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Abstract

As more and more network-structured datasets are available, the sta-

tistical analysis of valued graphs has become a common place. Looking for
a latent structure is one of the many strategies used to better understand
the behavior of a network. Several methods already exist for the binary
case.
We present a model-based strategy to uncover groups of nodes in valued
graphs. This framework can be used for a wide span of parametric ran-
dom graphs models. Variational tools allow us to achieve approximate
maximum likelihood estimation of the parameters of these models. We
provide a simulation study showing that our estimation method performs
well over a broad range of situations.

Keywords: Latent structure, Mixture model, Random graph, Valued graph,
Variational method

1 Introduction

Datasets presenting a network structure are more and more studied in many
different domains such as sociology, energy, communication or biology (Albert
and Barabasi (2002)). Statistical tools are therefore needed to analyze the struc-
ture of these networks, in order to understand there properties or behavior. A
strong attention has been paid to the study of various topological characteristics
such as degree distribution, clustering coefficient, diameter (see e.g. Barabasi
and Albert (1999), Newman et al. (2002)). These characteristics are useful
to describe networks but not sufficient to understand its whole structure. For
this latter purpose, a proper probabilistic model is desirable (see Pattison and
Robins (2007) for a review).

Looking for groups of edges having similar connection profiles seems a nat-
ural way to capture an underlying structure of the network (Getoor and Diehl
(2004), Newman et al. (2002), ...), sometimes refereed to as community struc-
ture (Girvan and Newman (2002); Newman (2004b) and Newman (2004a) for an
extension to weigthed graphs). This turns into an un-supervised classification
(or clustering) problem which requires efficient estimation algorithms since the
datasets at hand are getting ever larger.
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Several model-based approaches have been proposed, mostly for binary net-
works, i.e. when the only information is the presence or absence of the edges.
In this framework, the stochastic block model proposed by Nowicki and Snijders
(2001) is the reference at this time. This model is valid for both directed and
undirected graphs but the Bayesian estimation strategy leads to strong limita-
tions in the network size (limited to 200 nodes). Recently, Daudin et al. (2007)
proposed a variational approach (see Jaakkola (2000)) to perform approximate
maximum likelihood estimation of the parameters. This approach turns out to
be much more efficient in terms of computation (Picard et al. (2007)). Methods
not referring to a specific random graph model have also been proposed. For
example, spectral graph clustering (von Luxburg et al. (2007)) aims at detecting
classes of nodes with strong within connectivity.

Binary information only describes the topology of the network, but does not
account for the intensity of the interactions between the nodes. However, power,
communication, social or biological networks are often valued. The intensity
of an edge may typically indicate the amount of energy transported from one
node to another, the number of passengers or the number of co-publications.
A statistical model accounting for these intensities is needed to analyze such
networks.

In this paper, we propose a general mixture model describing the connection
intensities between nodes spread among a certain number of classes (Section 2).
A variational approach to get an optimal, in a sense to be defined, approximation
of the likelihood is then presented in Section 3. In Section 4 we give a general
estimation algorithm and derive some explicit formulas for the most popular
distributions. The quality of the estimates is studied on synthetic data in Section
5.

2 Mixture Model

2.1 Model and Notations

Nodes. Consider a graph with n nodes, labeled in {1,...,n}. In our model, the
nodes are distributed among @ groups so that each node i is associated to
a random vector Z; = (Zj1,. .., Zig), with Z,;; being 1 if node 7 belongs
to group ¢ and 0 otherwise. The {Z;} are supposed to be independent
identically distributed observations from a multinomial distribution:

(Z:}: iid. ~M(La) (1)

where o = (a1,...,aq) (30, aq = 1).

