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Chapter 1

Overwiew

1.1 Introduction

1.1.1 General framework

Many dynamic systems in different fields such as the life sciences, industry, economics and
many others (see [Cappé et al. (2005)] for an overview) can be modelled by stochastic non-
linear state-space models, i.e., hidden Markov chain models. Such systems are observed at
any time t through a set of output variables yt, while their dynamics are characterised by a
vector of unobserved state variables xt that evolves according to a given Markov transition
probability distribution function often arising from an autoregressive state model. The
output variables themselves evolve according to a given probability distribution function
conditioned by the state variables and some parameters.
Several objectives can be considered on the basis of the knowledge of the system model
and assumptions about all its random components, as well as on the basis of the successive
output values. The first one is the identification of the system, i.e., the estimation at every
time t of the probability distribution function of the state variables conditional on the
observed values of the output variables up to time t, or when it exists, the estimation of
its probability density function (pdf) pt(x|y1, . . . , yt), as well as the estimation of all the
unknown static model parameters θ. Inference about the model parameters or functional
components of the model is often also to be considered, as is the preliminary question of
statistical model comparison and state model choice. Such a dynamic model can be a valu-
able tool for prediction, in which case another question of interest would be the estimation
at time t of the anticipated pdf of the state variables k-step ahead, pt+k(x|y1, . . . , yt), espe-
cially when observed co-variables ut are present in the state model. Finally, one can want
to use some of these co-variables to control the evolution of the state variables according
to some tracking or optimal control objectives.
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6 CHAPTER 1. OVERWIEW

1.1.2 Filtering approach

Filtering is the standard approach to the problem of estimation of the conditional prob-
ability distribution function of the state variables and that of the unknown parameters
([Bain and Crisan (2009)]). When the system is linear optimal estimators are provided
by the Kalman filter (KF). In the nonlinear case, the extended Kalman filter (EKF) is
often used by engineers but without definitive theoretical support and with frequent prac-
tical drawbacks because of the local validity of the corresponding approach that relies on
successive model linearisations (see [Jazwinski (1970)] for more details about the KF and
the EKF, and [Chen (1993)] for some improvements of the EKF). Global approximation
methods have also been developed, with validity in the full state-space. Some rely on
analytical approaches such as the Gaussian Sum Method ([Sorenson and Alspach (1971)];
[Šimandl and Královec (2000)]), whereas others rely on more accurate numerical approaches
that approximate the state-space by systems of discrete points. Among them are the
Point Mass method ([Kramer and Sorenson (1988)]; [Šimandl et al. (2006)] with its or-
thonormal grids. However, the most well-known in this second class of global numeri-
cal approaches are the sequential Monte Carlo methods, which have benefited from the-
oretical results (see, for example, the review of [Liu (2001)]). These so-called parti-
cle approaches first gave rise to filters based on sequential importance sampling (SIS)
([Akashi et al. (1975)]; [Davis (1981)]; [Kitagawa (1987)]), and then to SIS-R filters that
include a resampling step to improve convergence, such as the well-known Bootstrap Fil-
ter ([Gordon et al. (1993)]) and the Interacting Particle Filter ([Del Moral et al. (1992)];
[Del Moral (1998)]; [Del Moral et al. (2001)]) (see [Doucet et al. (2001)] for a review). How-
ever, the discrete nature of the probability distribution approximations provided by the
SIS and SIS-R filters ([Hürzeler and Künsch (1998)]), combined with some degree of inabil-
ity of these filters to deal with small observation noise, did not completely eliminate long
time divergence problems. Some state variable distribution regularisations were then intro-
duced into the SIS-R algorithm ([Oudjane (2000)]; [Warnes (2001)]; [Musso et al. (2001)])
to provide a distribution approximation under the form of a probability density function.
A convergent Regularized Interacting Particle Filter using convolution kernels was thus
proposed by [Oudjane (2000)]) and [LeGland and Oudjane (2004)]. However, with the
notable exception of [Del Moral and Jacod (2001)] who performed a regularisation of the
output variable distribution, all the previous filters rely on the analytical knowledge of
the probability distribution function of the output variables conditional on the state vari-
ables and the parameters, and on the tractability of the observation likelihood function, a
requirement that reduced the practical range of these filters (it is worth saying however,
that when one can obtain unbiased estimates of the resampling particle weights used in
these filters, asymptotic exact inference may be possible. See [Doucet and Rosset (2006)]
or [Fearnhead et al. (2008)])
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1.1.3 Convolution particle filtering

To eliminate this limitation, a new generation of convergent particle filters has been pro-
posed based on convolution kernel density estimation and on implicit regularisation of both
state and output variable distribution estimates ([Rossi (2004)]; [Rossi and Vila (2005)];
[Rossi and Vila (2006)]; [Campillo and Rossi (2009)]. This nonparametric filtering or con-
volution particle filtering approach, thus makes it possible to deal with the frequent sit-
uation in which both state and output variable distributions are analytically unknown:
one only needs to be able to simulate these variables at each time t. Interestingly, this
convolution particle filtering can be compared with some recent Sequential Monte Carlo
Approximate Bayesian Computation filtering algorithms ([Del Moral et al. (2012)]). These
SMC-ABC algorithms are similar to special cases of this nonparametric filtering, through
particular choices of the kernel functions involved ([Jasra et al. (2012)]). Moreover, this
nonparametric particle filtering approach can be very efficiently combined with statistical
methods that depend on the availability of these state and output variable distributions, to
restore these methods when these distributions are not available. For example, nonpara-
metric filtering has been used to consistently estimate the Bayes factor between two com-
peting state-space models ([Vila and Saley (2009)] and Section A.5 for technical details)
and to perform CUSUM parameter change detection tests ([Verdier et al. (2008)]) in these
same models. Finally, contrary to the other filtering approaches, convolution particle fil-
tering can itself be easily optimised by making it possible to determine a sequence of obser-
vation times of the output variables for a given experimental cost, that favours the conver-
gence of the successive parameter estimates to their true values ([Gauchi and Vila (2011)],
[Gauchi and Vila (2013)]).

