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ABSTRACT

Investigations of the precision of stereological estimators based on systematic test systems date back from
early papers by D. Kendall and Georges Matheron published in 1950–1970. A widely used formula predicts
the mean squared error of the planar area estimator based on point grid sampling. This formula is very simple
since it involves only a standard shape parameter and the grid spacing. A similar formula for volume estimation
has been proposed by Matheron. Also further formulae for other sampling schemes have been derived, in
particular for serial sections, thick slabs, systems of quadrats...
All these formulae hold when the boundary of the target structure is isotropic. Extended formulae for
anisotropic boundaries will be discussed. These extensions are derived from an idea already proposed by
Matheron for the planar area estimator based on point grid sampling.
Computations of the MSE approximations and estimates can be performed using the R package pgs. Examples
of calculations with pgs are provided.

Keywords: estimation, precision, sampling, stereology.

INTRODUCTION

Assessing the precision of stereological estimators
based on systematic sampling is not straightforward
due to correlations between neighbour geometric
probes. That problem is clearly the object of ongoing
research. It should be noticed that the situation
is different in other fields of spatial statistics. In
particular, in geostatistics a key step consists in
modelling spatial correlations via the variogram. With
a variogram model in hand, assessing the precision
of a given sampling scheme is rather straightforward.
In stereology, much of the effort is put on sampling
design. In general, one tries to avoid modelling the
investigated spatial structures. In particular, classical
stereological estimators are unbiased for very large
classes of spatial structures. However when turning to
precision, developping “universal” methods is clearly
a difficult task.

When investigating a population of objects
sampled independently, the issue is not so critical.
Sampling is performed at different scales and
systematic sampling is often used at the smallest scale.
At the highest level (object sampling), estimates can be
considered as independent and it is easy to predict the
mean squared error of estimators of population mean
features (volume, surface area, number). However
assessing the part of variability du to stereological
sampling is required in order to distinguish between
sampling variability and biological variability. Also

quantifying sampling variability is of interest when
designing a sampling scheme.

This paper focuses on planar area and 3D volume
estimation where a significant corpus of methods is
now available. Our aim is to review what pratical
methods are available at the moment. Toy examples
will be used together with the R package pgs which
provides mean squared error predictions.

The second section is devoted to pioneering work
of Kendall and Matheron on sampling by point grids.
The mean squared error formula for the planar area
estimator based on sampling by a square grid is now
widely used. Results for grids with other shapes and
3D grids are also available. In the third section, other
sampling devices such as serial sections and lattices
of quadrats are considered. The fourth section shows
how the mean squared error predictions can be used
for designing sampling schemes. The fifth section
is devoted to the estimation a posteriori of mean
squared errors using collected data. The case of spatial
structures with anisotropic boundaries is the object of
the sixth section.

POINT GRID SAMPLING

The total area A of a planar region can be estimated
by superimposing a grid of points onto the region and
counting the number of points hitting the region. The
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area estimator Â can be written as

Â = aP (1)

where a is the area of a fundamental tile of the point
grid and P is the number of grid points hitting the
region.

An example is shown in Figure 1. The planar
region under study is Italy. Italy perimeter B is equal
to 49.6` and its area A is equal to 30`2 where ` is
the length of the scaling bar. The sampling is based
on a square grid of points with grid spacing u = `.
For this square grid the area of a fundamental tile is
a = `2. Here, 27 grid points hit Italy. Therefore the area
estimate is 27a = 27`2.

Fig. 1. Square point grid superimposed onto Italy. The
scaling bar is shown in blue. The planar area of Italy is
estimated by counting the number of grid points hitting
Italy (shown in red).

It is well-known that the estimator Â is unbiased
provided the sampling grid is Uniform Random (UR).
Assessing the precision of Â through its Mean Squared
Error (MSE) is not straightforward. One may expect
the estimation error to be somewhat connected to the
boundary length B of the target region, see Figure 2.
Indeed, the MSE approximation as derived by Kendall
(1948) and Matheron (1970; 1971) is as follows

MSE Â' M
4π3 a3/2B (2)

where M is a scale-invariant grid parameter. For a
square grid M = 9.03 and M/(4π3) = 0.0728. Note
that a slightly different constant 0.0724 may be found

in the litterature instead of 0.0728, see e.g. Matheron
(1971) or Gundersen and Jensen (1987). As noticed by
Kendall, the grid parameter M is a multidimensional
zeta function known as the Epstein zeta function. The
value 0.0724 is based on a standard approximation
involving only the more standard unidimensional
Riemann zeta function. The difficult part in the
approximation formula lies in M.

