S�lections par mots-cl�s
(Selections by key-words)
Papiers lus
(acc�s r�serv� / Private)

R�f�rences bibliographiques / Bibliography


Toutes les r�f�rences

[1] Altschul, S. F., and Erickson, B. W. Significance of nucleotide sequence alignments : A method for random sequence permutation that preserves dinucleotide and codon usage. Mol. Biol. Evol. 2 (1985), 526-538.

[2] Arqu�s, D. G., and Michel, C. J. A model of DNA sequence evolution. Bull. Math. Biol 52 (1990), 741-772.

[3] Arqu�s, D. G., and Michel, C. J. Periodicities in coding and noncoding regions of the genes. J. Theor. Biol. 143 (1990), 307-318.

[4] Arratia, R., Goldstein, L., and Gordon, L. Two moments suffice for Poisson approximations : the Chen-Stein method. Ann. Prob. 17 (1989), 9-25.

[5] Arratia, R., Goldstein, L., and Gordon, L. Poisson approximation and the Chen-Stein method. Statistical Science 5 (1990), 403-434.

[6] Arratia, R., Gordon, L., and Waterman, M. S. The Erd�s-R�nyi law in distribution, for coin tossing and sequence matching. Ann. Statist. 18 (1990), 539-570.

[7] Arratia, R., and Waterman, M. S. Critical phenomena in sequence matching. Ann. Prob. 13 (1985), 1236-1249.

[8] Arratia, R., and Waterman, M. S. The Erd�s-R�nyi strong law for pattern matching with a given porportion of mismatches. Ann. Prob. 17 (1989), 1152-1169.

[9] Avery, P. J. The analysis of intron data and their use in the detection of short signals. J. Mol. Evol 26 (1987), 335-340.

[10] Banjevic, D. On some statistics connected with runs in markov chains. J. Appl. Prob. 25 (1988), 815-821.

[11] Barbour, A. D., Chen, L. H. Y., and Loh, W.-L. Compound Poisson approximation for nonnegative random variables via Stein's method. Ann. Prob. 20 (1992), 1843-1866.

[12] Barbour, A. D., and Eagleson, G. K. Poisson approximation for some statistics based on exchangeable trials. Ann. Appl. Prob. 15 (1983), 585-600.

[13] Barbour, A. D., and Eagleson, G. K. Poisson convergence for dissociated statistics. J. R. Statist. Soc. B 46 (1984), 397-402.

[14] Barbour, A. D., and Hall, P. On the rate of poisson convergence. Math. Proc. Camb. Phil. Soc. 95 (1984), 473-480.

[15] Barbour, A. D., Holst, L., and Janson, S. Poisson approximation. Oxford-University Press, 1992.

[16] Beckmann, J. S., Brendel, V., and Trifonov, E. N. Intervening sequences exhibit distinct vocabulary. J. Biomol. Struct. Dynamics 4 (1986), 391-400.

[17] Benevento, R. The occurrence of sequence patterns in ergodic markov chains. Stoch. Proc. Appl. 17 (1984), 369-373.

[18] Biaudet, V., El Karoui, M., and Gruss, A. Codon usage can explain GT-rich islands surrounding Chi sites on the Escherichia coli genome. Mol. Microbiol. 29 (1998), 666-669.

[19] Biggins, J. D., and Cannings, C. Markov renewal processes, counters and repeated sequences in markov chains. Adv. Appl. Prob. 19 (1987), 521-545.

[20] Billingsley, P. Convergence of probability measures. Wiley, 1968.

[21] Blaisdell, B. E. Markov chain analysis finds a significant influence of neighboring bases on the occurrence of a base in eucariotic nuclear DNA sequences both protein-coding and noncoding. J. Mol. Evol 21 (1985), 278-288.

[22] Blom, G. On the mean number of random digits until a given sequence occurs. J. Appl. Prob. 19 (1982), 136-143.

[23] Blom, G., and Thorburn, D. How many random digits are required until given sequences are obtained ? J. Appl. Prob. 19 (1982), 518-531.

[24] Breen, S., Waterman, M. S., and Zhang, N. Renewal theory for several patterns. J. Appl. Prob. 22 (1985), 228-234.

[25] Brendel, V., Beckmann, J. S., and Trifonov, E. N. Linguistics of nucleotide sequences : Morphology and comparison of vocabularies. J. Biomol. Struct. Dynamics 4 (1986), 11-21.