1.2 Discrete time dynamic state-space model

1.2.1 A general model structure

We will consider dynamic systems that are assumed to obey hidden Markov chain models
of the following form:

{
xt v Qt(.|xt−1, θ)
yt v Gt(.|xt, θ)

(1.1)

in which xt ∈ IRd and yt ∈ IRs are vectors of unobserved state variables and observed
output variables, respectively, and θ ∈ Θ ⊂ IRp is a vector of p unknown static parameters
with given prior density pθ0. Qt is a Markov transition probability distribution function with
density qt, often arising from a nonlinear autoregressive state model, xt = ft(xt−1, θ, εt), in
which εt is a vector of independent random variables (possibly noises) and ft is a known
Borel measurable function. Gt is an absolutely continuous probability distribution function
with density gt. Both ft and Gt can be time-varying. The distribution Gt, the transition
distribution Qt (or the distribution of εt) are not necessarily known but can at least be
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simulated. In some simpler situations, the output equation can also be given by a regression
equation yt = rt(xt, θ, ηt), in which rt is a known Borel measurable function and ηt is a
vector of random variables (possibly noises) that can at least be simulated.

1.2.2 A microbiological growth model

This very general type of state-space model can explain many dynamic behaviours encoun-
tered in real life such as, for example, pathogenic bacteria growth in a food medium.
One of the most well-known models in microbiology is the Baranyi-Roberts model
([Baranyi and Roberts (1995)]) whose discrete version (Euler scheme) is given in closed
form ([Gauchi et al. (2009)]) by

xt+1 = δ x0 exp(µmax At)
1

Bt

(µmax
dAt
dt
− dBt

dt

1

Bt

) + xt + ϕt (1.2)

with At = t+ 1
µmax

ln(exp(−µmax t) + exp(−µmax λ)− exp(−µmax t− µmax λ))

and Bt = 1 + exp( µmax At)−1
xmax
x0

where:

• xt is the state variable, i.e., the number of bacteria in the medium at time t.

• µmax(maximum growth speed), λ (mean latency time), x0 (minimum number of bac-
teria and xmax (maximum number of bacteria), form the parameter vector θ to be
estimated.

• φt is a centered random Poisson variable and δ is a discretisation step.

The observed variable yt is the number of bacteria colony-forming units (CFU) in a Petri
dish (culture medium) from bacteria sampled at time t. Its probability distribution function
Gt(.|xt, θ) is the result of the interaction of several independent random phenomena: the
spatial sampling in the primary medium at time t, a given number of successive samplings
in several dilution tubes (with Poisson or aggregative spatial distribution assumptions),
the successive volume sampling errors and dilution errors (assumed to be Gaussian) and,
finally, the log-normal error counts in the Petri dishes (where sampled bacteria develop and
form colonies on the culture medium). The corresponding probability distribution function
Gt cannot be analytically characterised, but can be easily simulated.



Chapter 2

FILTREX Software

2.1 Presentation

FILTREX is a software for parametric identication, models comparison, and optimal sam-
pling of experiments for complex microbiological dynamic systems by nonlinear filtering.

Parametric identification. This parametric identification concerns microbiological dy-
namic systems, based on primary models (growth or thermal inactivation models).
It is build by implementing the new nonlinear particle technique using a convolu-
tion kernel approach mentioned at Section 1.1.3. Let us just recall here that for
this efficient particle filtering procedure, the only a priori information needed for the
parameters is their respective possible variation ranges. The coding of this function-
ality in FILTREX has been developped from an open source code of the convolution
particle filter ([Choquet and Rossi (2005)]).

Several growth and inactivation models are provided in FILTREX and instructions
are given in the Developer Guide (appendix B) to add more. The CV (coefficients of
variation) can be estimated in addition to the model parameters. Default values are
provided for the variation ranges of the parameters and check is made for their valid
bounds. Some of them can be fixed to given values.

Dynamic comparison of two models with the Bayes factor. This second function-
ality computes the so-called Bayes Factor, for deciding which of two models better
fits a given set of data (see Section 1.1.3). This Bayes Factor is the ratio of the respec-
tive marginal likelihood functions of the two competing models. It is not a genuine
statistical test but it has been proved to be one of the best indices for comparing two
nonlinear models. Its particle estimation in FILTREX does not need the knowledge
of the model likelihoods as required by the usual statistical selection procedures (e.g.
Akäıke criterion). FILTREX computes the Bayes factor all along the observation
times.

Simulation of an optimal sequential sampling. Three technics are proposed:
(i) Construction of a Sobol-Saltelli method based approach at starting time of the

9
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dynamics ([Saltelli (2002)],
(ii) Construction of a D-optimal design ([Donev and Atkinson (1988)]) at starting
time of the dynamics using the Tornsey algorithm ([Droesbeke et al. (1997)]),
(iii) A more sophisticated and powerful technics: an on-line approach based on the
SIVIP method ([Gauchi and Vila (2013)], [Gauchi and Vila (2011)]).

FILTREX simulates an optimal sampling of experiments times, for a given model,
provided its parameter values (D-optimal design) or parameter range (Sobol-Saltelli
and SIVIP methods), and a simulated observation dataset (SIVIP method).

Simulation of an observation dataset. Observation datasets can be simulated from a
model and its parameters values, with constant or unconstant variance and uniform or
normal sampling. The generated dataset can be used in the other tasks, in particular,
in task Simulation of an optimal sequential sampling with SIVIP method.

2.2 Authors and contributors

FILTREX is developed in INRA, UR1404, F78352 Jouy-en-Josas, France. (INRA: Institut
National de la Recherche Agronomique).
Authors and contributors are:

• Project coordinator
J-P. Gauchi (INRA/UR1404-Jouy-en-Josas, France).

• Scientific advisors
J-P. Vila (INRA/MISTEA-Montpellier, France),
J-P. Gauchi (INRA/UR1404-Jouy-en-Josas, France),
P. Del Moral (INRIA/Bordeaux University, France)

• Main contributors to the source code (alphabetic order)
C. Bidot (INRA/UR1404-Jouy-en-Josas, France)
A. Bouvier (INRA/UR1404-Jouy-en-Josas, France)
R. Choquet (CNRS/CEFE, Montpellier, France)
V. Rossi (PhD student 2002-2004, Montpellier University/INRA-ENSAM, France)

• Secondary contributors to the source code (alphabetic order)
E. Atlijani (Technical trainee, 2009, INRA/MIA-Jouy-en-Josas, France)
E. Maillot (Technical trainee, 2008, INRA/MISTEA-Montpellier, France)

2.3 Download

• It is a free Matlab software, under license GPL1 >= 3.