Fig. 2. The area estimate based on point counts
coincides with the total area of a square reconstruction
of Italy (shown in grey). The reconstruction differs
from Italy near the border.

The pgs function area.mse implements the
computation of Equation (2) for any planar point grid.
It requires two main arguments : the point grid and the
boundary length. In the example of Figure 1, the MSE
approximation is obtained as follows

> plat = PPRectLat2(1,1)
> area.mse(plat,B=49.6)
[1] 3.612717

The first command line defines a rectangular lattice
(function PPRectLat2) with horizontal and vertical
spacings equal to 1. The square point grid is stored
in a variable arbitrarily named plat. In the second
command line, the point grid plat and a boundary
length of 49.6 are provided to function area.mse
for the computation of Equation (2). Note that pgs is
unaware of units. Therefore it is the user responsability
to use consistent units. In the code example above, both
the grid spacings and the boundary length use ` as unit.
The computed MSE must be interpreted as 3.61`2.
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Using pgs, one can predict the MSE for any point
grid. For instance, for a rectangular lattice with a
horizontal spacing which is four times larger than the
vertical spacing, the MSE computation yields

> plat = PPRectLat2(2,0.5)
> area.mse(plat,B=49.6)
[1] 9.007288

The Kendall-Matheron formula (2) is an
approximation which holds for dense sampling
grids: a must be “small enough” . However the
theory does not precise how small a must be. In
order to investigate that point, one may resort to
simulations. By simulating independent realizations of
the area estimator, one obtains Monte-Carlo unbiased
approximations of the MSE to be compared with the
Kendall-Matheron MSE approximation. In Figure 3,
standard errors are plotted against the mean numbers
n = A/a of hitting points instead of a. For each
value of n, 3000 replicates of the area estimator have
been simulated in order to obtain a Monte-Carlo SE
approximation. Grid spacing was chosen in order to
get a range of 1–40 for n.
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Fig. 3. Log-log plot of the area estimator standard
error against the mean number of hitting points. The
region of interest is Italy as shown in Figure 1 sampled
by square grids. Standard errors of the area estimator
(continuous line) have been computed by means of
simulations. The Kendall-Matheron SE approximation
is shown as a dashed curve.

According to the simulations, the MSE for the
example of Figure 1 is equal to 1.702 `2 = 2.89`2.

This result is to be compared with the MSE Kendall-
Matheron approximation given above: 3.61`2.

In view of Figure 3, the grid spacing does not
seem to be a serious issue. The “true” MSE shows
oscillations, a phenomenon called Zitterbewegung
by Matheron. It has been shown recently that
the Zitterbewegung tends to vanish when one is
considering a population of regions with varying sizes
and shapes instead of a single region, see Kiêu and
Mora (2004) for details.

MSE formula (2) has been derived under the
assumption that the normals to the region boundary are
isotropically distributed. It is not obvious whether this
assumption is checked by Italy. There is an obvious
anisotropy at a large scale with an extension along
a preferred direction. However it is not quite clear
whether there is a strong anisotropy of the normals
(or tangents) to the boundary. Note that the isotropy
condition requires the normals to the region boundary
to be isotropically distributed with respect to the main
grid directions. As a consequence, it is possible to
fulfill the condition even if the boundary is anisotropic
by just randomizing the grid orientation. Furthermore
methods for predicting the MSEs for spatial structures
with anisotropic boundary will be presented latter in
the paper.

So far, we have focused on planar regions. One
may expect the whole approach to extend to regions
in spaces with higher-dimensions. This is indeed the
case. In particular, the MSE formula for the 3D volume
estimator based on sampling by a point grid is as
follows

MSEV̂ ' M
8π3 v4/3S, (3)

where again M is a scale-invariant grid parameter, v
is the volume of a fundamental tile of the point grid
and S is the surface area of the region of interest. This
formula holds for regions with an isotropic boundary.
A method is provided by Matheron (1965) for deriving
an approximation of the parameter M for any grid. The
pgs function vol.mse can compute the approximation
(3) for any 3D point grid. For example, for a cell
nucleus with a diameter approximately equal to 8
microns sampled by a cubic grid with spacing 2
microns, pgs yields