[26] Bucklew, J. A. Large deviation techniques in decision, simulation, and estimation. Wiley, 1990.

[27] Bundschuh, R., and Hwa, T. An Analytical Study of the Phase Transition Line in Local Sequence Alignment with Gaps. Recomb 99, Proc. of the third Ann. Internatnl. Conf. on Comp. Mol. Biol. (1999), 70-76.

[28] Burge, C., Campbell, A., and Karlin, S. Over- and under-representation of short oligonucleotides in DNA sequences. Proc. Natl. Acad. Sci. USA 89 (1992), 1358-1362.

[29] Chedin, F., Noirot, P., Biaudet, V., and Ehrlich, S. A five-nucleotide sequence protects DNA from exonucleolytic degradation by AddAB, the RecBCD analogue of Bacillus subtilis. Mol. Microbiol. 31 (1998), 1369-1377.

[30] Chen, L. H. Y. Poisson approximation for dependent trials. Ann. Prob. 3 (1975), 534-545.

[31] Chen, L. H. Y. Two central limit problems for dependent random variables. Z. Wahrscheinlichkeitstheorie verw. Gebiete 43 (1978), 223-243.

[32] Chryssaphinou, O., and Papastavridis, S. A limit theorem for the number of non-overlapping occurrences of a pattern in a sequence of independent trials. J. Appl. Prob. 25 (1988), 428-431.

[33] Chryssaphinou, O., and Papastavridis, S. A limit theorem on the number of overlapping appearances of a pattern in a sequence of independent trials. Prob. Theory Rel. Fields 79 (1988), 129-143.

[34] Chryssaphinou, O., and Papastavridis, S. On the number of overlapping success runs in a sequence of independent bernoulli trials. Application of Fibonacci Numbers 5 (1993), 103-112.

[35] Churchill, G. A. Stochastic models for heterogeneous DNA sequences. Bull. Math. Biol 51 (1989), 79-94.

[36] Churchill, G. A. Hidden Markov chains and the analysis of genome structure. Computers Chem. 16 (1992), 107-115.

[37] Cowan, R. Expected frequencies of DNA patterns using Whittle's formula. J. Appl. Prob. 28 (1991), 886-892.

[38] Dacunha-Castelle, D., and Duflo, M. Probabilit�s et statistiques 2.Probl�mes � temps mobile. Masson, 1983.

[39] Deheuvels, P., Devroye, L., and Lynch, J. Exact convergence rate in the limit theorems of Erd�s-R�nyi and Shepp. Ann. Prob. 14 (1986), 209-223.

[40] Dembo, A., and Karlin, S. Poisson approximations for r-scan processes. Ann. Appl. Prob. 2 (1992), 329-357.

[41] Duflo, M. M�thodes r�cursives al�atoires. Masson, 1990.

[42] Erd�s, P., and R�nyi, A. On a new law of large numbers. J. Analyse Math. 23 (1970), 103-111.

[43] Erhardsson, T. Compound Poisson approximation for Markov chains. PhD thesis, Royal Institute of Technology, Stockholm, 1997.

[44] Feller, W. An introduction to Probability Theory and its Applications. Wiley, New York, 1968.

[45] Fickett, J. W., Torney, D. C., and Wolf, D. R. Base compositional structure of genomes. Genomics 13 (1992), 1056-1064.

[46] Fu, J. C. Poisson convergence in reliability of a large linearly connected system as related to coin tossing. Statistica Sinica 3 (1993), 261-275.

[47] Fu, J. C., and Koutras, V. Distribution theory of runs: A Markov chain approach. J. Amer. Statist. Soc. 89 (1994), 1050-1058.

[48] Gelfand, M. S., Kozhukhin, C. G., and Pevzner, P. A. Extendable words in nucleotide sequences. Comp. Applic. Biosci. 8 (1992), 129-135.

[49] Gerber, H. U., and Li, S.-Y. The occurrence of sequence patterns in repeated experiments and hitting times in a markov chain. Stoch. Proc. Appl. 11 (1981), 101-108.

[50] Geske, M. X., Godbole, A. P., Schaffner, A. A., Skolnick, A. M., and Wallstrom, G. L. Compound Poisson approximations for word patterns under Markovian hypotheses. J. Appl. Prob. 32 (1995), 877-892.