1http://www.gnu.org/licenses/gpl-3.0.txt

http://www.gnu.org/licenses/gpl-3.0.txt
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• FILTREX has been tested with Matlab2012a and Matlab2013a. A C-compiler is
needed for task Simulation of an optimal sampling unless the compiled version
of FILTREX is used (see below).

• A compiled version is in progress on several platforms, which makes uncessary the
need of Matlab software and C-compiler.

• Download from Web site :
http://www3.jouy.inra.fr/miaj/public/logiciels/filtrex/welcome.html

http://www3.jouy.inra.fr/miaj/public/logiciels/filtrex/welcome.html
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Chapter 3

FILTREX Use: Getting started

3.1 Start FILTREX

Before the very first use, you must compile the C-programs by running the Matlab1

file compil.m2. Then, and at all the other times, run the file FILTREX.m: a menu opens
which offers the different tasks:

• Parametric identification

• Dynamic comparison of two models with the Bayes factor

• Simulation of an optimal sequential sampling

• Simulation of an observation dataset

• What is FILTREX (this gives some general information about the FILTREX pack-
age).

3.2 Observation dataset

Most of the FILTREX tasks require an observation dataset that should be provided in a
file format xls or csv3. See the files in the folder EXAMPLES/REAL DATA as patterns.
Note that the time unit (day, hour or minute) has to be coded inside the label of the first
column between parenthesis. Only the first character is taken into account. Valid values
are: ’d’, ’h’ or ’m’. It is case insensitive.
Examples of valid labels:

"(d)" "time (h)" " t (mns)" "temps (m)"

1http://www.mathworks.fr/
2Compilation is only required for running the task Simulation of an optimal sampling and when

the compiled version of FILTREX is not used.
3Formats xls and csv are available in Microsoft Excel and OpenOffice

13
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3.3 General layout

When a task is selected, a window opens, vertically divided into 2 parts: the left one is for
input, the right one is for output. Each is made up of one or several pages or “panels”.
You switch from a panel to the following or preceding one by clicking the + or − token at
the bottom of the pages.
The input panel is topped by a menu bar, whose most items are identical in all the tasks:

Dynamics. This button unfolds in several items:
Model equation opens a menu with the available models. Select the model to be
studied.
Help about model equations opens a similar menu. Display PDF files showing the
equation and general shape of the models.
Fix/unfix parameters and Set parameters to the maximal range. These two
items appear only when a model is selected. Open a menu with the parameter names.
Select the ones to fix/unfix or set to their maximal valid bounds.

Data. Browse your folders to select the observation dataset file (see Section 3.2).

Reset to default values. Whenever it is possible, default values are proposed for the
input fields. This button resets them.

Save results. Backup FILTREX runs into a Matlab file.

Restore project. Restore the panels from a backup file. After a restoration, execution
can be launched again, possibly in modifying some input.

Help. Display some pratical hints.

About. Display some general information about FILTREX package.



Chapter 4

Parametric identification

4.1 Input

The steps to enter a study are the following ones :

1. select an observation dataset by using the button Data of the top bar (see Sec-
tion 3.3).

When the observation dataset is chosen, some of its characteristics are displayed (see

frame 3 in Fig. 4.1). Press the icon to make a graphical window open with the

plot of observations versus time.

2. select a model by using the button Dynamics of the top bar (see Section 3.3).

You can try different parameter ranges, or, by using the submenu Dynamics of the
top bar, set them to their maximal bounds and reset them to their default values.

3. fill in the TIME STEP box (see frame 1, Fig. 4.1) by the computational time step.
The proposition is the least of the greatest common divisor between consecutive
times in your observation dataset. The time step should be a divisor of this value
because there should be an observation at each computational time.
Note that smaller the time step is and larger is the maximal time in the observation
dataset, the more there are computational times and more the run time is long.

4. fix the other options.

All the other boxes of the input panel contain default values that can be modified at
will within valid bounds.

• Seed is the random seed. If its value is equal to clock, seed is the current time.
Note that in this case, successive execution would not produce same results.

• The coefficients of variation (CV) can be estimated by selecting Estimate CV.
Some of them can then be fixed to given values by the top bar button
Dynamics -> Fix/unfix parameters.

15
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• The other options (see frame 2, Fig. 4.1) will be explained in Sections 4.4 and
4.3.

5. launch the execution. Execution is launched by a click on button GO at the bottom
of the input panel. The button GO becomes then a STOP button. Click on it to stop
the run.

Figure 4.1: Input panel in task Parametric identification
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4.2 Output

The results of the task Parametric identification are displayed on several panels.
Panel number 1 displays the plot of parameter estimation and its confidence intervals versus
observations.
Note that a click anywhere on a FILTREX plot opens a graphical Matlab window, you can
save, modify or export.

Figure 4.2: Output panel number 1 in task Parametric identification
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Panel number 2 plots the data observations versus time and two kinds of results : first,
the final filtering estimated dynamics, and secondly, the stepwise estimation of the state
value and its confidence intervals.

Figure 4.3: Output panel number 2 in task Parametric identification
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Panel number 3 displays the mean and mode of the estimated values of the parameters.

Figure 4.4: Output panel number 3 in task Parametric identification
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4.3 Histograms

The option histograms plots histograms for each observation and each parameter, of the
n estimated values of the parameters, n stating for the number of particles.
When the option histograms is selected, frame 2 of the input panel (Fig. 4.1) is:

Number of histograms is the number of observations for which histograms of all param-
eters are plotted. Its upper limit is 20. If there are more observations, histograms will be
plotted for the 4/5 first observations and for the 1/5 last ones.
Parameter histograms are the first output. Some examples:
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The following panels are similar to those in general case (Fig. 4.2, Fig. 4.3, Fig. 4.4).
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4.4 Statistical confidence intervals calculation

The option statistical CI computes statistical confidence intervals of the estimated
values of the parameters. When this option is selected, frame 2 and following of the input
panel (Fig. 4.1) are:

Three CI levels are offered: 90%, 95%, 99 %
The first output panel displays histograms of the estimated values of the parameters.
Note that histograms are only plotted when the number of dynamics is greater or equal
to 10. The next panel displays numerical results: minimum, maximum, mean, standard
deviation and statistical confidence intervals at the selected CI level of the estimated values
of the parameters.
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Figure 4.5: First output panel in task Parametric identification when CI are required
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Figure 4.6: Numerical results in task Parametric identification when CI are required
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Dynamic comparison of two models
with the Bayes factor

5.1 Input

The input panel looks like the one of the task Parametric identification (Fig. 4.1),
but the top bar is slightly different:

Two models should be selected: the model used as numerator in the Bayes formulae, and
the model used as denominator.
The following example compares models Rosso ([Rosso (1995)]) and Baranyi-Roberts
([Baranyi and Roberts (1995)]). The first input panel is relative to the numerator model
(Fig. 5.1) and the second one to the denominator model (Fig. 5.2). CV, filter parameters
and data characteristics are unique for both models.