> plat = PPRectLat3(2,2,2)
> vol.mse(plat,S=4*pi*4ˆ2)
[1] 214.4094

Another standard 3D point grid is the body centered
grid where a 2D square point grid lying on a plane
is shifted halfway into the next plane. The MSE
computation yields
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> plat = PPBCRectLat3(2,2,2)
> vol.mse(plat,S=4*pi*4ˆ2)
[1] 209.9755

OTHER SAMPLING SCHEMES

In practical stereology, commonly used sampling
schemes are not based only on point grids. For
instance, in order to estimate its area, one may sample
Italy by finite point patterns contained in a systematic
arrangement of quadrats, see Figure 4. Probes with
higher dimensions are also used: instead of counting
points within quadrats, one may measure the area
of Italy contained in the quadrats. More generally, a
region can be sampled by a lattice of figures (instead of
points). At each lattice node, one measures the content
of Italy within the figure.
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Fig. 4. Sampling by figure lattices. The set of crosses
defines a lattice of point patterns. The set of quadrats
defines a lattice of quadrats. Grey: a fundamental tile
(identical for both lattices).

Matheron (1965; 1971) has designed a general
framework for deriving MSE approximation formulae
when sampling by figure lattices. Let us come back
for a while to point grids and formulae (2–3). In order
to derive these formulae, Kendall and Matheron have
used Fourier analysis. Such an approach is standard
when considering sampling of signals. A region like
Italy can be considered as a binary function defined
on the whole plane. This function, usually called
indicator function, takes value 1 at a point inside
Italy and value 0 outside. The squared modulus of the
Fourier transform of the indicator function is called the

spectral density. If the sampling grid is dense enough
(u or a small enough), the MSE of the area estimator
only depends on values of the spectral density at
points (of the spectral space) far from the origin,
that is at points associated with high frequencies.
For an indicator function, high frequency variations
occur along the region boundary. In particular, it
is possible to derive approximations of the spectral
density (for high frequencies) only depending on the
region boundary.

A similar approach applies when one replaces
a point lattice by a figure lattice. Instead of an
indicator function, one must consider the regularized
function on the whole plane that associates to
each point the value of the content of the region
seen in the figure centered at the considered point.
Regularization is often called convolution. In the
Fourier space, convolution translates as a simple
multiplication. Using this key fact, it is possible to
derive approximations of the Fourier transform of
the regularized function involving only the region
boundary.

Using Matheron’s general framework, further
MSE approximations for area and volume estimators
have been derived for sampling by figure lattices
(Gual Arnau and Cruz-Orive, 1998; Kiêu and Mora,
2005; Kiêu and Mora, 2006).

The MSE approximations for area estimation take
again the form given in Equation (2) where M is
a scale-invariant parameter depending on the figure
lattice. Note that M is sensitive to any scaling changing
only the fundamental tile or only the figure. It remains
invariant only under scaling applied to the whole
figure lattice. The parameter M involves the Epstein
zeta function and the geometric covariogram of the
figure (point pattern, quadrat, line segment...). Again
the approximation (2) can be computed by pgs for a
variety of figure lattices. Below is the R code providing
MSE’s for both figure lattices shown in Figure 4.

> pplat = PPRectLat2(1,1,5,0.4)
> area.mse(pplat,B=49.6)
[1] 0.6158561
> qlat = QRectLat2(1,1,0.5)
> area.mse(qlat,49.6)
[1] 0.7481244

Function PPRectLat2 defines a rectangular lattice
of point patterns. The first two arguments are the
horizontal and vertical spacings. The third argument
defines the point pattern (4 points lying at a square
corner and a middle point). The fourth argument
defines the side length of the square containing the
point pattern. The third command line defines a
quadrat lattice using the function QRectLat2.
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For the lattice of point patterns, the MSE given
by 3000 Monte-Carlo simulations is equal to 0.47`2.
This result is to be compared with the approximation
MSE' 0.62 obtained above.

