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Chapter 1

What is nls2

nls2 is a set of S functions and programs to estimate the parameters of a non-linear
regression model over a given set of observations.

The regression function can be defined explicitly as a function of independent variables
and of unknown parameters or it can be defined as the solution of a system of differential
equations. Heteroscedasticity of errors can be taken into account by modelling the variance
function.

Several additional tools are included: plotting functions, functions to analyze series of
estimations, calculate confidence intervals and confidence regions for parameters and for
functions of parameters, and functions to study calibration. The description of the models
can be provided by using a symbolic syntax.



Chapter 2

Statistical and numerical methods

2.1 Parametric nonlinear regression model

The observed variable Y depends on m independent variables x through a known function
f which depends on p unknown parameters 6. For each value of z, z;, (I = 1,...,n),
the observed response is denoted by Y;. The errors r;, = Y; — f(x;,0) are assumed to
be independent. The variance is assumed constant, or dependent on z;, #, and/or on ¢
unknown parameters £, through a known function v.

The following model is considered:

1/l = f(mlae) + ‘/ll/lea with Vvl = 0'2’0(1'1,0,,6)/'1111,

where (w1, ... wy,) are known positive weights.

f is called the regression function and v the variance function.

Let (6, 3) be the estimators of (4, 8). Some regularity conditions are required for their
statistical properties (consistency, convergence in law) to be valid. For example (8, 3) lies
in a compact subset of RP x R? (or more simply, each parameter varies in a bounded
interval), f and v are twice continuously differentiable with respect to (6, 3).

nls2 offers several methods for estimating the parameters, depending on the assump-
tions on the error distribution. The parameters (6, 3) can be estimated simultaneously
or alternatively. In addition, several other quantities are calculated: asymptotic variance
matrix, residuals, ...

This manual gives only a brief description of the statistical and numerical methods
used by nls2. Further details can be found in [3, 6, 9, 13, 1, 2, 18, 17, 5, 14, 10, 12, 4, 15],
for example. Examples of pratical use are shown in [16].

A symbolic computations program is provided to simplify the description of functions
f and v. From a symbolic description of f and v, it generates syntaxical trees and C-
programs. The user can then choose between these two ways of evaluation.

It is the same thing when the function f is defined as the solution of a system of
ordinary differential equations (or as a function of the solutions of the system): the user
needs only describe the system of differential equations in a symbolic way. To carry out its
numerical integration, nls2 calls the program Isoda from the ODEPACK [11, §] library.



2.2 Assumptions on the variance of the observations

Several estimators (or estimating methods) of (6, §) are available. Choosing between them
depends essentially on assumptions made on their variance and error distribution.

Note Parameter o2 is optional when describing the error variance. If Vi = o%v(z;, 0, 8) /w,
then o2 is estimated by the residual variance or is assumed known. But o2 can also be
estimated as a component of the vector of parameters § (see paragraph 2.7.1), in which
case its asymptotic variance is computed, similarly to the other parameters.

Alternative assumptions on the variance function These assumptions will subse-
quently be refered to by using the key-words given in parentheses.
The variance of Y; may be any of the following types:

e VarY; = o? (CST)
o VarY, = o%/w, (SW)
e VarY, = c%v(x,0)/w (VST)
o VarY, = v(xz, B)/w (VB)
o VarY; = o®v(z;, B)/w; (VSB)
o VarY; = o®v(z,0,8)/w, (VSTB)
o VarY; = v(z;,0,8)/w (VTB)
e Case of a replicate experimental design (VI

For each distinct value of independent variables  and weights w, several replications
(more than 2) of Y are observed. The model is then described in the following way:

Yij = f(2:,0) + V;}%ey;
1 varying from 1 to k, j from 1 to n;, where n; is the number of replications of Y

when z = z;. The total number of observations is n = >>;_; | ni.

VarY; may then be assumed to be equal to o7, which is unknown and estimated by
the empirical variance (see paragraph 2.3.5).

2.3 Methods for estimating the parameters
_ o5, v Vi
Let fl - f(xlag)a 89’ 90 ; (9,3’
with respect to 8 and 8, [ =1,...n.

The estimating methods available in nls2 are described in the following paragraphs.
These methods will subsequently be refered to by using the key-words given in parentheses.

be the p X 1 or g X 1 vectors of derivatives of f; and V;



2.3.1 Estimation of (6, )

e Maximum likelihood

The error distribution is assumed to be gaussian.
(6. ) = Argmin — log Vu (6, )
,3) = Argmin — lo ,B),
T n 5"
where
M= M=

e Modified least squares
(9, B) is defined as the solution of the following system:

nlafl _
gvae f =0

" oV,
EZ:V_E)_ fl) —Vl) =0

2.3.2 Estimation of 0

If B8 appears in the variance function, then £ is set to a fixed value.

e Maximum likelihood
The error distribution is assumed to be gaussian.

~ —2
0= Arg n%in — log V,(6, B)

where

—2
TIOgVn(O,ﬂ) log(27) + — ZlogV-l— Z
= iz

e Weighted least squares

§:Argmain$' =—) —

3
S

e Ordinary least squares

n
6= ArgmlnT = Z

1
n

l

Vz

%2 logV,, (0, 8) = log(27) + ZlogV + - Z (Yl;,ifl)Q

- f)?

(MLTB)

(MLSTB)

(MLT)

(WLST)

(OLST)



e Modified least squares (MLST)

8 is defined as the solution of the following system:

“ afl
=Y —fi)=0
nga Y- fi

o Weighted least squares, using the empirical variances as weights (VITWLS)
N 1 k 1 n;
0=A i - —
rg mamu = Z 72 2
=1 "1 3_1

where 3 is the empirical variance calculated with replications (see paragraph 2.2,
variance type VI):

1 &
Q= (Vi - Yi)?, (2.1)
n' M
and where Y;. = 37, Yij/ni, i =1,...k, j=1,...n;

No specific assumption is made on V; which is estimated by s?.

2.3.3 Estimation of

0 is set to a fixed value.

e Ordinary least squares (OLSB)

n

B = ArgminRa(p) = > (V- 12 -2

=1

e Modified least squares (MLSB)

B is defined as the solution of the following system:

) Viﬁ%—‘g(m AP W) =0

=1

2.3.4 Estimation of (f, 3) in alternate steps

The parameters (6,3) may be estimated alternatively. For example, 6 is estimated by
OLST in the first step, (8 is estimated by MLSB in the second step, then 6 is estimated by
MLST in the third step. When this option is chosen, it is not possible to estimate (6, 3)
simultaneously in any step.