[51] Godbole, A. P. Specific formula for some success run distributions. Statist. Prob. Letters 10 (1990), 119-124.

[52] Godbole, A. P. Poisson approximations for runs and patterns of rare events. Adv. Appl. Prob. 23 (1991), 851-865.

[53] Godbole, A. P., and Schaffner, A. A. Improved poisson approximations for word patterns. Adv. Appl. Prob. 25 (1993), 334-347.

[54] Goldstein, L., and Waterman, M. S. Poisson, compound poisson and process approximations for testing statistical significance in sequence comparisons. Bull. Math. Biol 54 (1992), 785-812.

[55] Guibas, L. J., and Odlyzko, A. M. Long repetitive patterns in random sequences. Z. Wahrscheinlichkeitsth 53 (1980), 241-262.

[56] Guibas, L. J., and Odlyzko, A. M. Periods in strings. J. Combinatorial Theory A 30 (1981), 19-42.

[57] Guibas, L. J., and Odlyzko, A. M. String overlaps, pattern matching, and nontransitive games. J. Combinatorial Theory A 30 (1981), 183-208.

[58] Hirano, K., and Aki, S. On number of occurrences of sucess runs of specified length in a two-state Markov chain. Statistica Sinica 3 (1993), 313-320.

[59] Karlin, S., and Altschul, S. F. Methods for assessing the statistical significance of molecular sequence features by using general scoring schemes. Proc. Natl. Acad. Sci. USA 87 (1990), 2264-2268.

[60] Karlin, S., Burge, C., and Campbell, A. M. Statistical analyses of counts and distributions of restriction sites in DNA sequences. Nucl. Acids Res. 20 (1992), 1363-1370.

[61] Karlin, S., and Macken, C. Assessment of inhomogeneities in an E. coli physical map. Nucl. Acids Res. 19 (1991), 4241-4246.

[62] Karlin, S., and Macken, C. Some statistical problems in the assessment of inhomogeneities of DNA sequence data. J. Amer. Statist. Soc. 86 (1991), 27-35.

[63] Karlin, S., and Ost, F. Counts of long aligned word matches among random letter sequences. Ann. Prob. 19 (1987), 293-351.

[64] Karlin, S., and Ost, F. Maximal length of common words among random letter sequences. Ann. Prob. 16 (1988), 535-563.

[65] Kleffe, J., and Borodovsky, M. First and second moment of counts of words in random texts generated by Markov chains. Comp. Applic. Biosci. 8 (1992), 433-441.

[66] Kleffe, J., and Grau, E. The joint distribution of patterns in random sequences with application to the RC-measure for expressivity. Comp. Applic. Biosci. 9 (1993), 275-283.

[67] Kleffe, J., and Langbecker, U. Exact computation of pattern probabilities in random sequences generated by Markov chains. Comp. Applic. Biosci. 6 (1990), 347-353.

[68] Kozhukhin, C. G., and Pevzner, P. A. Genome inhomogeneity is determined mainly by WW and SS dinucleotides. Comp. Applic. Biosci. 7 (1991), 39-49.

[69] Krause, A., Nicod�me, P., Bornberg-Bauer, E., Rehmsmeier, M., and Vingron, M. WWW-access to the SYSTERS protein sequence cluster set. Bioinformatics (1999). Application Note accepted for the GCB Special Issue of Bioinformatics.

[70] Kusolitsch, N. Longest runs in markov chains. Prob. Statist. Inference (1982), 223-230.

[71] Lagunez-Otero, J., and Trifonov, E. N. mRNA periodical infrastructure complementary to the proof-reading site in the ribosome. J. Biomol. Struct. Dynamics 10 (1992), 455-464.

[72] Leung, M. Y. Marsh, G. M., and Speed, T. P. Over and underrepresentation of short DNA words in herpesvirus genomes. J. Comp. Biol. 3 (1996), 345-360.

[73] Li, S. A martingale approach to the study of occurrence of sequences patterns in repeated experiments. Ann. Prob. 8 (1980), 1171-1176.

[74] Lothaire, M. Combinatorics on words. Addison-Wesley, 1983.

[75] Lundstrom, R. Stochastic models and statistical methods for DNA sequence data. PhD thesis, University of Utah, 1990.