25
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Figure 5.1: Input panel number 1 in task Dynamic comparison of two models.
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Figure 5.2: Input panel number 2 in task Dynamic comparison of two models.
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5.2 Output

• The output panels number 1 to 6 display the results of parametric identification
successively by each model (same output as in task Parametric identification,
see Section 4.2).

• Panel number 7 displays, side by side for each model, the mean of the estimated
values of the parameters (Fig. 5.3).

• The following panel is the plot of the parameter estimation, for both models (Fig. 5.4).

• Panel number 9 displays the plots of the final filtering estimated dynamics and the
stepwise estimation of the state value versus time, for both models (Fig. 5.5).

• Panel number 10 displays the plot of the Bayes factor value versus time (Fig. 5.6).

• Last panel is the numerical results: marginal likelihoods and BF (Fig. 5.7).

Note: restoration of model comparison results does not restore panels 1 to 6.

Figure 5.3: Output panel number 7 in task Dynamic comparison of two models.
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Figure 5.4: Output panel number 8 in task Dynamic comparison of two models.



30CHAPTER 5. DYNAMIC COMPARISON OF TWO MODELS WITH THE BAYES FACTOR

Figure 5.5: Output panel number 9 in task Dynamic comparison of two models.
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Figure 5.6: Bayes factor plot in task Dynamic comparison of two models.

Up to time 240, both models can be considered as equivalent: as shown by the plot of
the final filtering estimated dynamics (first graph of Fig. 5.5), both the estimated curves
fit the observations more or less as well. But from this time, the denominator model fits
the observations better than the numerator model. Furthermore, the preceding differences
are cumulated. The models are no more considered as equivalent: BF is less than 1/31

(it would be greater than 31 if the numerator model fitted better than the denominator
model). At the two last times, BF cannot be calculated because of numerical reasons.

1The BF ranges are given in [Kass and Raftery (1995)].
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Figure 5.7: Output panel number 11 in taskDynamic comparison of two models.



Chapter 6

Simulation of an optimal sequential
sampling

The three methods implemented in FILTREX (Sobol-Saltelli, D-optimal, SIVIP, see Sec-
tion 2.1) can be used in a complementary or alternative way. The final output is a simulated
optimal sampling of experiments times. These times can be saved in a file for later use,
for example, to provide the simulation times in the task Simulation of an observation

dataset (see Section 7).
.

6.1 Method Sobol-Saltelli

This method is preferred if only parameter ranges are known.

6.1.1 Input

Fig. 6.1 is an example of input panel with Baranyi-Roberts model selected.
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Figure 6.1: Input panel in task Simulation of an optimal sequential sampling,
method Sobol-Saltelli.
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6.1.2 Output

Fig. 6.2 is the output panel issued by Fig. 6.1 execution. The percentages of the total
sensivity index (TSI) of each parameter are plotted versus time. The simulated optimal
times are the successive optima noted by squares on the curves and listed below the plot.

Figure 6.2: Output panel in task Simulation of an optimal sequential sampling,
method Sobol-Saltelli.

At bottom of Fig. 6.2, the simulated optimal times where the future data must be observed
are given.
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6.2 Method D-optimal design

This method is preferred if good guess parameter values are known.

6.2.1 Input

Fig. 6.3 is an example of input panel with Baranyi-Roberts model selected.

Figure 6.3: Input panel in task Simulation of an optimal sequential sampling,
method D-optimal
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6.2.2 Output

Fig. 6.4 and Fig.6.5 are the output panels produced by execution of Fig. 6.3.
On Fig.6.5, lapses of constant variance are considered as plateaus when they are equal or
greater than the minimal lapse of constant variance. Note that experiment support
points can be interactively added inside the plateaus.
The simulated optimal times are noted by squares on the curve and listed below the plot.

Figure 6.4: Output panel number 1 in task Simulation of an optimal sequential

sampling, method D-optimal
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Figure 6.5: Output panel number 2 in taskSimulation of an optimal sequential

sampling, method D-optimal

At bottom of Fig. 6.5, the simulated optimal times where the future data must be observed
are given.
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6.3 Method SIVIP

This is a more sophisticated method because the optimal times are dynamically determined
depending on the preceding observations.

6.3.1 Input panel

Fig. 6.6 is an example of input panel with Baranyi-Roberts model selected. An observation
dataset is required for this method. Here, it has been previously simulated by the task
Simulation of an observation dataset (see Section 7).
Unlike the task Parametric identification, no time step is required here. The compu-
tational time step is the least of the greatest common divisors between consecutive data
times (i.e the value of the proposition in the task Parametric identification).

Figure 6.6: Input panel in task Simulation of an optimal sequential sampling,
method SIVIP
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6.3.2 Output

For every optimal time throughout the period, and for each parameter, the percentage
of the total sensitivity index (TSI) ([Gauchi and Vila (2011)], [Gauchi and Vila (2013)])
and the explanation percentage (R2%) of the polynome function of the model parameters
(mumax, lambda, . . . ) are plotted as calculation goes along. Each time, except for the last
one, the next optimal time is noted by a square on the TSI plots : it is located at the next
greatest TSI value (Fig. 6.7 and 6.8). At last, all the simulated optimal times are displayed
(Fig. 6.9).