2.3.5 Estimation of o2

e If o2 appears in the description of the variance of Y, it may be estimated by different

ways:
— 02 is assumed to be known (KNOWN)
— in case of a replicate experimental design
k n
1 v
* 02 may be estimated by s? = — Y;: — ;)% VARREP
2 2300~ ) (VARREP)
x or o2 is estimated by the empirical variance s? (VARINTRA)
— 02 is estimated by the residual variance (RESID)

52 = liw (Yl_f(mlaé\))2

1 =
n =1 ’U(IEl,a,IB)

e When o2 does not occur in Var(Y;), o2 is ignored. (IGNORED)

bl

2.4 Description of the estimating equations

The numerical estimation is in every case equivalent to solving a system called the esti-
mating equations: £,(0,) = 0, where &, = BT(6,8) (Z(Y) —n(0,8)), in which Z(Y) is
the nh x 1 vector of sufficient statistics, 7(6, ) is the expectation of Z(Y'), and B(0, ) is
a nh x (p + q) matrix.

Let Fj be the n x p matrix of derivatives of f with respect to 8, calculated at x1, ... x,:

(Fp)ia = %, for I =1,...n, a=1,...p. Similarly, let V4 and V3 be the n x p and

n X g matrices of derivatives of V' with respect to 0 et .

Let A(V) be the diagonal matrix with components Vi,...V;, and A(f) the diagonal
matrix with components fi, ... f,. Let f be the n x 1 vector with components f1, ... fn, f2
the n x 1 vector with components fZ,... f2, V the n x 1 vector with components Vi, ...V,

and Y, Y2 the n x 1 vectors with components Y7,...Y, and Y?,... Y2, respectively.

The estimating equations depend on the method used.

MLTB:
sr_ [ FEAW) T - VIADAW)? VEAWV) /2
IR NGNS VIAW) /2
(Y i
~(2) = (sls)
MLSTB:

v EFAW) 0 (Y N f
b= ( —()I'/ﬂTA(f)A(V)*Q VIAV)2/2 ) 7= ( V2 ) T ( V+ ) '



MLT:

WLST:
BT =FJAWV)™ Z=Y n=Ff
OLST:
BT =F] Z=Y n=f
MLST:
BT =FfAWV)™ Z=Y n=7Ff
VITWLS:

BT WA 2=V n=],
where A(3?) is the diagonal matrix with components s?, ... s2.

OLSB:
BT:( ~VIA(f) V]2 ) Z = ( YYQ ) n= (
MLSB:

BT = ( -VFA(HAW) 2 ViAW) ?2) Z= <

2.5 Asymptotic variance matrix

At the user’s request, nls2 calculates the asymptotic variance matriz.

Let D be the nh x (p+¢q) matrix of derivatives of  with respect to (8, 8): D = (1s,73),
where 7)9 and 7 are the nh x p and nh x ¢ matrices of derivatives of n with respect to 6
and .

Let W = BTD/n, and let Varz be the variance matrix of Z:

. Y
01fZ:<1~/2>,

Vars — ( AWV) A(fig) + 2A())A(V) )
ary

A(fis) + 2A(HAV)  A(fia) +4A(F)?A(V) — A(V)? + 4A(f)A(jis)
p3,; and pg; are the third and fourth order moments of Y;. fi3 is the vector with
components g3 1,...u3, and A(fi3) the associated diagonal matrix. Notations for
fig and A(fi4) are similar.



¢« if Z=Y,Varz = A(V).
Then, the asymptotic variance matrix is:

BT B
AsVarAA = _W_17Varz
n

35 Wt (2.2)

n

For some estimators ( for example, the maximum likelihood estimators), matrices W,
B and Vary verify the following equation: W~! = BVarzBT/n. By extension, such
estimators are called efficient. In this case, calculation of the asymptotic variance matrix
simplifies to: AsVarN\ =w-1 /n, and there is no need to calculate Vary.

The asymptotic variance matrix is estimated by calculating W, B and Varz at (5, E) The
third and fourth order moments can be estimated by the following different ways (these
methods will subsequently be refered to by using the key-words given in parentheses).
e If the error distribution is assumed to be gaussian, (MUGAUSS)
4 =0and fiy; = 317;2, for [ =1,...n where 172 is an estimation of V.

1. I V; = o2v(21,0, 8) /w;, then V; = & v(acl,O B)/w;, where 32 can be calculated
by different ways, depending on the user’s choice (see paragraph 2.3.5).

2. If W = ’U(.’El,@,ﬂ)/’lﬂl, then ‘/;2 = ’U(‘Z‘laé\a B)/wl
e The moments may be estimated using the residuals (MURES)
Let 7 = Y; — f(x1,0):
. 1 ~  \3 ~ 1 & o4
H3g = EZ(U —7.)% and Jig; = EZ( 1 —7)%
! !

where 7. is the mean of 7.

e or, in case of an experimental design with replications, (MURESREP)
fiz; = —Z  —7.)° and fig; = —Z =)t

where 7/’71']' = Y;j — f(.’B«L, é\) .

e Finally, the moments may be known. (KNOWN)

When (6, §) are estimated alternatively

When 6 and § are estimated alternatively, 6 is estimated in each odd step starting with
the first step, B is estimated in even steps.

Let e be the number of the step. If e is odd, 6 is estimated by ée and if e is even, ( is
estimated by .. 0, or 3, is the solution of the estimating equations BI'(Z.(Y)—n.) =0.
The dimension of Z, is nhe x 1, and the dimension of B! is p x nh, if e is odd, and ¢ x nh,
if e is even.

Let N, be the number of the steps requested.



In the first step [ is assigned an arbitrary value [y. € is estimated by 51 the solution
of:
Bl (0, 0)(Z1(Y) —m.(0,80)) = 0.

The asymptotic variance matrix of 6, is defined as before by:

~ 5 B 5 ~
al,ﬂo)Varzlrg L) BLOLBO) o1 g .

1 ~ BT
AsVary = =W (61, fo) 1 (
1 n

Example let 51 the OLST estimator. Let F0,1 be the value of matrix Fj at 51, and 171,0
the vector with components V; calculated at (61, p). Then:
-1 FaT,1A(‘71,0)F0,1

n

(i)™

- 1 /e
AsVar(@y) = — (£ F,)

In the second step g is estimated by Bg defined as the solution of:
Bg(alaﬂ)(ZQ(Y) - 772(51’5)) =0.