[76] M�digue, C., Rouxel, T., Vigier, P., H�naut, A., and Danchin, A. Evidence for horizontal gene transfer in Escherichia coli speciation. J. Mol. Biol. 222 (1991), 851-856.

[77] Meyn, S. P., and Tweedie, R. L. Markov chains and stochastic stability. Springer-Verlag, 1993.

[78] Mott, R. Maximum-likelihood estimation of the statistical distribution of Smith-Waterman local sequence similarity scores. BMB (1992), 59-75.

[79] Mott, R., and Tribes, R. Approximate Statistics of Gapped Alignments. JCB 6, 1 (1999), 91-112.

[80] Nemetz, T., and Kusolitsch, N. On the longest run of coincidences. Z. Wahrscheinlichkeitsth 61 (1982), 59-73.

[81] Nicod�me, P. SSMAL: similarity searching with alignment graphs. Bioinformatics 14, 6 (1998), 508-515.

[82] Nicod�me, P., Salvy, B., and Flajolet, P. Motif statistics. To appear in Theoretical Computer Science, 2000.

[83] Nicod�me, P., and Steyaert, J. M. Selecting optimal oligonucleotide primers for multiplex PCR. In Fifth International Conference on Intelligent Systems for Molecular Biology (1997), AAAI Press, pp. 210-213.

[84] Nussinov, R. The universal dinucleotide asymmetry rules in DNA and the amino acid codon choice. J. Mol. Evol 17 (1981), 237-244.

[85] Olsen, R., Bundschuh, R., and Hwa, T. Rapid Assessment of Extremal Statistics for Gapped Local Alignment. American Association for Artificial Intelligence (1999), ?

[86] Pevzner, P. A. Nucleotide sequences versus Markov models. Computers Chem. 16 (1992), 103-106.

[87] Pevzner, P. A., Borodovsky, M. Y., and Mironov, A. A. Linguistics of nucleotides sequences I: The significance of deviations from mean statistical characteristics and prediction of the frequencies of occurrence of words. J. Biomol. Struct. Dynamics 6 (1989), 1013-1026.

[88] Pevzner, P. A., Borodovsky, M. Y., and Mironov, A. A. Linguistics of nucleotides sequences II: Stationary words in genetic texts and the zonal structure of DNA. J. Biomol. Struct. Dynamics 6 (1989), 1027-1038.

[89] Phillips, G. J., Arnold, J., and Ivarie, R. The effect of codon usage on the oligonucleotide composition of the e. coli genome and identification of over- and underrepresented sequences by Markov chain analysis. Nucl. Acids Res. 15 (1987), 2627-2638.

[90] Phillips, G. J., Arnold, J., and Ivarie, R. Mono- through hexanucleotide composition of the escherichia coli genome : a Markov chain analysis. Nucl. Acids Res. 15 (1987), 2611-2626.

[91] Pietrokovski, S., and Trifonov, E. N. Imported sequences in the mitochondrial yeast genome identified by nucleotide linguistics. Gene 122 (1992), 129-137.

[92] Pietrokovsky, S., Hirshon, J., and Trifonov, E. N. Linguistic measure of taxonomic and functional relatedness of nucleotides sequences. J. Biomol. Struct. Dynamics 7 (1990), 1251-1268.

[93] Raftery, A., and Tavar�, S. Estimation and modelling repeated patterns in high order Markov chains with the Mixture Transition Distribution Model. Appl. Statist. 43 (1994), 179-199.

[94] Raftery, A. E. A model for high-order Markov chains. J. R. Statist. Soc. B 47 (1985), 528-539.

[95] Rajarshi, M. B. Success runs in a two-state Markov chain. J. Appl. Prob. 11 (1974), 190-192.

[96] Reinert, G., and Schbath, S. Compound Poisson and Poisson process approximations for occurrences of multiple words in markov chains. J. Comp. Biol. 5 (1998), 223-254.

[97] Reinert, G., and Schbath, S. Compound Poisson approximations for occurrences of multiple words. In Statistics in Genetics and Molecular Biology, F. Seillier, Ed. IMS Lecture Notes-Monograph Series, 1999. Vol. 33.

[98] R�gnier, M., and Szpankowski, W. A last word on frequency of pattern occurrences in a markovian sequence. Submitted to IEEE Transactions on Information Theory , 1996.