Figure 6.7: Output panel number 1 in task Simulation of an optimal sequential

sampling, method SIVIP
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Figure 6.8: Output panel number 3 in task Simulation of an optimal sequential

sampling, method SIVIP
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Figure 6.9: Output panel in task Simulation of an optimal sequential sampling,
with SIVIP method: optimal times



Chapter 7

Simulation of an observation dataset

7.1 Function

This task simulates an observation dataset according to a model and its parameters values.
The simulated dataset can be stored in a file for further analysis.

7.2 Input

The input panel of this task is Fig. 7.1.

• Frame 1, Fig. 7.1

– Observation times are the times where an observation should be simulated.
You can either,

∗ enter the times through the FILTREX interface. Select KEYBOARD : a win-
dow opens in which you type in the times,

∗ previously store the times in a file. Select FILE : browse your folders and
select the file in which are stored the times (ASCII text file, a value per
line),

∗ make the times regularly spaced generated. Select EQUIDISTANT : “Number
of times” values will be generated between 0 and “Maximal time” (Maximal
time and Number of times are boxes in frame 2).

• Frame 2, Fig. 7.1

– Maximal time and Number of times are input in case of equidistant times. In
the other cases, they are automatically filled in according to the given times.

– Number of replications is the required number of replications of each obser-
vation.
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Figure 7.1: Input panel in task Simulation of an observation dataset

– %NOISE of the log10(CFU/ml) is used to calculate the gap between the repli-
cations and the theorical observation.

– Reference mass is the amount of analyzed quantity (second column in the ob-
servation dataset files, see Section 3.2). Its value is fixed for all the observations.

– Seed is the random seed used when generating the replications.

• Frame 3, Fig. 7.1 or Fig. 7.2

– Uniform sampling. The gap between replications and theorical observations
is calculated from uniformly distributed pseudorandom integers. Their upper
bound depends of %noise and reference value (constant variance) or power

coefficient (nonconstant variance).

When there is bias, a quantity proportional to %reference bias (constant vari-
ance) or % bias (nonconstant variance) is added to the gap.
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Figure 7.2: Frame 3 of input panel in task Simulation of an observation dataset,
when non constant variance is selected

– Normal sampling. The gap between replications and theorical observations
is then random numbers from the normal distribution with mean parameter 0
and standard deviation proportional to %noise and reference value (constant
variance) or power coefficient (nonconstant variance). The gap is modified
as above when there is bias.

Note : there is no biais when %reference bias or % bias is equal to 0.
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7.3 Output

Theorical observations and simulated data are plotted. Example Fig.7.3.

Figure 7.3: Simulated dataset with Baranyi-Roberts model, uniform sampling and constant
variance

The simulated dataset is stored in a file by using the Save -> Save observations button
located in the top bar. This file is in the format described at Section 3.2 and so can be
used as input in the other tasks.
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[Rossi and Vila (2005)] Rossi, V. and Vila, J.P. 2005. Approche non paramétrique du fil-
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[Šimandl and Královec (2000)] Šimandl, M. and Královec, J. 2000. Filtering, prediction
and smoothing with Gaussian sum representation. In Proceedings of the IFAC 12th

Symposium on System Identification. Santa Barbara, USA.
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Appendix A

Technical details on FILTREX
mathematics

A.1 Introduction to a nonparametric particle filter-

ing approach

As previously mentioned, the main aim of filtering is to estimate the probability distribu-
tion functions of xt and that of the unknown parameters θ, conditional on the past values
of the output variables up to time t, from a Bayesian point of view. We will assume that
these distributions are absolutely continuous and will attempt to estimate their densities,
pt(x, θ|y1, . . . , yt), pt(x|y1, . . . , yt), pt(θ|y1, . . . , yt) and possibly the unknown parameter val-
ues, even if the distribution Gt(.|x, θ) is analytically unknown (but allows simulations of
yt from x and θ values).

The nonparametric particle approach we consider for this purpose has already been com-
pletely described in [Rossi (2004)] and [Rossi and Vila (2005)], [Rossi and Vila (2006)] for
two of these nonparametric filters, with full proofs of convergence. We refer to these pa-
pers for details and extensions ([Vila (2011)], [Vila (2012)]). We will restrict the present
description to the principles of the Resampled-Convolution filter (R-CF), the most efficient
filter in this family.

Assumptions
Let

• px0 be the known probability density of the state variable vector at time t = 0.

• pθ0 be a given prior density for θ ∈ Θ, non zero for θ∗, the true unknown values of the
parameters.

• y1:t = (y1, . . . , yt) (notation).
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A.2 The R-CF Algorithm: an overview

Let us first note that the unknown static parameters θ can be considered as special state
variables by just introducing the parameter invariance, θt = θt−1 i.e. θt ∼ δθt−1(.), as a new
state equation into model (1.1), where δθt−1(.) is the Dirac probability measure charging
θt−1.

Let us note also that the conditional density pt(xt, θt|y1:t) to be estimated, is such that

pt(xt, θt|y1:t) ∝∫
IRt(d+p)

[ t∏
j=1

gj(yj|xj, θj)qj(xj|xj−1, θj−1)11θj−1
(θj)

]
px0p

θ
0dx0, . . . , dxt−1dθ0, . . . , dθt−1

(A.1)

with similar expressions for its marginals pt(xt|y1:t) and pt(θt|y1:t).

Let Kx
hn
, Kθ

hn
and Ky

hn
be symmetric, positive kernel functions of dimension d, p and s,

respectively, with common scalar window-width parameter hn (this last assumption could
be relaxed). Ky

hn
will be taken as: Ky

hn
(w) = 1

hsn
Ky( w

hn
), w ∈ IRs, where Ky(.) is a

basic Parzen-Rosenblatt kernel ([Parzen (1962)]) of dimension s, so that Ky(.) is bounded,

positive, symmetric, lim
||w||→∞

||w||sKy(w) = 0 and

∫
Kydλ = 1, where λ is the Lebesgue

measure. Idem for Kx
hn

and Kθ
hn

, with respect to Parzen-Rosenblatt kernels Kx(.), Kθ(.)
of dimension d and p, respectively.

A given number n of particles are simulated at each time t, according to the following
recursive scheme that obeys the classical two steps of filtering:

• t = 0: for i = 1, . . . , n, let x̄i0 ∼ px0 , θ̄i0 ∼ pθ0.

• t > 0:

◦ Prediction step: simulation of n particles.