Let EB} be the asymptotic variance matrix of 32 which would be calculated if 6 = 8;

were known:

1 ~ ~ BY(01,52)Varz, (01, 52)Ba (61, b ~

55, = “W, N8, Ba) 2 (01, B2)Varz, (61, B2) Ba( 1,ﬁ2)W2,1(91’ﬂ2)_
n n

Let 251 be the asymptotic variance matrix of 0: calculated at (51, 32):

~ o~ T B 0, B B 0, B
5, = %Wfl(Ol, 2)31 (017/82)VG’TZ17§01’182) 1(61, B2)

W (61, o).

Let W3¢ be the ¢ x p matrix defined by W5y = B2T7'72,9/n, and X9 the ¢ X p matrix
defined by X9 = B2T Covy, z,B1/n, where Covg, z, is the nhy X nh; variance matrix
matrix between Z9 and Z;.

Then the asymptotic variance matrix of Bg, is:

AsVarE2 = E§2+
B S 2 o S PO
W5 (61, B2) ( Wap(01, B2) S — =S12(01, B2) Wi (61, Ba) ) Wa (61, B2) W5 (01, B2)
-

Example let BQ be the MLSB estimator and assume that the third and fourth moments
of Y are those of a gaussian variable. 232 = %W{l(el, B2), with:

PR 1. .
W, 1(91752) = %V,@T,1,2A(V1,2) QVﬂ,lﬂ
Y19 = 0
~ o~ 1.1 - g
Wae(01,082) = %Vﬂ,l,QA(Vlﬂ) Vo,1,25

where V7 , and Vp 2 are the matrices VI et VI calculated at 51, BZ , Vi is the vector
187172 Iy ﬁ 0 )

with components V; calculated at (61, 3z).

10



In the third step 6 is estimated by 53 defined as the solution of:
B3 (6, 52)(Z3(Y) — 136, 2)) = 0.

Let 253 be the asymptotic variance matrix of 63 which would be calculated if Bg were
known:
BY (83, B2)V arz, (03, B2) B3 (3, a) Wl

1 S
25325W31(93,ﬂ2) p 5 (03,52).

If 3 does not depend on (B, which is the case for estimators WLST, OLST, MLST,
then the asymptotic variance matrix of 53 is 253 and does not depend on the estimating
methods chosen in steps 1 and 2.

If not, let 232 be the asymptotic variance of Bg which would be calculated if § = §3
were known:

Bg(03a /BZ)VG'T22 (937 52)B2(03a :82) Wfl

1.~ = ~ ~
E2:EW2 1(937182) n 2 (035182)'

)y

Let W33 be the p x ¢ matrix defined by W35 = B3T173”3/n, and as before, W54 =
BQT7'7270/n, W1(§3, BQ) = B?Dl/n

Let Y13 be the p X p matrix defined by i3 = BgTCovZS,ZlBl/n and Y3 the p X ¢
matrix, Moz = BgCovz3yz2Bg/n.

Then, the asymptotic variance matrix of 53 is written as:

2 _ _
AsVargS = 253 + Wit (W&ﬂz@ + ;(Gm — Yo3) W, 1) W3 sW;5 !,
where G13 = Z13W, 1W2,9 (these matrices are calculated at (53, 32))

Example let 53 be the MLST estimator. 73 does not depend on 5. Thus,

1/1 .- .. —1FTF973 1. ..\
AsVarg = — (5F53A(V3,2) 1F0,3) 03 e (;F(aT,:sA(‘/%,z) 1F(m) ;

with the same notations as for the preceding steps.

2.6 Numerical method

The algorithm used to solve the estimating equations is based on the Gauss-Newton algo-
rithm. The Gauss-Marquardt modification is also available.

Let (6, Bit) be the current value of (6, ) at the beginning of iteration number it. A
new value (6i1+1, Bit+1) is calculated at each iteration of the algorithm.

11



2.6.1 The Gauss-Newton algorithm

This algorithm is based on a linear approximation of 7(6, 5):
0 — 0
n(0,8) = n(0it, Bir) + D(0it, Bir) G-py |
(2

where (61, Bit) is the current value of (6, ).
Transposing this approximation into the estimating equations leaves us with the fol-
lowing linear system:

BT (63, Bit) D (0, Bi) ( Z:ZZ ) = BT (63, Bu) (Z(Y) — n(0it, Bir)-

which has to be solved for (6, 5).
The solution of this system is the Gauss-Newton approximation. Let d;; be the new
direction:

0it = %Wﬁl(oitaBit)BT(eitaﬁit)(Z(Y) — n(05t, Bit)),

then (0, B) = (0, Bit) + 6}, is the solution. One should check that these new parameter
values minimize the fitting criterion if the estimator was defined by the minimization of
a criterion. In all other cases the estimator was defined as the solution of the estimating
equations, &,(#, ) = 0, and the criterion is:

The fitting criterion is denoted by C,, where C,, is one of the following criterions: —2log V,, /n,
Sna 7;La Rn’ Q’IL
Cy, is calculated for three values of the parameters: (0;1, 5it), (0it+s, Bitrs) = (Git, Bit)+

857, and (031672, Birrss2) = Oits Bir) + 01 /2.
The optimal step is calculated by the following way:
o if Cn(0it+s, Bit+s) = inf{Cn(0it, Bit), Cn (Bit 1621 Bit+8/2), Cn (Bit+s, Bit+6) }, then
(Oit+1, Bit+1) = (Oit+s, Bit+s)-

o if Cn(0it16/2, Bitro/2) = Inf{Cr(0it, Bit), Cn(Oit15/2, Bit+6/2)s Cn(Oit+s, Bit+s) }, then the
optimal step w;; is calculated using a quadratic approximation of these 3 points, and

(Oits1, Bit+1) = (Bit, Bit) + wirdy-

o ifCy (01, Bit) = inf{Cpn(0it, Bit), Cr(Oit+5/25 Bit+6/2), Cn (it 15, Bitrs) }, then (015, Bitrs)
is calculated again: (0it15, Bitrs) = (Bit, Bit) + wedl where w, has a given value.

This correction is not allowed more than N, times.

rE 1B 20y ). 23)

o if Cn(0it, Bit) = Cn(Oitt5/2+ Bitrs/2) = Cn(Bit+s, Bit+s), then if the estimating method
is not modified least squares, (01145, Bitrs) is calculated again: (6115, Bitrs) =
(0it, Bit) + wed}, where w, has a given value. This correction is not allowed more
than N, times.

If the estimating method is modified least squares, see the paragraph 2.6.3.