Edges. Each edge from a node i to a node j is associated to a random variable
Xij, coding for the strength of the edge. Conditionally to the group of
each node, or equivalently knowing the {Z;}, the edges are supposed to
be independent. Knowing group ¢ of node ¢ and group ¢ of node j, Xj;
is distributed as f(-,04¢) := f4e(-), where fg_, is a probability distribution
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known up to a finite dimensional parameter 6,,.
Xijli € .5 € £~ f(-,040) == fqe(") (2)

Up to a relabeling of the classes, the model is identifiable and completely spec-
ified by both the mixture proportions a and the connectivity matrix 8 =
(040)q,e=1...0. We denote v = (e, @) the parameter of the model.

Directed and undirected graphs. This modeling can be applied to both
directed and undirected graphs. In the directed version, the variables X;; and
Xj; are supposed to be independent conditionally to the groups to which nodes
1 and j belong. This hypothesis is not always realistic since, for example, the
traffic from 4 to j is likely to be correlated to the traffic from j to i. A way to
account for such a dependency is to consider an undirected graph with edges
labeled with the bivariate variables {(X;;, X;i)}i<i<j<n. All the results pre-
sented in this paper are valid for directed graphs. The results for undirected
graphs can easily be derived and are only briefly mentioned.

2.2 Classical Distributions

We examine some classical distributions entering the framework of model.

Bernoulli. In some situations such as co-authorship or social networks, the
only available information is the presence or absence of the edge. Xj; is
then supposed to be Bernoulli distributed:

X1J|Z S q,j S e ~ B(Trqz).

It is equivalent to the stochastic block model of Nowicki and Snijders
(2001) or Daudin et al. (2007).

Multinomial. In a social network, X;; may inform about the nature of the
existing relation: professional, family, friend, etc. The Xj;s can then be
modeled by multinomial variables:

Xijli € q,5 € £~ M(1;pge).

The parameter 4, to estimate is the vector of probability pys = (pée, . ,p;’}) ,
m being the number of possible labels.

In directed random graphs, this setting allows to account for some depen-
dency between symmetric edges X;; and X,;;. We only need to consider
the equivalent undirected graphs where edge (i, 7) is labeled with the cou-
ple (Xi;, Xj;). m = 4 different labels can the be observed: (0,0) if no edge

exists, (1,0) for i — j, (1,1) for i < j and (1,1) for i < j.

Poisson. In a co-authorship network, edges may be valued with the numbers of
articles two authors co-published. Xj;; can then be supposed to be Poisson
distributed:

Xij|’t' €q,j € 0~ ,P()\qg)
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041 = Mg is the mean number of common papers (or mean interaction)
between an author from group ¢ and one from group #.

Gaussian. Traffic networks describe the intensity of the traffic between nodes.
The airport network is a typical example where the edges are valued ac-
cording to the number of passenger travelling from airport i to airport j.
The intensity X;; of the traffic can be assumed to be Gaussian:

Xijli € ¢,5 € €~ N(pge,050),  Ogr = (11ge; 030)-

Bivariate Gaussian. The correlation between symmetric edges X;; and Xj;
can be accounted for, considering the undirected valued graph where edge
(4,4) is valued by (X”,X /), which is assumed to be Gaussian. Denoting
Xij = [Xij Xyl

Xij“ € Q7j €l ~ N(lj’qé’ qu) eqé = (l"’q@’ Eqé)-

Linear regression. In case of real valued edges, the linear Gaussian model
allows to include covariates. Denoting y;; the p x 1 vector of covariates
describing edge (i, ), we set

X1]|Z € Qaj eln~ N (y;jﬂqg,ggg) 9(]@ = (ﬁqévo—ql>'

Covariates can also be involved when edges are integer valued (e.g. Bernoulli
or Poisson) using the generalized linear model framework.

3 Likelihood and Variational Inference

We now address the estimation of the parameter v = («, 8). We show that the
standard maximum likelihood approach can not be applied to our model and
propose an alternative strategy based on a variational approach.

3.1 Likelihoods

Let X denote the set of all edges: X = {X;;};j=1.n, and Z the set of all
indicator variables for nodes: Z = {Z;};=1,,. In the mixture model literature
(McLahan and Peel (2000)) (X, Z) is referred to as the complete dataset, while
X is referred to as the incomplete dataset.