For i = 1, . . . , n

∗ if t = 1: let xi1 ∼ q1(.|x̄i0, θ̄i0), θi1 = θ̄i0, yi1 ∼ g1(.|xi1, θi1).

∗ if t > 1: let (x̄it−1, θ̄
i
t−1) ∼ pnt−1(x, θ|y1:t−1),

and xit ∼ qt(.|x̄it−1, θ̄
i
t−1), θit = θ̄it−1, yit ∼ gt(.|xit, θit).

◦ Updating step (Bayes Formula kernel approximations):
Estimation of the conditional probability densities and expectations
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pnt (x, θ|y1:t) =

∑n
i=1K

y
hn

(yt − yit)×Kθ
hn

(θ − θit)×Kx
hn

(x− xit)∑n
i=1 K

y
hn

(yt − yit)
(A.2)

pnt (x|y1:t) =

∑n
i=1K

y
hn

(yt − yit)×Kx
hn

(x− xit)∑n
i=1K

y
hn

(yt − yit)
(A.3)

pnt (θ|y1:t) =

∑n
i=1K

y
hn

(yt − yit)×Kθ
hn

(θ − θit)∑n
i=1K

y
hn

(yt − yit)
(A.4)

x̂nt =
1

n

n∑
i=1

x̄it and θ̂nt =
1

n

n∑
i=1

θ̄it (A.5)

◦ t = t+ 1

• Go back to step t.

Remark 1 From a practical point of view, the generation of the n particles (x̄it, θ̄
i
t) ∼

pnt (x, θ|y1:t) at time t+1, does not require formal simulations according to the just estimated
density (A.2): These particles can be easily obtained by sampling from the population of n

particles {(xit, θit)} according to a multinomial with weights
{ Ky

hn
(yt − yit)∑n

i=1 K
y
hn

(yt − yit)

}
, followed

by addition of random perturbations according to the density corresponding to the kernel
Kx
hn
Kθ
hn

.

Remark 2 Formula (A.2) results from the kernel estimation of the density

pt(x, θ|y1:t) =
pt(x, θ, yt|y1:t−1)

pt(yt|y1:t−1)
, by noticing that the n particles {xit, θit, yit} are conditioned

by y1:t−1. Similar remarks apply to (A.3) and to (A.4).

Remark 3 The previous conditional density estimate pnt (x, θ|y1:t), can be seen as an SMC-
based estimate of the following approximation of the true conditional density pt(x, θ|y1:t):
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p̂t(x, θ|y1:t) =

[ ∫
IR2d+2p+s

pt−1(xt−1, θt−1|y1:t−1)qt(x̌t|xt−1, θt−1)11θt−1(θ̌t)gt(y̌t|x̌t, θ̌t)

Ky
hn

(yt − y̌t)Kx
hn(x− x̌t)Kθ

hn(θ − θ̌t)dxt−1dθt−1dx̌tdθ̌tdy̌t

]/
[∫

IR2d+2p+s

pt−1(xt−1, θt−1|y1:t−1)qt(x̌t|xt−1, θt−1)11θt−1(θ̌t)gt(y̌t|x̌t, θ̌t)

Ky
hn

(yt − y̌t)dxt−1dθt−1dx̌tdθ̌tdy̌t

]
(A.6)

• with x0 ∼ px0(.), θ0 ∼ pθ0(.) and x1 ∼ q1(.|x0, θ0), θ1 = θ0.

Similar remarks can be done for the pdf estimates pnt (x|y1:t) and pnt (θ|y1:t).

Remark 4 This convolution particle filter algorithm can be compared with recent Sequen-
tial Monte Carlo approaches that sample from Approximate Bayesian Computation ap-
proximations of the successive target densities of interest ([Dean et al. (2011)]). This the-
oretical and numerical comparison is outside the scope of the paper and is referred to
in another article to come. Let us just say here following [Jasra et al. (2012)], that re-
placing the kernel functions Kx

hn
and Kθ

hn
with Dirac masses, and Ky

hn
with 1IAε,yt where

Aε,yt is an ABC ε-controlled acceptance region, leads to a well-known SMC-ABC algo-
rithm ([Del Moral et al. (2012)]). In the present approach, the kernel functions are not
adapted with such an ε but with the bandwidth parameter hn to ensure convergence of the
pdf estimates for any t > 1 as n grows to infinity, as shown in the following two theorems.

A.2.1 L1 a.s. convergence properties of the R-CF filter

Theorem 5 For any t > 1, if the pdf pt(y|y1:t−1) is continuous and strictly positive at yt, if
there exists M > 0 such that pt(y|xt, θ) ≤ M , and if
Var[xt, θt|y1:t] exists and is bounded, then


limn→∞

nhs+d+pn

logn
=∞

hsn = O(n−α/2),
0 < α < 1

=⇒

limn→∞ ‖pnt (x, θ|y1:t)− pt(x, θ|y1:t)‖L1 = 0 a.s.
limn→∞ ‖pnt (x|y1:t)− pt(x|y1:t)‖L1 = 0 a.s.
limn→∞ ‖pnt (θ|y1:t)− pt(θ|y1:t)‖L1 = 0 a.s.

limn→∞

∣∣∣x̂nt − IE[xt|y1:t]
∣∣∣ = 0 a.s.

limn→∞

∣∣∣θ̂nt − IE[θt|y1:t]
∣∣∣ = 0 a.s.

with
∥∥Φ(z)

∥∥
L1

=

∫ ∣∣Φ(z)
∣∣dz, for an integrable function Φ(z).
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Proof: [Rossi (2004)]; [Rossi and Vila (2005)], [Rossi and Vila (2006)].

Remark 6 Bounds for the corresponding expected L1-discrepancies have also been charac-
terised under some additional assumptions on the joint pdf
pt(x, θ, y|y1:t) and the kernel functions Kx

hn
, Kθ

hn
and Ky

hn
. Under these assumptions, for

any t > 1:

E
[
‖pnt (x, θ|y1:t)− pt(x, θ|y1:t)‖L1

]
≤ (2t − 1)

[
Ot(hn) + Ot

(
(nhs+d+p

n )−1/2
)]

(A.7)

Similar bounds exist for ‖pnt (x|y1:t)− pt(x|y1:t)‖L1 and ‖pnt (θ|y1:t)− pt(θ|y1:t)‖L1.