12



2.6.2 Gauss-Marquardt algorithm

The Gauss-Marquardt algorithm is a modification of the Gauss-Newton algorithm: a

matrix Al is added to W at each iteration, where I is the identity matrix with same

dimensions as W, and A is a positive scalar. This modification improves the numerical

stability, especially when the starting values of the parameters are far from the solution.
The direction is then equal to:

1 -
Git = — (W (0it, Bir) + M) BT (i, Bit) (Z(Y) — n(0it, Bit)) -
Cy, is calculated for three values of the parameters: (0;1, 5it), (0it+s, Bitrs) = (Git, Bir)+

8 and (Bjy45/2, Birros2) = e, Bir) + 03 /2.
The optimal step is calculated by the following way:

o if Cn(0it+s, Bit+s) = inf{Cr(0it, Bit), Cn(Oit15/2: Bit+5/2), Cn (Oit+6, Bit+s) }, then
(Oitt1, Bit+1) = (Oir+6, Bit+o)-

o if Co(bity6/2, Bitrs/2) = Inf{Cn(bit, Bit), Cn(Oit15/2, Bitvs/2), Cn(Oit+s, Bir+s) }, then the
optimal step w;s is calculated using a quadratic approximation of these 3 points, and

(Bit+1, Bit+1) = (Bit, Bit) + wirdy-

In these two cases, the value of A decreased: A is multiplied by a given value A\
(0 <A <1).

o if Cn(0it, Bit) = inf{Cpn(0it, Bit),Cn(Oit15/2: Bit+6/2): Cn(Oit+s, Bir+s) }, the direction is
recalculated with an increased value of A: \ is multiplied by a given value Ay (A2 > 1).

This correction is not carried out more than N, times.

o ifCy(0it, Bit) = Cn(Oit15/25 Birvs/2) = Cn(Oit+s, Bit+s), then if the estimating method is
not modified least squares, and if X is less than a given maximal value, the direction
is recalculated with an increased value of A\: A is multiplied by a given value Ao
(A2 > 1). This correction is not carried out more than N, times.

Otherwise, see the paragraph 2.6.3.

2.6.3 Stopping the process

The iterative process begins with starting values of the parameters, (6y, By) and is pursued
until convergence, or occurrence of an error.

Convergence of the algorithm The process is stopped when a stopping criterion is
lower than a value fixed “a priori”, denoted by Qgtop. This stopping criterion is the norm
of the estimating equations, denoted by Q,,, see equation (2.3).

In case of Gauss-Marquardt algorithm, the value of A must be lower than an upper
bound denoted by Ajqz-

In case of a modified least squares estimator criterion, @, = C,. If the three values of
C,, obtained when calculating the optimal step are equal, and if the two conditions above
are fulfilled, then the process is stopped.

13



Stopping the process with errors

e The model calculation, i.e the calculation of functions f and v, may be impossible
starting from (0, 8) = (6y, Bo). The user has to choose new starting values.

e The model may be impossible to calculate for the value (0;11s, Bit+s) of the parame-
ters, in which case the direction is modified so that new values of the model can be
calculated:

(Oit+s, Bit+s) = (i, Bit) + Werrbit,

where we is a positive given value. At most N, trials are allowed.

e A direction that allows the fitting criterion minimization cannot be found after N,
trials.

e The number of iterations has reached a value fixed “a priori” denoted by I;qz-

2.6.4 Note on matrix inversion

For the modified least squares estimator of (0, 8), matrix W is block symmetric, i.e:

P 0
=g %)
where P is a p X p symmetric matrix, R is a ¢ X ¢ symmetric matrix, ) is a ¢ X p matrix
and 0 a p X ¢ matrix with components 0. W™ is then calculated by the following way:

Pl 0
-1 _
14 _<_R_1QP_1 R_1>.

Matrix W is symmetric for all the other available estimators.

2.7 Taking into account constraints on the parameters

The estimation under numerical constraints on the parameters or under some equality con-
straints between parameters, and the estimation for several curves (see paragraph 2.7.2),
are possible without any modification on the model. Until now, § and S8 were the set of
parameters that need to be estimated. These are called active parameters. In what follows,
we shall introduce some new terms to make the different types of parameters clearer.

2.7.1 Basic parameters

Basic parameters are the parameters that describe the model. They occur in the definition
of the functions f and v. Let ppysic and gpesic be the number of basic parameters in f and
v, respectively.

14



Examples

1. f is a logistic function, and 1, 05, 05,0, are the basic parameters:

o 0,
0)=126 T S
f(@,0) =61 + 1 + exp(03 + 641)

The model is Y = f(z,0) + ¢, with Var(e) = 02 (v(z) = 1). Then pyas;ic = 4 and
Gbasic = 0.

2. If Var(e) = 02 f(z,0)? (v(z,0,) = f(z,0)?), where 3 is an unknown parameter to be
estimated, then gpesic = 1.

In these two examples, o2 might be known, or might be estimated by the residual

variance, or by the variance calculated with replications (see paragraph 2.3.5).

3. It is also possible to introduce gz_ into the parameters defining the variance function:
Var(e) = v(x,0,8) = B1f(x,0)%. Inthat case, (61, 2) are estimated simultaneously
and Qbasic = 2.

2.7.2 Multiple parameters

In some cases, people are interested in estimating the parameters for different sets of data,
corresponding to different sets of parameters in the same model. A curve is associated to
each set of data.

In case of several curves, let us say c¢ curves, the multiple parameters are the basic
parameters repeated ¢ times. The number of multiple parameters is pmuit = € X Ppasic,
and gmuit = ¢ X Qpasic-

When o2 appears in the definition of the variance function, independently of the de-
scription of v (see example 2.), o2 is assumed to be identical for all curves.

2.7.3 Distinct parameters

Equality constraints between parameters can be introduced. The numbers of distinct pa-
rameters, pgist and qgist, are the number of multiple parameters minus the number of
equality constraints.

Examples

4. Let us consider example 1. with 2 curves. If the curves are assumed distinct, then
Pdist = Pmult = 2 X Ppasic = 8 and qg;s¢ = 0. The vector of distinct parameters is
then

(81,03,83, 61,02, 33, 2,03

where the indice identifies the parameter, and the exponent identifies the curve.
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5. If the asymptotes §; and 0y are assumed equal, pgiss = 6, and the vector of distinct
parameters is
a1l gl al gl g2 ;g2
(61.05,03,06,63,6%) ,
the vector of multiple parameters is

(61,03,03, 04, 61,03,03,62).

2.7.4 Active parameters

Different types of numerical constraints can be assigned to the parameters:
e The value of one or several parameters is fixed.

e One or several parameters must satisfy inequality constraints. In that case, a trans-
formation of their current value is carried out. Let P be one of the distinct parameters
of the regression or variance function.