Proposition 1 The log-likelihood of the complete dataset is

log P(Z, X) ZZZW logag + > > ZigZielog far(Xs).

i#j gt
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Proof. This comes directly from (1) and (2) and from the decomposition
logP(Z,X) =1logP(Z) + log P(X|Z). B

The likelihood of the incomplete dataset can be obtained by summing P(Z, X)
over all possible Z’s: P(X) = >",P(Z,X) This summation involves Q" terms
and quickly becomes intractable. The popular E-M algorithm (Dempster et al.
(1977)), widely used in mixture problems, allows to maximize log P(X) without
calculating it. The E-step relies on the calculation of the conditional distribution
of Z given X: P(Z|X). Unfortunately, in the case of network structured data,
the strong dependency between edges makes the calculation of this conditional
distribution out of reach.

Undirected graphs. Proposition 1 also holds for undirected graphs, replac-
ing the sum over i # j by a sum over ¢ < j. This is also true for Propositions 2
and 4 given below.

3.2 Variational Inference

We propose to use an approximate maximum likelihood strategy based on a vari-
ational approach (see Jordan et al. (1999) or the tutorial by Jaakkola (2000)).
This strategy is for example used in Govaert and Nadif (2005) for a biclustering
problem. We consider a lower bound of the log-likelihood of the incomplete
dataset:

J(Rx,~v) =logP(X;~v) — KL(Rx(-), P(-|X;~)) (3)

where K L denotes the Kullback-Leibler divergence and Rx stands for some dis-
tribution on Z. Classical properties of the Kullback-Leibler divergence ensure
that 7 has a unique maximum log P(X;~) and which is reached for Rx(Z) =
P(Z|X). In other words, if P(Z|X;~) was tractable, the maximization of 7 (Rx, )
with respect to v would be equivalent to the maximization of log P(X;~).

In our case, P(Z|X;~) can not be calculated and the maximization of J(Rx, )
with respect to Rx can not be achieved without some restrictions on Rx. There-
fore, we limit our search to the class of completely factorized distributions:

Rx(Z) = Hh(ziﬂ'i) (4)

where h denotes the multinomial distribution, 7; stands for a vector of proba-
bilities: 7; = (71,...,Tig) (with Zq Tiq = 1). The 7;s must be thought of as
variational parameters to be optimized to fit P(Z|X) to P(Z|X;~) at best; they
depend on the observed data X. Since we set some restrictions on the form of
Rx, J(Rx,7) is a lower bound of log P(X).

Proposition 2 For factorized distributions (4), we have

J(Rx,v) =— ZZTM log 7iq + Z an log ovg + Z ZTiquz log fqe(Xij).
q i q

i i#j q.l
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Proof. As shown in Jaakkola (2000), J(Rx,~y) can be rewritten as
J(Rx,v) = H(Rx) + Y _ Rx(Z)log P(X, Z;~) (5)
Z

where H(-) denotes the entropy of a distribution. For factorized distributions,
the entropy is additive over the coordinates so H(Rx) = >, H(h(-, 7)) =
— i 2 Tig log Tiq. The calculation of second term of (5) directly derives from
the combination of Proposition 1:

ZRX )log P(X, Z; ) ZZERX i) logag+> > By (ZigZje) log for(Xij)

i i#j gl

where Eg, denotes the expectation with respect to distribution Rx. The result
follows using (4). W

Other form for Rx. Considering a broader class of distribution Rx would
provide a better lower bound of J(Rx,~). Since the second term of (5) only
involves Ery (Ziq) and Ery (Z;qZ;¢), it seems natural to consider distributions

like
=172, Z;|7)
i<j

where 7;; is a square probability matrix of size (). Such distributions can ac-
count for interactions between pairs of nodes. Unfortunately, for such distribu-
tions, H(Rx ) has no simple expression and its exact computation has complexity
O(Q™), so that the benefits are outweighted by the increase of the computational
burden.