MSE approximations are also available for 3D
figure lattices. For instance, let us consider a 3D lattice
of horizontal point patterns. Each point pattern consists
of 5 points, 4 lying at a square corners and the fifth one
in the square middle. Such a 3D lattice can be obtained
by repeating a 2D lattice of point patterns on a series
of parallel planes (with constant vertical spacing). The
MSE of the volume estimator can be predicted using
pgs as follows

> pplat = PPRectLat3(2,2,2,5,1)
> vol.mse(pplat,S=4*pi*4ˆ2)
[1] 57.61168

Function PPRectLat3 defines a 3D lattice of
horizontal point patterns. The first three arguments
define the lattice spacings in the three orthogonal
directions. The fourth argument defines the point
pattern. The fifth argument defines the side length of
the horizontal square containing the point pattern.

Series of parallel lines or planes are also
considered as figure lattices. A major difference with
the previous figure lattices is that lines (planes)
are unbounded. MSE approximations are available
when the unbounded figure is obtained by shifting
continuously an initial bounded figure along a
(generating) line or plane. In 2D, there are mainly
two unbounded figures of interest: parallel lines and
parallel strips. For such figure lattices, a fundamental
tile is defined as a segment line parallel to the lines or
strips and extending between neighbour lines or upper
boundaries of neighbour strips. If l is the length of a
fundamental tile, the MSE approximation is

MSE Â' M
4π3 l3B. (4)

For parallel lines, M is equal to 2.40 (twice the
Riemann zeta function at 3). Note that the only
difference with Equation (2) is that a3/2 is replaced
by l3. Approximation (4) is computed by function
area.mse:

> lser = LLat2(1)
> area.mse(lser,B=49.6)
[1] 0.9614509

The function LLat2 defines a series of equidistant
parallel lines. The first argument is just the spacing
between neighbour lines.

In 3D, standard lattices of unbounded figures
are serial planes, series of thick slices and the so-
called fakir bed. For planes and thick slices, the MSE
approximation has the form

MSEV̂ ' M
8π3 l4S. (5)

For parallel planes, M simplifies as π4/45. For the
fakir bed, the MSE approximation has the form

MSEV̂ ' M
8π3 a2S. (6)

Both approximations are implemented in pgs.

Again all MSE approximations hold under the
condition that the boundary normals are isotropically
distributed or that the lattice of figures is oriented with
an isotropic distribution.

COMPARING SAMPLING SCHEMES

All MSE approximations (2–6) have basically the
same form: products of two terms, one depending
on the sampling figure lattice, the other one being
the boundary content. Therefore it is possible to
compare sampling schemes per se independently of the
investigated region.

This is useful when one has to choose between
different sampling schemes. Back to the example of
Figure 1, one may estimate Italy area by counting grid
points hitting Italy or by measuring the total intercept
length of Italy with say the horizontal lines (shown in
grey). Comparing both sampling schemes through the
ratio of their MSE’s we get

> plat = PPRectLat2(1,1)
> lser = LLat2(1)
> area.mse(plat)/area.mse(lser)
[1] 3.757568

The SE for the point grid is about twice the SE for
parallel lines.

The MSE approximations are also useful when one
is determining some parameters of a sampling scheme
in order to achieve a nominal precision. For instance,
one aims at predicting the spacing u of a square point
grid yielding a SE equal to 0.05A.

0.052A2 ' M
4π3 u3B.

At this stage, neither the total area A nor the boundary
length are available. They can be replaced by rough
guesses. Or, as suggested by Gundersen and Jensen
(1987), one may try to guess values for A and the
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KIÊU K et al.: Precision of stereological volume estimators

standard shape parameter B/
√

A. The assessment of
the shape parameter can be done visually using a
nomogram as given in (Gundersen and Jensen, 1987).
The equation to be solved writes as

0.052A3/2 ' M
4π3 u3 B√

A
,

where A and B/
√

A are replaced by “guestimates” and
M must be replaced by its numerical value provided
above. Using pgs function latscale, one can solve this
type of problem for arbitrary lattices of figures. As an
example, consider Italy to be sampled by a lattice of 5
point patterns as shown in Figure 4. The parameter one
aims to tune in order to obtain a SE equal to 0.1A is the
side length of the fundamental tile shown in grey. The
problem is solved by the following commands:

> pplat = PPRectLat2(1,1,5,0.4)
> latscale(pplat,A=30,shape=10,
+ CE.n=0.1,upper=4)
[1] 1.768231

The argument upper defines the upper bound of the
interval where the tile side length is searched.