If P > bpin, the transformation { = /P — by is used.
If P < bpax, the transformation { = /bmax — P is used

If bmin < P < bmax the transformation ¢ = arcsin P~ buin_ is used.
bmax - bmin
The total number of parameters to estimate, denoted by active parameters , equals the
number of distinct parameters minus the number of numerical equality constraints. The
active parameters are the distinct parameters transformed in order to take into account
the inequality constraints.
The numerical processing is carried out in the active parameters space.

Examples

6. Let us again consider example 3. and assume that the asymptote 6, is zero, and that
the parameter 31 is positive. Then pgctive = §, qactive = 2; the active parameters
appearing in the regression function are (6,63,64), and in the variance function

(Cﬁ,laBQ)a where gﬂ,l = \/,8_1

2.8 Definition of the model

The values of f, v and of their derivatives are calculated at each iteration. Symbolic com-
putations software is provided in order to save the user writing a routine which calculates
these values.

f may either be explicitly defined (see example 1.), or may be a function of the solution
of an ordinary differential equations system, denoted by odes.
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Let ¢t be the integration variable ( time for example) and consider the following odes
with N, equations:

dF,
Y = At F,...F
dt (’ 1 Neq)
Fl/(tO) = FV,O

for v = 1,... Ngg. Each of the functions F, may depend on the independent variables
z (this implies that the system to be integrated is different for each value of z), and on
unknown parameters, denoted by 0,4cs. Let F, o be the initial values of the system. F,
may be known or unknown, in which case they are considered as parameters in the model
and are denoted by 0,;.

Let T be a n x J matrix of ¢ values, and let F, (T} ¢, z;, Oodes, Oci), for v =1,... Ny, be
the solution of the system calculated at 7j 4, and possibly z; (if the system depends on )
for{=1,...Jand l=1,...n. Thus:

f(mlae) = ¢(Fu(1—'l,faxl790desaeci)ay = 1a v Neqae = ]-7 s J7 Ilaeq&) )

where 0 is the vector of parameters 6 appearing in ¢.

Examples

7. The integration variable is the independent variable; the model is a model with 2
compartments where the observed variable is the amount of product in the first
compartment. The variations of this variable are modelled as a function of time.
The initial values of the system are known.

% = —0.F + 0,F;

% = —03F + (62 + 04)Fy
Fi(ty) = Fip
Fy(ty) = Fyp.

Neg =2, Ty = @y, et J = 1. ¢(Fi(x1), Fo(z1)) = Fi(z1). The set of parameters to
be estimated 0 = 0,45 is (01,62, 603,04).

8. The integration variable is not an independent variable; the model is a model with
2 compartments where the observed variable depends on the amount of product in
the first compartment at time T,pp5e, and on another variable z (temperature, for
example). The initial conditions of the system are parameters to be estimated.

dF, _ _
~ 1 = _§yF, +0,F

P 301 + 0409

dF: _ o
d—t? = —05F + (04 + 0) F;
Fi(to) = 6,
Fy(ty) = 6o

17



Neg =2, T(1,1) = Teposen, for all I. J =1, and

A(F1(Tehosen)s Fo(Tehosen) 1) = F1(Tehosen) (1 + eXp(éT'El)'

The set of parameters to be estimated 0 = (Ociy Oodes, 0p), where O = (61,65),
Oodes = (03, 04,05,06), and Oy = 0.

Calculation of derivatives with respect to & The derivatives of f with respect
to the parameters are calculated as in the case where f is explicitly defined:

of  0p < d¢ OF,
80, 90, = OF, 00,

nls2 uses program lsoda from the ODEPAK library for calculating the values of

fora=1,...p.

F,
F, and 88 7 The odes is the set of equations defining the F,, and their derivatives with

respect to the parameters.
Description of the system to be integrated

When the initial values of the system are known F = (Fi,...Fy,,) and
0F/00%;,, = (0F1/00%,,,, .- 0FN,, /003, ,) must be calculated.
Let podes be the number of Oy4.; parameters. The following system with Neg(1 + podes)
equations must be solved for each value of z and 6,4.5:

dF,
Y = At F,...F
7 (t, F1 Neg)
N,
d OF, 0A, 2 04, OF,
= (t,Fl,. FNe + tFla---FNe) .
dt 6Hodes aeodes ‘ ,/Z 1 OF, v ! aeodes
The initial values of the system are:
Fu(tO) = FI/,O
OF,
(o) = 0
aagdes

where a = 1,... pyges and tg is the initial value of ¢.

When the initial values of the system are parameters to be estimated In
this case, F,, 0F,/00%,, and OF,/86% must be calculated by integrating the following
system with Neg(1 + podes + Neg) equations:

F,
dd_t = At F,...Fy,)
N,
d OF, 04, L 9A, OF,
= (t,F1,...Fn.) + “(t, F1,. .. FN.) 7pa—
dt 96%,,, aogdes © S OFy R
N,
d OF, i OF,
dt 907, Z_: BFVI T
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The initial values are:

F,(to) = by
8(3,2;5 (k) = 0
Sotto) = 1
(935:/ (to) = 0 si V#v

where tj is the initial value of ¢, and where v,/ vary from 1 to Ngq and a,b from 1 to
DPodes-
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Chapter 3

List of notations

3.1 Key words

active parameters: see paragraph 2.7.4.

asymptotic variance: see paragraph 2.5.

constraints: see paragraph 2.7.

curves: see paragraphs 2.7 and 2.7.2.

basic parameters: see paragraph 2.7.1.

direction denoted by d; at iteration it. See paragraph 2.6.
distinct parameters: see paragraph 2.7.3.

efficient: an estimator is efficient when the matrices W, B and Vary verify: W~! =
BVarzBT /n. See page 9.

equality constraints between parameters: see paragraph 2.7.3.

estimating equations: E,(0,3) See page 7.

fitting criterion: C,(0,3). See page 12.

Gauss-Marquardt: algorithm for estimating the parameters. See paragraph 2.6.2.
Gauss-Newton: algorithm for estimating the parameters. See paragraph 2.6.1.
independent variable: X. See paragraph 2.1.

initial values of the system: see paragraph 2.8.

integration values: T. See paragraph 2.8.

integration variable: t. See paragraph 2.8.
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multiple parameters: see paragraph 2.7.2.
numerical constraints: see paragraph 2.7.4.
odes: ordinary differential equations system. See paragraph 2.8.

optimal step: used when calculating new values of parameters during the iterative process.
See paragraphs 2.6.1 and 2.6.2.

regression function: f. See paragraph 2.1.
replications: see page 4.

response: see paragraph 2.1.

starting values of parameters: see paragraph 2.6.3.
stopping criterion: Q,(0, ). See page 13.
variance function: v. See paragraph 2.1.

weights: w. See paragraph 2.1.