A.2.2 Almost sure punctual convergence of the R-CF filter

Theorem 7 For any t > 1, if the pdf pt(y|y1:t−1) is continuous and strictly positive at yt
and if there exist M1 > 0 such that pt(x|xt−1, θ) ≤ M1, M2 > 0 such that pt(y|xt, θ) ≤ M2

and M3 > 0 such that pt(θ|y1:t) ≤M3, then{
hn = O

(
n−β/(s+d+2p)

)
0 < β < 1/2

=⇒ limn→∞ p
n
t (x|y1:t) = pt(x|y1:t) a.s. (A.9)

limn→∞ p
n
t (θ|y1:t) = pt(θ|y1:t) a.s. (A.10)

Proof: [Vila (2012)].

A.3 Optimisation of the nonparametric particle fil-

tering

To use the R-CF filter on a given time interval [0, τ ], the output observation times do not
need to be consecutive but can be restricted to a subset t1 < t2 < . . . < tj < tj+1 < . . . < t

H

with t1 ≥ 1 and t
H
≤ τ . The filter convergence properties are maintained if between tj and

tj+1, the n particles {xi, θi} are simply updated according to: xit+1 ∼ qt+1(.|xit, θit), θit+1 =
θit, i = 1, . . . , n, for tj ≤ t ≤ tj+1 − 1. At time tj+1 a new observation ytj+1

is available and
density estimates ptj+1

(x, θ|yt1 , . . . , ytj+1
), ptj+1

(x|yt1 , . . . , ytj+1
) and ptj+1

(θ|yt1 , . . . , ytj+1
) are

estimated as usual, and the filtering process continues.
At any time t during the filtering process, all the information about the unknown param-
eters θ is provided by their probability density function, conditional on the past observed
output values, pt(θt|yt1 , yt2 , . . . , ytT ), with tT being the last observation time before time
t. Given a filtering time interval [0, τ ] and a given number H of observation times, it is
then possible to determine the sequence of observation times 0 < t1 < t2 < . . . < t

H
≤ τ

that optimises the parameter identification in some way, for example, by providing the
thinnest conditional density function. From an information theory point of view, this op-
timal design problem can be restated in terms of output sensitivity with respect to the
parameters. It is then possible to look for the sequence t1, . . . , tH which maximizes some
output sensitivity criterion. However, in the case of on-line filtering, experimenters often
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prefer to follow a safe step-by-step adaptive approach rather than a full batch approach on
a given interval [0, τ ]. This led us to consider a sequential optimal time design procedure
on a sliding horizon.

A.4 On-line time optimal design algorithm

This approach relies on other sensitivity indices that are easier to compute: the recently
developed total sensitivity indices, known as TdSI-VIP, typically with d = 2
([Ellouze et al. (2010)] and [Gauchi et al. (2010)]), with values between 0 and 100 %, sum-
ming to 100 ([Gauchi et al. (2010)] for a full definition and method of computation). These
indices will be referred to as SIVIP in the text. In this approach, after an observation has
been recorded, the SIVIP are systematically computed for all next possible future times
of observation. Such indices are computed for each parameter, leading to a bundle of p
sensitivity curves. The next optimal observation time is then chosen as the time where
the first maximum occurs, regardless of the curve. After the new observation has been
recorded, a new set of SIVIP for all next possible future observation times is computed,
giving a new bundle of sensitivity curves. The next observation time is then determined as
previously, and so on. See the illustration given in chapitre 6.3.2 for the Baranyi-Roberts
model filtering.

A.5 A nonparametric particle estimation of a Bayes

factor

The Bayes factor ([Jeffreys (1961)]; [Kass and Raftery (1995)]) is one of the most efficient
tools to discriminate between two competing models. However, its estimation can be
troublesome and is now generally performed through Monte Carlo Markov Chain (MCMC)
procedures ([Bartolucci et al. (2006)] for a review). Moreover, these procedures rely on
the knowledge of the output variable probability density function of each model and are
generally intractable when these densities are not available, as in the case of the nonlinear
state-space models that we consider here. As we will see, the nonparametric particle
filtering approach can easily overcome this drawback and leads to a consistent estimate of
the Bayes factor (BF) between two state-space models. This nonparametric particle BF
estimation as been described in [Vila and Saley (2009)].

A.5.1 The Bayes factor: an overview

Let M1 and M2 be two competing models and Θ1 and Θ2 their respective parameter spaces.
Given an observation set Y = yt1 , . . . , ytH = yt1 :t

H
, the BF between M1 and M2 is defined

as:
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B12 =
p1(Y )

p2(Y )
with pi(Y ) =

∫
Θi

pi(Y |θ)pi(θ)dθ i = 1, 2 (A.11)

where pi(Y |θ) and pi(θ) are the likelihood function and the parameter prior density for
model Mi, i = 1, 2. pi(Y ) is the marginal likelihood of model Mi. As can be seen, it is
also the normalisation constant of the posterior density pi(θ|Y ).
The decision rule is to select model M1 when B12 >> 1, and model M2 when B12 << 1.
See [Kass and Raftery (1995)] for an interpretative scale of this ratio.

A.5.2 A non-likelihood-based BF estimation

This estimation relies on independent nonparametric estimations of both terms of the ratio
B12. According to [Dawid (1984)], let us first note that for each model:

p(Y ) = p(yt1 )Πj=H−1
j=1 p(ytj+1

|yt1 :tj
).

Under the assumptions of Theorem 3.1, as n tends to infinity, it can be shown ([Vila (2012)],
[Vila and Saley (2009)]) that an almost sure convergent nonparametric particle estimator
of p(ytj+1

|yt1 :tj
) is given by:

pn(ytj+1
|yt1 :tj

) =
1

n

n∑
i=1

Ky
hn

(ytj+1
− yi

tj+1
),

in which the yi
tj+1

, i = 1, . . . , n are particles generated as in the R-CF algorithm.

Under the same assumptions, for each model, an a.s. nonparametric convergent estimator
of its marginal likelihood, p(Y ), is then given by:

pn(Y ) = pn(yt1 )Πj=H−1
j=1 pn(ytj+1

|yt1:tj
)

Now let Bn
12 =

pn1 (Y )

pn2 (Y )
, where pn1 (Y ) and pn2 (Y ) are the marginal likelihood nonparametric

particle estimators of model M1 and model M2, respectively.