Using pgs, it is also possible to design optimal
sampling schemes under some constraints. For
instance, consider a lattice of point patterns. The lattice
is hexagonal with a fixed spacing say 1. There are 5
points per pattern and they are confined to a square of
side length 0.3. Figure 5 shows how the 5 points must
be arranged inside the square in order to minimize the
MSE of the area estimator. Other examples of optimal
grids are given in Kiêu and Mora (2006). However
in general optimal grids do not improve significantly
compared to most standard grids used in practice. For
instance, moving the left middle point in Figure 5 to
the square middle does not increase the MSE more
than 5%.
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Fig. 5. Optimal point pattern lattice.

An intriguing problem in stereology is the
comparison of nested figure lattices. For instance
compare the square point grid and the vertical lines
in Figure 1. The point grid is contained in the line
grid and previous computations show that the line
grid MSE is less than the point grid MSE. For
a counter-example, consider both figure lattices in
Figure 4. The lattice of point patterns is contained
in the grid of quadrats. However, the MSE of the
latter is more than the MSE of the former. Therefore
enlarging a figure does not necessarily decrease the
MSE. This statement is rather counterintuitive. For
the comparison of the point and line grids, one
may use Rao-Blackwell theorem for proving that
the larger figure has a lower MSE (Lantuéjoul,
1988; Baddeley and Cruz-Orive, 1995). However there
are many pairs of nested test systems that do not
fulfill the conditions of the Rao-Blackwell theorem.
Such cases are called Smit paradoxes. Paradoxes
have been found by Jensen and Gundersen (1981);
Baddeley and Cruz-Orive (1995); Voss and Cruz-
Orive (2009). These counterexamples are based either
on particular examples of deterministic regions or
on specific probabilistic models of random sets.
Using the MSE approximations (2–6), one can exhibit
more paradoxes without making assumptions on the
investigated region. This shows that Smit paradox is
somewhat intrisic to sampling. Further examples of
Smit paradox are provided in (Kiêu and Mora, 2006).

MSE ESTIMATION IN THE
ISOTROPIC CASE

The MSE formulae (2–6) holding under the
isotropy assumption involve two terms: one depending
on the sampling scheme that can be computed a priori,
the other one depending on the boundary (perimeter
or surface area). If an estimate of the boundary
perimeter (surface area) is available, it can be plugged
in formulae (2–6) in order to get a MSE estimate.

A straightforward approach consists in designing
a stereological sampling scheme for estimating
simultaneously the area and the perimeter (the volume
and the surface area in 3D). Note that sampling
figures with dimension larger than 0 allow unbiased
perimeter and surface area estimation. For instance,
when sampling Italy by parallel lines, its perimeter
can be estimated using the total number of intercepts.
Another example in 3D is sampling by serial sections.
In practice, measurement of profile areas on sections
requires their segmentation by image processing.
Once segmented, the profile perimeters can easily be
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measured and the total surface area can be estimated
from the profile perimeters.

An alternative approach consists in using only
data collected for area or volume estimation. It is
supposed that individual data for each sampling figure
are available. In the examples of Figure 4, areas inside
each sampling quadrat or number of hits for each point
pattern should be available. For the figure of point
patterns, the data to be used can be displayed as

0 0 1 4 5 5 0 0 0 0
0 5 5 5 5 2 0 0 0 0
0 5 4 5 5 0 0 0 0 0
0 0 0 2 5 5 0 0 0 0
0 0 0 0 5 5 3 0 0 0
0 0 0 0 0 5 5 3 0 0
0 0 3 0 0 0 1 5 5 1
0 0 5 0 0 0 0 1 5 0
0 0 4 0 0 0 0 0 4 0
0 0 0 0 0 0 0 1 4 0
0 0 0 0 0 1 5 3 0 0

First consider an easy case: area estimation based
on point grid sampling. The available data are

0 0 0 1 1 0 0 0
1 1 1 1 1 0 0 0
1 1 1 1 0 0 0 0
0 0 0 1 1 0 0 0
0 0 0 1 1 1 0 0
0 0 0 0 1 1 0 0
0 0 0 0 0 0 1 1
0 1 0 0 0 0 0 1
0 1 0 0 0 0 0 1
0 0 0 0 0 0 0 1
0 0 0 0 0 1 1 0

The number of pairs 1-0 is related to the boundary
length: for each such pair, the line segment joining the
two corresponding grid points crosses the boundary
(at least once). Hence the number of horizontal pairs
1-0 gives an approximation of the total projection
length onto the vertical axis. Using pairs in different
directions, one gets an estimate of the total perimeter.
This idea was first suggested by Matheron (1971),
see alsoCruz-Orive (1993). It should be noticed that
this method tends to underestimate the perimeter.
Obviously, the line segment joining a pair 1-0 may
cross the boundary more than once. Also line segments
joining pairs with identical values 0-0 and 1-1 may
cross (at least twice) the boundary.