3.2 Mathematical notations

AsVargE: asymptotic variance of the estimator of (0, 5). It is a (p + q) X (p + ¢) matrix.
See page 9.

B: g vector of parameters defining the variance function v. See paragraph 2.1.

Bo: starting value of 3, see paragraph 2.6.3.
ﬁ: estimation of .
Be: estimation of § at step e, when (0, §) are estimated alternatively. See page 9.

Bit: current value of § at iteration it. See paragraph 2.6.
B(#,8): nh x (p+ q) matrix describing the estimating equations. See page 7
Cn: fitting criterion. See page 12.
¢: number of curves. See paragraph 2.7.2.
D: nh x (p+ q) matrix of derivatives of 1 with respect to (6, 3). See page 8.
01z direction at iteration it. See paragraph 2.6.
e: step number when (0, §) are estimated alternatively. See page 9.

n: used in the definition of the estimating equations. n = E(Z(Y')). See page 7.
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7g9: nh X p matrix of derivatives of 1 with respect to 6. See page 8.

ng: nh x g matrix of derivatives of 7 with respect to 3. See page 8.
f: regression function. f; is the value of f(z;,0). [ varies from 1 to n. See paragraph 2.1.

f: n x 1 vector with components f1,... f,. See page 7.

f2: n x 1 vector with components f2,... f%. See page 7.

A(f): diagonal matrix with components f1,... f,. See page 7.

0f1/06: p x 1 vector of derivatives of f; with respect to 6. See page 4.

Fy: m x p matrix of derivatives of f with respect to 8, calculated at z1,...x,. See
page 7

F,: functions occurring in the odes, v varies from 1 to Ne,. F,, depends on ¢, the integration
variable, on unknown parameters 8,45, on initial values of the system, and possibly
on independent variables. See paragraph 2.8.

F,o: initial conditions of the odes, when they are known. When they are unknown,
see item 6,; (paragraph 3.2).

oF, . . .
“: vector of derivatives of F, with respect to the parameters 6,4., and possibly

00
Oci-

dF,
dt

I et maximum number of iterations. See paragraph 2.6.3.

: derivative of F, with respect to .

it: current iteration number. See paragraph 2.6.

J: number of T values for which the odes has to be integrated, in each value of z. See
paragraph 2.8.

k: number of distinct values of the pairs (z;,w;). See page 4.
Ay ALy A2y Amaz: occur in Gauss-Marquardt algorithm. See paragraph 2.6.2.

w3y third order moment of Y;. See page 8.
[i3: vector with components usi, ... t3y,-
A(fi3): diagonal matrix with components s, ... us,. See page 8.

1i3;: estimation of u3. See page 9.

pa: fourth order moment of Y;. See page 8.
[14: vector with components piq1, ... fhayn-
A(f14): diagonal matrix with components piq1, .. . 4. See page 8.

114: estimation of u4. See page 9.
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m: number of independent variables. See paragraph 2.1.
Ne¢: number of steps when the parameters (6, 3) are estimated alternatively. See page 9.
N¢q: number of equations defining the odes. See paragraph 2.8.

N¢: occurs in the iterative estimation process. See item w, (paragraph 3.2),

item Ao (paragraph 3.2) and paragraph 2.6.

Nepri occurs in the iterative estimation process. See item we,, (paragraph 3.2) and para-
graph 2.6.3.

n: number of observations. See paragraph 2.1.

n;: number of replications of Y, when z = z;, w = w;. See page 4.

nh: dimension of Z. See page 7

we: occurs in Gauss-Newton algorithm. See paragraph 2.6.1.

Werr: Occurs in the iterative estimation proccess. See paragraph 2.6.3.

wit: optimal step at the end of iteration it. See paragraphs 2.6.1 and 2.6.2.

p: number of parameters occurring in the definition of f (dimension of ). See para-
graph 2.1.
Poasict See paragraph 2.7.1.
Pmult: See paragraph 2.7.2.
Paist: see paragraph 2.7.3.
Pactive: See paragraph 2.7.4.
Podest See paragraph 2.8.

¢: gives the definition of f when f depends on the solution of an odes. See paragraph 2.8.

g: number of parameters occurring in the dimension of v and not in the definition of f
(dimension de ). See paragraph 2.1.
Qbasic: See paragraph 2.7.1.
Qmuit: See paragraph 2.7.2.
qdist: see paragraph 2.7.3.
Qactive: S€€ paragraph 2.7.4.

O, fitting criterion when the estimator is directly defined by estimating equations. See
page 12, or see page 13 or item stopping criterion (paragraph 3.1).

Qstop: used to stop the iterative estimation process. See page 13 or item stopping criterion
(paragraph 3.1).
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ry: error associated with Y;. [ varies from 1 to n. See paragraph 2.1.

~

712 residual Y; — f(x;,6). [ varies from 1 to n. See page 9.
Rn: sum of squared discrepancies between (Y; — f;)? and V; divided by n. See page 6.

Sp: residual sum of squares weighted by w;/v;, divided by n. See page 5.

s2:

71 empirical variance calculated using replications. See page 6.

A(3?) diagonal matrix with components s2,...s2. See page 8.

o?: parameter occurring in the description of the variance of Y]. See paragraph 2.1.

5%: estimation of 0. See paragraph 2.3.5.

t: integration variable of the odes. It occurs in the description of f. See paragraph 2.8.

to: initial value of t. See paragraph 2.8.
T: n x J matrix with components the values of t. See paragraph 2.8.
Trn: sum of 7"12’ divided by n. See page 5.

0: p x 1 vector of parameters occurring in the definition of f and possibly v. See para-
graph 2.1.
Oo: starting value of @ (see paragraph 2.6.3).
6: estimation of 6.

~

fc: estimation of 0 at step e, when the parameters (6, 3) are estimated alternatively.
See page 9.

0;;: current value of 8 at iteration it. See paragraph 2.6.

Oodes: set of parameters occurring in odes. See paragraph 2.8.

0. initial conditions of the odes. See paragraph 2.8.

04: set of parameters occurring in f but not in the odes. See paragraph 2.8.

Uyn: sum of squared errors, weighted by the empirical variances (calculated with replica-
tions), divided by n. See page 6.

—2log V;, /n: value of —2log of likelihood divided by n. See page 5.
Vg: n X ¢ matrix of derivatives of V' with respect to g, calculated at z1,...xz,. See page 7.
Vo: nx p matrix of derivatives of V' with respect to 0, calculated at x1,...z,. See page 7.
Vi: variance of Y;: V; = ov(x,0, 8)/w;. | varies from 1 to n. See paragraph 2.1.