3.3 Exponential Bounds

First order approximation. A lower bound of the likelihood of the ob-
served edges P(X) can be derived from a general exponential inequality given
in Leisink and Kappen (2001): Vaz,pu e* > e#(1 + 2 — u). When applied to
x =logP(X, Z;~), it gives for any function p(-):

P(X;y) = 3 5P XZN > 37 ok (1 4 log P(X, Zi ) - pu(2)

Suppose p is linear: p(Z) = >,  BigZiq and denote Q,(Z) = exp[u(Z)]/Cy,
where C), is the normalizing constant such that @,(-) is a probability distribu-
tion function, we get:

P(X;7) > Cu(1 —log C) + Cp > Qu(Z)log P(X, Z; ) + H(Qu)  (6)
Z

The problem is then to optimize this lower bound with respect to parameters
Biq and C. Note that the right hand side of (6) is similar to J(Rx,~y) given in
(5). It can be shown that the optimization of these two quantities are actually
equivalent; analytic formula connecting the optimal ({84}, C},) and the optimal
{Tiq} can be derived (Mariadassou (2006)).
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Third order approximation. Since our strategy is to minimize a lower
bound of logP(X), we are not interested in second order development of the
exponential, which may provide either lower or upper bounds. In Yedidia et al.
(2005), such an approximation is used and referred to as Bethe method.

A tighter lower bound may be derived from a third order exponential inequality
such as:

r—v)? (z-v)?
Y, v e””Ze”(l—l—x—u)—i—e“((l—i—u—,u)( ) ( ))

2 * 6

Again, this may be applied to x = logP(X, Z;~) for which optimal functions
w(Z) and v(Z) have to be determined. This optimization problem cannot be
solved in a general way. It can be achieved if u(Z) and v(Z) are supposed
to be linear and equal up to an additive constant. However, each step of the

optimization process has then complexity O(n°Q%) and the improvement of the
bound has the same order of magnitude as the computer numerical precision.

4 Parameter Estimation
4.1 Estimation Algorithm
As explained in Section 3.2, the maximum likelihood estimator of ~ is
Yy = argmax log P(X;«) = argmax max J (Rx, ).
v Y Rx

In the variational framework, we restrict the last optimization problem to fac-
torized distributions. The estimate we propose is hence

5 R
VS AR B e T ()

The simultaneous optimization with respect to both Rx and - is still too difficult

so we adopt the following iterative strategy. Denoting by Rgg) and v the

estimates after step n, we compute

Rgg) = arg  max J(Rx,y™)
Rx factorized (7)
Y = argmax J (R ™)

The two next sections are dedicated to each of these steps.

Initialisation step. The optimization procedure (7) only ensures the conver-
gence toward a local optimum so the choice of the starting point for v or Rx
is crucial to avoid local optima. This choice is difficult but, to our experience,
hierarchical clustering seems to be a good strategy to get an initial value for
Rx.
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4.2 Optimal Approximate Conditional Distribution Rx

We consider here the optimization of J with respect to Rx. For a given value
of 7, we denote T the variational parameter defining the distribution Rx =
arg  max_ J(Rx,7)

Rx factorized

Proposition 3 For a given 7, the optimal variational parameter T satisfies

Fig o g [ [ T [Fae(Xis) fea (X507

Jj#L L

Proof. We maximize J(Rx,<) such as given in Proposition 2 subject to the
condition that, for all 4, the 7345 must sum to 1. The derivative with respect to
Tiq Of the quantity to be maximized is

—log7ig — 1+logag + > Y 7y [log fae(Xi;) +10g frg(Xji)] + L
Jj#L L

where L; denotes the ith Lagrange multiplier. The result follows. B

We obtain here a fixed point relation that can be related to a mean field
approximation (see Jaakkola (2000)). We get T simply by iterating this relation
until convergence.

