal terms set to zero. Nc is like the equivalence relation matrix 

describe in the next section, except that the non-zero blocks have the average density of the 

original N-matrix rather than unity as in a true equivalence relation matrix. A score function 

based on the norm of the difference between N and Nc did not perform as well as that given by 

eq. (5), presumably because of the large difference between the actual and the average 

number of pLSSPs within each domain even when the domain assignment is perfect. 

 