V: n x 1 vector with components Vi, V,,. See page 7.

A(V): diagonal matrix with components Vi,...V,. See page 7.

24



dV,/0B q x 1: vector of derivatives of V; with respect to 8. See page 4.
dV;/06: p x 1 vector of derivatives of V; with respect to 6. See page 4.

v: occurs in the description of the variance of Y and is called the variance function. vy is
the value of v(z;, 0, 3). [ varies from 1 to n. See paragraph 2.1.

Varz: nh x nh covariance matrix of Z. See page 8.
W: (p+ q) x (p+ q) matrix defined by W = BT D/n. See page 8.

w: weighting variable, occurs in the variance of Y. Its components are wy, [ varies from 1
to n. See paragraph 2.1.

X: n x m matrix of independent variables.
z;: a1 x m row of X. See paragraph 2.1.

Y': observations. Y; corresponds to the value z; of the independent variables and verifies:
Y, = f(z,0) + 1/21/251. [ varies from 1 to n. See paragraph 2.1.

In case of an experimental design with replications, Y;; corresponds to the value z;
of the independent variables. ¢ varies from 1 to k, j from 1 to n;. See page 4.

Y: nx vector of the observations Y;. See page 7.

Y2: n x 1 vector with components Y?2,...Y,2. See page 7.

Z: nh x 1 vector which describes the estimating equations. See paragraph 2.4.

3.3 Notations used by nls2

The names used in the software cannot include mathematical symbols. Here is the corre-
spondance between the notations used in it or in its on-line help-files and the mathematical
notations of the paragraph 3.1.

algorithm: see paragraph 2.6

as.var: AsVaTa\E in dimension: number of multiple parameters.
)

B: B(6, ).

1
B.varZ.B: —BVarzB occurring in equation 2.2.
n

beta: B in dimension: multiple parameters.
beta.start: §y in dimension: multiple parameters.

cond.start: Fjo, v =1,... Ngg.
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D: D.

i

00

eters.

d.resp: , calculated at (5, B) The derivative are taken with respect to multiple param-

d.beta.vari: %—‘g, calculated at (5, B) The derivative are taken with respect to multiple

parameters.

OF, ~ .. .
d.FOdes: a—;(Tl,g,xl,Hodes) where the derivatives are taken with respect to 6,4es, Or

OF, ~ ~ o . ~
" (T}, ¢, %1, Oodes, Oci) Where the derivatives are taken with respect t0 (Boges, Oci). Oci

are the estimated initial values of the system, if these values have been estimated.
v=1,...Negg, £=1,...J.

.oV ~ . . .
d.theta.vari: —, calculated at (6,3). The derivative are taken with respect to multiple

00
parameters.
deriv.fct: %, %, %—‘g, calculated at the current value of (0,) during the iterative

process, for 1 = 1,... k. The derivatives are taken with respect to active parameters.
direction: §;t.
Eta: 7.
eq.beta: see paragraph 2.7.4.
eq.theta: see paragraph 2.7.4.
eqp.beta: see paragraph 2.7.3.
eqp.theta: see paragraph 2.7.3.
est.eq: B, D and 7.

estim: current values of # and S if any, during the iterative process. Same dimension as
active parameters.

~ -~ ~

FOdes: F,(Tj ¢, %1,00des) or F,(Ti ¢, 1, 00des, Oei) if the initial values of the system are esti-
mated, for v =1,... Ngg, £ =1,... J.

f: fifori=1,...k
fitted: f; and V; fori=1,...k

gamf: second level parameters occurring in f (parameters that will not be estimated but
fixed to a known value).
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gamv: second level parameters occurring in v (parameters that will not be estimated but
fixed to a known value).

inf.beta: see paragraph 2.7.4.

inf.theta: see paragraph 2.7.4.

integ.values: T'.

iter: it.

lambda.cl: A;.

lambda.c2: A9

lambda.start: Gauss-Marquardt parameter at the first iteration. See paragraph 2.6.2.
loglik: —21log V,,/n.

max.err.cl: Nepp.

max.err.c2: N..

max.iters: Ipaz-

max.lambda: A\az

max.stop.crit: Qgop.

method: see paragraph 2.2.

mu3, mu4: vectors with components ps; and pg;, for i =1,... k.
mu.type: method for calculating the moments. See paragraph 2.5.
nb.iters: value of it at the end of the iterative procedure.
nb.steps: N,

nb.theta.odes: poges-

norm: Q, calculated at (8, 3).

num.res: 0z, wi and A.

odes: F,, v=1,... N

omega: wi

omega.cl: wepp.

omega.c2: we.
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phiz ¢.

replications: n;, 1 =1,... k.

response: f(a:i,é), i=1,...k

residuals: 7, 1 =1,...mn.

rss: nS, calculated at (8, B).

rss.unweighted: n7, calculated in (5, B)

S2: 52, i=1,...k.

s.residuals: Vl_l/zﬂ, where V, = 6%v(x;,0, ) Jwy, for L =1,...n.
sigma2: value of o2.

sigma2.type: see paragraph 2.3.5.

stat.crit: C,.

start: 1.

step: e.

stop.crit: Q.

sup.beta: see paragraph 2.7.4.

sup.theta: see paragraph 2.7.4.

theta: 6. Dimension: multiple parameters.
theta.start: 6y. Dimension: multiple parameters.
v: v fori=1,...k

vari.type: method for calculating the variance. See paragraph 2.2.
variance: 52v(z;,0,5) fori=1,...k.

W: W.

weights: w.

1 &

Y: — >V, fori=1,...k.
nij:l
1 ¢

Y2: —.ZYé,forizl,...k.
n"j:l

Z: Z.
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Chapter 4

Methods for calibration

This chapter describes the numerical steps of the calibration function. See [7] for a
complete description of the statistical background.

4.1 The problem

In calibration problems, we want to determine an unknown value zy of the independent
variable — only one independent variable is possible in this context — from a measure Z
of the response. m replicates Zy, Zs, ... Z,, corresponding to the same value zy may be
observed.

Function calib.nls2 calculates confidence intervals for zg within bounds 1, [5.

4.2 Prerequisites

1. The regression parameters must have been previously estimated with a complete set
of data (X,Y’) denoted here by standard data.

2. The inverse of the regression function, denoted by f !, must be described by the
user, either through a program or by means of a formal syntax.

3. It is assumed that the variances of Z and Y have the same structure.
Examples:
- var(Y;) = o? implies var(Z) = o2,
- var(Y}) = o2 x v(zy, 0, B) implies var(Z) = o2 * v(2, 0, B).