The pgs function area.mse.est computes both the
perimeter and MSE estimates:

> flat = PPRectLat2(1,1,1)
> fldat = FigLatData(flat,hits)
> area.mse.est(fldat,iso=TRUE,

mse.only=FALSE)
$B.est
[1] 39.26991

$mse.est
[1] 2.860304

Above hits is the matrix of binary data. The variable
fldat contains the data array and parameters related
to the sampling grid. The argument iso is given the
value TRUE in order to specify that the MSE must
be estimated under the isotropy assumption. Setting
mse.only to FALSE, one gets both estimates.

The same approach extends to the case where the
sampling figure does not reduce to a single point. It can
be shown that short distance variations depend both
on the perimeter (surface area) and the geometry of
the sampling figure. Furthermore using observed short
distance variations (empirical covariogram near the
origin) and the sampling figure geometry, it is possible
to estimate the perimeter (surface area). For the lattice
of point patterns, one gets

> flat = PPRectLat2(1,1,5,0.4)
> fldat = FigLatData(flat,pp.counts)
> area.mse.est(fldat,iso=TRUE,

mse.only=FALSE)
$B.est
[1] 41.47922

$mse.est
[1] 0.5150249

MSE ESTIMATION UNDER MILD
ANISOTROPY

The MSE approximations (2–6) hold under the
assumption that the boundary is isotropically oriented.
Matheron (1971) proposed a remedy for the case
where, by stretching the investigated region along a
given direction, its boundary can be made isotropic.
Matheron focused on sampling by a square point grid
and the special case where the stretching direction
coincides with one direction of the sampling grid.
The stretching factor can be estimated by comparing
the number of pairs 1-0 in the horizontal and vertical
directions.

This approach has been generalized in pgs to the
case where the stretching direction is not known a
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priori. Considering pairs 1-0 in 4 directions, one can
estimate simultaneously the stretching direction and
factor. For the unit square point grid, one gets

> flat = PPRectLat2(1,1,1)
> fldat = FigLatData(flat,hits)
> area.mse.est(fldat,iso=FALSE,

mse.only=FALSE)
$B.est
[1] 38.65081

$deformation
[,1] [,2]

[1,] 0.9262231 0.6027627
[2,] -0.4935774 0.7584457

$mse.est
[1] 2.713006

The component list deformation returned by
area.mse.est defines the stretching matrix.

For the lattice of point patterns, one gets

> flat = PPRectLat2(1,1,5,0.4)
> fldat = FigLatData(flat,pp.counts)
> area.mse.est(fldat,iso=FALSE,

mse.only=FALSE)
$B.est
[1] 41.02666

$deformation
[,1] [,2]

[1,] 0.9363621 0.6710069
[2,] -0.5056478 0.7056104

$mse.est
[1] 0.4688714

The results constrast depending on whether one
considers the perimeter or the MSE estimates.
Concerning perimeter, results are slightly worse than
those based on the isotropy assumption both for the
point grid and the lattice of point patterns. Concerning
the MSE estimation, there is a slight improvement
for the lattice of point pattern. An interpretation is
that Italy border cannot really be made isotropic by a
simple stretching. This is supported by an analysis of
the numbers of pairs 1-0 in the four directions:

East South North-East South-East
13 12 18 15

One expects to find the largest number of differing
pairs in the North-East direction since Italy lies mainly

along the perpendicular direction. But one should also
notice that the number of differing pairs in the South-
East direction is not small compared to the other
directions.

The method is better exemplified if one considers
Sardinia instead of the whole Italy. Sardinia area is
equal to 2.2`2 and its perimeter is equal to 6.23`.
Consider sampling by a lattice of point patterns as
shown in Figure 6.
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Fig. 6. Sardinia sampled by a lattice of point patterns.
Blue: scaling bar.