Undirected graphs. For an undirected graph, 7 satisfies 7,4  aq H H [fae (X"
J#i L

4.3 Parameter Estimates

We now have to maximize J with respect to v = (e, ) for a given distribution
Rx.

Proposition 4 For a given distribution Rx characterized by a variational pa-
rameter T, the optimal o and 0 are given by

1 -
Qg = — Z Tigs Oq0 = arg n;ztxz TiqTje 108 f(Xij; 040).
é Tt

Proof. We maximize J(Rx,~) such as given in Proposition 2 subject to
D=1 1

Classical distributions. Proposition 4 can be applied to any distribution
f. Table 1 gives the parameter estimates for the model listed in Section 2.2.
The estimates of the mean parameter for the Poisson (Ag¢) and Gaussian (fi4¢)
distributions are the same as the estimate of the probability 4, in the Bernoulli
case. The results displayed in this table are all straightforward. Note that all
the estimates are weighted versions of the intuitive ones.
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Table 1: Estimates of 04 for some classical distributions. Notations are defined
in Section 2.2. kg stands for 1/ 37, 7igTje. W is the diagonal matrix with
diagonal term 7;,7;,. # param. is the number of independent parameters in
the case on directed graph, except for the bivariate Gaussian only defined for a
non oriented graph.

Distribution Estimate # param.
Bernoulli Tqe = Kqe Z TiqTjt Xij Q?
i
Multinomial ﬁ’;z = Kq Z TigTiel(Xij = k) (m —1)Q?
i
Gaussian Agl = Kqt Z TiqTje(Xij — Tige)? Q*
i
Bivariate Gaussian  fi,, = fge Z TiqTjeXij QQ+1)
i) 3
< o~ o~ /
Y = Fg Z TiqTje (Xij - qu) (Xij - qu) EQ(Q +1)
i) )
Linear regression qu = (Y'Wq}lY) Y'Wq}lX pQ?
~2 A% 2
Oy = Kt Z TigTjt (Xij - yijﬂqe) Q
i#j

Exponential family. The optimal 8 is not explicit in the general case, but
has a simpler form if the distribution f belongs to the exponential family.

Proposition 5 If the distribution f belongs to the exponential family and if 6
is the natural parameter:

f(x;0) = exp[¥(x)'0 — A(9)]

the optimal 0 is

Of V@A ZTqu]g‘I’ ij)
i#£]

Proof. According to Proposition 4, we look for 0= arg meax Zi# TigTje ¥ (X)) 60—
A(0). The derivative of the quantity to be maximized with respect to 6 has to
be null:

ZTqujg‘I’ l] VQA(O)
i#]

and the result follows. B
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4.4 Choice of the Number of Groups

In practice the number of classes is unknown and should be estimated. Many
criterion, such ag BIC or AIC (Burnham and Anderson (1998)), are based on the
likelihood of observed data P(X), which can not be calculated here. Therefore,
we propose a Bayesian model selection criterion based in the Integrated Classifi-
cation Likelihood (ICL) criterion developed by Biernacki et al. (2000). The ICL
criterion is an approximation of the complete-data integrated likelihood defined
such that:

log P(X, Z|mq) = /1og]P’(X,Z|’y,mQ)g('y|mQ)d'y,

where log P(X, Z|vy,mq) is the complete-data likelihood of model m¢g with @
classes.

Proposition 6 For a model mqg with Q) classes where 0 involves Pg indepen-
dent parameters, the ICL criterion is :

ICL(mq) = mauxlog B(X, Zlv.mo) — 5 {Pologln(n — 1)) ~ (Q — 1) log(n)}

Proof. The derivation of this criterion is described in Daudin et al. (2007) in
the case of a binary non oriented graph. The only difference lies in the number
of parameters Pg which is Q(Q + 1)/2 for the Bernoulli or Poisson model, but
may differ in the general case. B

Note that the penalty term —1 {Pglog[n(n — 1)] — (Q — 1) log(n)} is similar
to the one of BIC, where the log term refers to number of data. In the case
of graphs, the number of data is n (i.e. the number of nodes) for the vector of
proportions @ (Q — 1 independent parameters), whereas it is n(n — 1) (i.e. the
number of edges) for parameter 6.