4. The variance must be constant or the estimation method be a Maximum Likelihood
method.

4.3 The calibration confidence sets

Two confidence sets are calculated.
- The first one, called S, is by construction an interval. It is based on the difference
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between Z (or the mean of its m values, when several values of the response are observed)
and the least squares estimator of z.

S is calculated only when the variance is constant.
- The second one, called R, may not be an interval. It is based on the signed root of the
likelihood ratio.

Note: a comparison of the calibration methods can be found in [7].

4.4 The confidence interval S

The following quantities are calculated:

1. the residual sums of squares S:
S§=3 (Yi—f(z:,0)* +> (2 - 2)° (4.1)

i=1 j=1

where

7 is the mean of the m values of Z,

n is the total number of observations of the standard data,
0 is the estimation of @ calculated with the standard data.

2. the estimator of zy, Z:
Suppose f is an increasing function.
- if Z belongs to the interval ]f(él, ), f(£2,0) [, then 2 = f~1(Z,0),

- if Z is less than f(I1,0), then Z =11,
- if Z is greater than f(l, ), then Z = lo.

If f is decreasing, z is determined by a similar procedure.

3. the variance term A:

1
A=+n+mx

= 9 A’fg\ AsVar~ g ’\,@\t
\/5*\/1/m+( 1GD), AVerg | os(zD)")

where 62 is the estimation of o2 calculated with the standard data.

The values z in the confidence interval verify:
g < S(2) <ui_q (4.2)

where

S(z) = Ax(Z - f(2,0))

« is a predetermined confidence level, (0 < a < 1), and u,, is defined by ®(uy) = a, @
being the distribution function of a standard normal random variable.
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Therefore, the S interval is:

2 7~ Ul—«

_ = Uq _
f l(Z_Zae)af l(Z_ A

0

4.4.1 A bootstrap version of S

The bootstrap method replaces the normal bounds u, and u;_, (see 4.2) by bootstrap
bounds. You can obtain them by using function bootstrap.nls2 with argument method
equal to calib.

4.5 The confidence set R

The confidence set R is based on a statistic which is calculated at several points z of a
regularly spaced grid defined in [l1,[3]. If the value R(z) satisfies the condition:

o < R(2) <ui_q (4.3)
then z is a point of the confidence set.

(uq is defined in paragraph 4.4).

4.5.1 The numerical procedure
When the variance is constant
For each value z of the grid:

1. The point (z, Z) is added to the standard data, with its m replications, if any.

2. An estimation is run.
The sum of squares is S = Z;’E{” 72, where 7 denotes the residuals.

3. R(z) is given by:

— -~

R(z) = sign(Z — f(2,0)) * \/(m +n) * log(%)
S is defined in equation (4.1), paragraph 4.4.

When the variance is not constant

1. The point (Z, Z) is added to the standard data, with its m replications, if any.
(z is defined at point 2, paragraph 4.4).

2. An estimation is run, the unknown abscissa been estimated along with the regression
parameters.
(The abscissa of the added point is reset at each iteration).
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New values are so calculated:

- the estimation of the regression parameters 5,

- the estimation of the unknown abscissa Z,

- the statistical criterion L = —2log(likelihood)/(n + m).

3. Then, for each value z of the grid:

(a) The point (z, Z) is added to the standard data, with its m replications, if any.

(b) An estimation is run, where the regression parameters are estimated only.
A new value of the statistical criterion L is so calculated.

(c) R(z) is given by:

— ~

R(z) = sign(Z — f(z,0)) * \/—(m +n)x(L— L)

For a more accurate determination of R

The grid of research may be split recursively: for each consecutive points z;, z;4+1 so that
z; belongs to R and z;1; does not (or vice-versa), the interval [z;, z;11] is split again and
determines a new grid of reasearch.

4.6 List of notations used in the calibration

These notations complete or replace the notations of chapter 3.

4.6.1 Key words

standard data: data set used to estimate the parameters of the model. See paragraph 4.2.

4.6.2 Mathematical notations

l1,19: lower and upper bounds of the interval where z; should lie. Confidence intervals are
researched within these bounds. See paragraph 4.1.

a: confidence level.

Uq 18 defined by ®(uqs) = a, @ being the distribution function of a standard normal
random variable. See paragraph 4.4, equation (4.2) and paragraph 4.5, equation
(4.3).

m: number of replications of 2y, i.e number of values of Z. See paragraph 4.1.

n: total number of observations of the standard data (replications included). See equation
4.1.

L: statistical criterion calculated when the unknown abscissa is estimated along with the
parameters of the regression model. See paragraph 4.5.1, variance not constant.
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o~

residual sums of squares calculated with the m + n observations and (0,02). See
equation (4.1), paragraph 4.4.

)

S: residual sums of squares calculated with the m + n observations and the current esti-
mation of the parameters. See paragraph 4.5.1, item 1.

)

estimations of the parameters calculated with the standard data (see equation 4.1)
or calculated along with the unknown abscissa (see paragraph 4.5.1,variance not
constant).

o2: estimation of 02 calculated with the standard data. See paragraph 4.4, point 3.

Z: observed response corresponding to the unknown value of the independent variable z;.
m replications Z;,1 = 1...m may be observed. See paragraph 4.1.

Z: mean of the m replications of Z. See paragraph 4.4.
zp: value of the independent variable to be estimated. See paragraph 4.1.

Z: estimator of zy. See paragraph 4.4, item 2, and paragraph 4.5.1.

4.6.3 Notations used by nls2

Here is the correspondance between the notations used in the software and the mathemat-
ical notations used in the paragraph 4.6.2.

Inputs

conf.bounds: quantiles of the S(z) and R(z) distributions. When they are set, they replace
conf.level.

conf.level: required confidence level, i.e a. See paragraph 4.4, equation (4.2) and paragraph
4.5, equation (4.3).

ord: observed values of the response Z. See paragraph 4.1
R.grid: minimum number of points of the research grid for R. See paragraph 4.5

R.nsplit: number of times a new research grid is built when a break is encountered during
the determination of R. See Note in paragraph 4.5.1.

x.bounds: lower and upper bounds of the research interval, i.e [y and ly. See paragraph
4.1.
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Outputs

S.conf.int, R.conf.int: confidence limits of the intervals S and R respectively. R.conf.int
exists only when R is an interval.

R.conf.set: points of the research grid that satisfy (4.3). R.conf.set replaces R.conf.int when
R is not an interval.

R.values: values of R(z) at the points z of the research grid. See paragraph 4.5.1, item 2.
R.x: points of the research grid, i.e the different values of z in paragraph 4.5.1.

x: estimator of 2y, i.e Z. See paragraph 4.4, item 2.
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