[99] Rocha, E., Viari, A., and Danchin, A. Oligonucleotide bias in Bacillus subtilis: general trends and taxonomic comparisons. Nucl. Acids Res. 26 (1998), 2971-2980.

[100] Roos, M. Stein's method for compound Poisson approximation : the local approach. Ann. Appl. Prob. 4 (1994), 1177-1187.

[101] Rudander, J. On the first occurrence of a given pattern in a semi-Markov process. PhD thesis, University of Uppsala, 1996.

[102] Samarova, S. On the length of the longest head run for a markov chain with two states. Theory Prob. Appl. 26 (1981), 498-509.

[103] Schbath, S. Compound Poisson approximation of word counts in DNA sequences. ESAIM: Probability and Statistics 1 (1995), 1-16.
Available here

[104] Schbath, S. �tude asymptotique du nombre d'occurrences d'un mot dans une cha�ne de Markov et application � la recherche de mots de fr�quence exceptionnelle dans les s�quences d'ADN. PhD thesis, Universit� Ren� Descartes, Paris V, 1995.

[105] Schbath, S. Coverage processes in physical mapping by anchoring random clones. J. Comp. Biol. 4 (1997), 61-82.

[106] Schbath, S. An efficient statistic to detect over- and under-represented words in DNA sequences. J. Comp. Biol. 4 (1997), 189-192.

[107] Schbath, S., Prum, B., and Turckheim, E. d. Exceptional motifs in different Markov chain models for a statistical analysis of DNA sequences. J. Comp. Biol. 2 (1995), 417-437.

[108] Schwager. Run probabilities in sequences of markov-dependent trials. J. Amer. Statist. Soc. 78 (1983), 168-175.

[109] Senoussi, R. Statistique asymptotique presque-s�re de mod�les statistiques convexes. Ann. Inst. Henri Poincar� 26 (1990), 19-44.

[110] Shepherd, J. C. W. Method to determine the reading frame of a protein from the purine/pyrimidine genome sequence and its possible evolutionary justification. Proc. Natl. Acad. Sci. USA 78 (1981), 1596-1600.

[111] Sourice, S., Biaudet, V., El Karoui, M., Ehrlich, S., and Gruss, A. Identification of the Chi site of Haemophilus influenzae as several sequences related to the Escherichia coli Chi site. Mol. Microbiol. 27 (1998), 1021-1029.

[112] Stein, C. A bound for the error in the normal approximation to the distribution of a sum of dependent random variables. Proc. 6th Berkeley Sympos. Math. Statist. Probab. 2 (1972), 583-602.

[113] Stuckle, E. E., Emmrich, C., Grob, U., and Nielsen, P. J. Statistical analysis of nucleotide sequences. Nucl. Acids Res. 18 (1990), 6641-6647.

[114] Tanushev, M. S. Central limit theorem for several patterns in a markov chain sequence of letters. Preprint, 1996.

[115] Tanushev, M. S., and Arratia, R. Central limit theorem for renewal theory for several patterns. J. Comp. Biol. 4 (1997), 35-44.

[116] Thorburn, D. On the mean number of trials until the last trials satisfy a given condition. Stoch. Proc. Appl. 16 (1983), 211-217.

[117] Trifonov, E. N. Translation framing code and frame-monitoring mechanism as suggested by the analysis of mRNA and 16S rRNA nucleotide sequences. J. Mol. Biol. 194 (1987), 643-652.

[118] Trifonov, E. N. The multiple codes of nucleotide sequences. Bull. Math. Biol 51 (1989), 417-432.

[119] Trifonov, E. N. Recognition of correct reading frame by the ribosome. Biochimie 74 (1992), 357-362.

[120] Waterman, M. Mathematical methods for DNA sequences. CRC Press, 1989.

[121] Waterman, M. Introduction to computational biology. Chapman & Hall, 1995.

[122] Whittle, P. Some distribution and moment formulae for the Markov chain. J. R. Statist. Soc. B 17 (1955), 235-242.

[123] Yomo, T., and Ohno, S. Concordant evolution of coding and noncoding regions of DNA made possible by the universal rule of TA/CG deficiency-TG/CT excess. Proc. Natl. Acad. Sci. USA 86 (1989), 8452-8456.

Fri Feb 11 09:39:23 MET 2000

Retour � la liste