MSE estimates provided by pgs are

> flat = PPRectLat2(0.35,0.35,5,
0.136)

> fldata = FigLatData(flat,
counts.sard)

> area.mse.est(fldat.sard,iso=TRUE,
mse.only=FALSE)

$B.est
[1] 4.362244

$mse.est
[1] 0.002464126

> area.mse.est(fldata,iso=FALSE,
mse.only=FALSE)

$B.est
[1] 5.957941

$deformation
[,1] [,2]

[1,] 1.33677766 -0.1782195
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[2,] 0.09799083 0.7350034

$mse.est
[1] 0.002984931

Here, taking into account the anisotropy of Sardinia
boundary and estimating the stretching making it
isotropic really improves the perimeter estimation.

Figure shows Sardinia made isotropic by
stretching.

Fig. 7. Isotropic Sardinia

CONCLUSION

Concerning the precision of planar area and
volume stereological estimators, there are now simple
MSE approximations and estimation methods for a
large range of sampling schemes used in practice.
Theoretical fundations for the MSE approximation
formulae are provided by Kiêu and Mora (2004;
2005), Kiêu and Mora (2006), Janáček (2006). MSE
approximations are particularly useful when designing
a sampling scheme. These approximations involve
a multidimensional zeta function which can be
computed numerically using the R package pgs. MSE
estimation requires either to implement a specific
sampling scheme for the estimation of perimeter or
surface area or can be performed by analyzing the data
collected for planar area or volume estimation.

In the future, the package pgs may evolve as a
C or C++ library. This would make pgs available for
developers of computer assisted stereological tools.

An important issue for future research is the
extension of the approaches used for planar area
and volume estimation to the estimation of lower
dimensional features like length, surface area and
number.

Recent investigations on the precision of
systematic sampling have also concerned other aspects
which may be of interest in practice. Some advances
focus on the case where sampling is along a single axis,
typically Cavalieri sampling. According to formulae
(4) and (5), the MSE decreases to zero as fast as l3

(in 2D) or l4 (in 3D) to 0, where l is the distance
between neighbour parallel probes. This behaviour is
expected for regions with piecewise smooth boundary
and general orientation with respect to the probes.
Garcia-Fiñana and Cruz-Orive (2000) has shown
that other behaviours are possible. Indeed any other
exponent of l is theoretically possible. Examples with
particular bodies with specific orientation with respect
to the section planes have been provided. This theory
may also be quite useful when considering regions
with complex boundaries, that is boundaries with non-
integer dimensions. Considering boundaries with non-
integer dimensions is not so uncommon: one often
expect boundary length to vary with magnification.
Garcia-Fiñana and Cruz-Orive (2000) theory could
be useful for obtaining MSE approximations at very
different scales.

Another important issue concerns location errors.
The MSE approximations given in this paper assume
that the sampling figures are exactly (or rather
precisely) repeated along a lattice. Location errors
occur when the sampling involve physical operations
like physical sectioning. A first exploration of
consequences of irregular spacing on the MSE can be
found in Baddeley et al. (2006).

Stereological estimation of lower dimensional
features like length and surface area involves sampling
in directional spaces, i.e. on the circle or on the sphere.
Systematic sampling on spherical spaces has been the
object of several papers (Gual-Arnau and Cruz-Orive,
2000; Cruz-Orive and Gual-Arnau, 2002). The special
case of sampling by line grids has also been treated
(Moran, 1966; Sandau, 1987; Hahn and Sandau, 1989;
Sandau and Hahn, 1994).

As announced in the introduction of this paper,
focus has been put on a design-based approach
with few assumptions on the investigated region. An
example of model-based approach has been provided
by Hobolth and Jensen (2002) where planar area
estimation based on sampling by rays through a
reference point (2D nucleator principle) is considered.
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Janáček J (2006). Variance of periodic measure of bounded
set with random position. Comment Math Univ
Carolinae 47:473–82.

Jensen EB, Gundersen HJG (1981). Stereological ratio

estimation based on counts from integral test systems.
Journal of Microscopy 125:51–66.

Kendall DG (1948). On the number of lattice points inside a
random oval. Quarterly Journal of Mathematics Oxford
Second Series 19:1–26.
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Matheron G (1970). La théorie des variables régionalisées et
ses applications. Tech. rep., Ecole Nationale Supérieure
des Mines de Paris.

Matheron G (1971). The theory of regionalized variables
and its applications. Tech. rep., Centre de morphologie
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