Theorem 8 Under the assumptions of Theorem 3.1, as n tends to infinity, Bn
12 is an a.s.

convergent nonparametric particle estimator of the Bayes factor B12 between model M1 and
model M2.

Proof: [Vila and Saley (2009)].

Remark 9 This convolution particle filtering estimate of the Bayes factor relies on a suffi-
cient summary statistics - the data themselves - and is not penalised by a lack of confidence
similar to that which usually impairs ABC Bayes factor estimates ([Robert et al. (2011)]).

See in Section 5.2 an application to microbiological model comparison between the Baranyi-
Roberts model ([Baranyi and Roberts (1995)]) and the Rosso model ([Rosso (1995)]).
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A.6 Conclusion

The probability distribution functions of the output variables of a dynamic system modelled
by a hidden Markov chain or a nonlinear state-space model are frequently unknown. This
limits the use of powerful statistical approaches of system identification such as particle
filtering, as well as that of parameter inference methods (e.g., likelihood ratio test) or model
comparison methods such as likelihood-based informational criteria (AIC, BIC, etc.) and
MCMC-based Bayes factor estimation. To restore the interest of these methods in this
context as much as possible, we considered combining them with a recent nonparametric
particle filtering approach. We showed, in particular, how a Bayes factor, one of the
most powerful model discrimination tools, can be consistently estimated by using this
nonparametric approach. Other statistical issues such as optimal design of observation
times, state variable probability density predictions and parameter change detection tests
have also benefited from this coupling in the same context.



Appendix B

Developer Guide

B.1 Package structure

• Package structure is described in file Contents.m.

• Installation, way of use, available examples are described in file ReadMe.txt

• Changes in versions are explained in file Changes.txt

• Identification, authors and contributors are cited in the file DOC/aboutFILTREX.txt

B.2 Checking installation

Actual and expected results can be compared by executing programs located in RUNTESTS.

• Check task Parametric Identification

1. The program RUNTESTS/testIdentification.m launches the task on previ-
ously saved projects (files in EXAMPLES/PROJECTS/IDENTIFICATION whose name
include “test”) and compares actual results and saved results. The output of
this comparison appears on the command window. Checking process may be
time consuming.

2. The files located in the directory RUNTESTS/RESULTTESTS contain the actual
results. They can be destroyed if no difference is found. Otherwise, restore
them on one hand, restore the corresponding reference files, on the other hand,
and compare the output.

• Check task Dynamics Comparison of two Models with the Bayes Factor
Same procedure as above, by replacing RUNTESTS/testIdentification.m by
RUNTESTS/testCompar.m.

63
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• Check task Simulation of an Optimal Sequential Sampling
Same procedure as above, by replacing RUNTESTS/testIdentification.m by
RUNTESTS/testStrat.m. Warnings of type:
“The time X is too close to the preceeding one ...”
can be ignored.

B.3 Make a change

Each change in the source code must be described in the file Changes.txt. Version number
must be increased in the files FILTREX.m and DOC/aboutFILTREX.txt (Careful: the version
is indicated twice in this file). Eventually, add your name into the list of contributories.

B.3.1 Model parameter valid or default values

Modify the file SRC/ROUTINES/init Basemodeles.m (see paragraph 4, in Section B.4.1).

For example, to modify the valid bounds of the parameter mumax in the model BaranyiRoberts,
change the value of DF.BaranyiRoberts.mumax. To modify its default values, change the
value of init.BaranyiRoberts.mumax.

B.3.2 CV valid or default values

Modify the file SRC/ROUTINES/init CVs.m. The valid bounds are CVs.DF and the default
values are CVs.valparamS.

B.3.3 Filter parameter valid or default values

Modify the file SRC/ROUTINES/init Filtre.m. The valid bounds are Filtre.DF and the
default values are Filtre.valparamS.

The parameters of the task Simulation of an Optimal Sequential Sampling are defined in the
file SRC/STRATEGY SIMULATION/private/init Simul.m. The valid bounds are Simul.DF.
The default values are Simul.valparamD.

B.3.4 Default folder of the user files

In the file startup.m, the variable mydir is set to the default top folder of DATA and
PROJECTS. It is initialized to EXAMPLES. To distinguish your own files from the pro-
vided ones, set it to USER.
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B.4 Make an addition

B.4.1 Add a model

1. Create the Matlab program
Create a file <modelname>.m in SRC/DYNAMICS: it should be the program which cal-
culates the model and its derivative relatively to time. The file BaranyiRoberts.m

can be a pattern.

Note:

• if the model returns ln(Nt) (neperien logarithm of Nt), <modelname> should
begin with “Ln”;

• if the model returns log10(Nt) (decimal logarithm of Nt), <modelname> should
begin with “Log”;

• if necessary, modify the file SRC/ROUTINES/model decroit: the function should
return 1 when the model is decreasing, 0 otherwise.

2. Create the C program
Create the C program which calculates the model in a file C<modelname>.c located
in SRC/STRATEGY SIMULATION/C. The file CBaranyiRoberts.c can be a pattern. No
need to calculate derivative.

Note: this file is required for simulating an optimal sequential sampling, only.

3. Create the pdf model description
In DOC/DYNAMICS, create a pdf file, named <modelname>.pdf which lays out the
model equation and plots its general form. It is intended to help the user to choose
a model when he clicks on the button Dynamics > Help about Equation model.

Note: if no such file is found, a message is issued but without consequence on
execution.

4. Define default and valid range parameter values
In file SRC/ROUTINES/init Basemodeles.m, add the model and its parameters. For

each parameter, you have to indicate:

• the range of its valid values in DF.<modelname>.<parametername>

• the range of its default values in init.<modelname>.<parametername>

• its default values, when it is fixed in valparamS.<modelname>.<parametername>

• its noise, in initbruit.<parametername>

• its default unit, when it is time dependent, in type.<parametername>
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5. Define the valid range of response value
Model output can be restricted inside given bounds when simulating an optimal
sequential sampling, by Sobol-Saltelli method.
See file SRC/STRATEGY SIMULATION/private/init modeles repvalides.m.

B.4.2 Add a task

1. Create the Matlab programs in a subfolder of SRC

2. Add the title of the task into the choice menu of FILTREX.m

3. Add a call to the task main program into SRC/GO.m
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