5 Simulation Study

5.1 Quality of the estimates

Simulation parameters. We considered undirected networks of size n = 100
and 500 with Q = 3 classes. To study balanced and unbalanced proportions,
we set ag o< a?, with a =1, 0.5, 0.2. a = 1 gives uniform proportions, while
a = 0.2 gives very unbalanced proportions: e = (80.6%, 16.1%, 3.3%). We
finally considered symmetric connection intensities A,q, setting A,, = A’ for all
p and A,q = Ny for p # ¢. Parameter +y controls the difference between within
class and between class connection intensities (v = 0.1, 0.5, 0.9, 1.5) while )\ is
set so that the mean connection intensity A (A = 2,5) depends neither on ~ nor
a. 7y close to one makes the distinction between the classes difficult. ~ larger
than one makes the within class connectivities less intense than the between
ones. We expect the fitting to be rather easy for the combination {n = 500,a =
1,A =5, = 0.1} and rather difficult for {n = 100,a = 0.2, A = 2,y = 0.9}.

10
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Simulations and Computations. For each combination of the parameters,
we simulated S = 100 random graphs according to the corresponding mixture
model. We fitted the parameters using the algorithm described in Section 4. To
solve the identifiability problem of the classes, we systematically ordered them
in descending estimated proportion order: a; > as > as. For each parameter,
we calculated the estimated Root Mean Squared Error (RMSE):

Nl =

S
~ 1 —(s 2 >
RMSE(@,) = |5 > (@Y =ay),  RMSE(y,) =
s=1

S 2
— ()
> (% =2
s=1

where the superscript (s) labels the estimates obtained in simulation s. We also
calculated the mean posterior entropy

1 s s

which gives us the degree of uncertainty of the classification.

Results. Figure 1 (resp. 2) gives the RMSE for the proportion «, (resp.
connection intensities \pq). As expected, the RMSE is lower when n is larger.
The parameters affecting the RM SFE are mainly a and -, whereas A has nearly
no effect. The departures observed for «; and a3 in the balanced case (a = 1.0)
are due to the systematic reordering of the proportions.

Since the graph is undirected, A,q = Agp, so only non redundant parameters
are considered in Figure 2. The overall quality of the estimates is satisfying,
especially for the diagonal terms )\,,. The within intensity parameter of the
smallest class A3z is the most difficult to estimate. The worst case corresponds
to a small graph (n = 100) with very unbalanced classes (a = 0.2) for parameter
A12. In this case, the algorithm is unable to distinguish the two larger classes
(1 and 2), so that the estimates extra-diagonal term A;2 is close to the diagonal
ones Xu and ng, whereas its true value is up to ten times smaller.

Figure 3 gives the mean entropy. Not surprisingly, the most influent param-
eter is v: when 7 is close to 1, the classes are almost indistinguishable. For small
graphs (n = 100), the mean intensity A has almost no effect. Because of the
identifiability problem already mentioned, we did not consider the classification
error rate.

5.2 Model Selection

We considered an undirected graph of size n = 50, 100, 500 and 1000 with @Q* = 3
classes. We considered the combination {a = 0.5, \ = 2, = 0.5} which turned
out to be a medium case (see Section 5.1) and computed ICL for @ ranging
from 1 to 10 (from 1 to 5 for n. = 1000) before selecting the ) maximizing ICL.
We repeated this for S = 100 simulations.

11
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0.3 0.3 0.3
0.25 0.25 0.25
0.2 0.2 0.2
0.15 0.15 0.15
0.1 0.1 0.1
0.05 0.05 0.05
0 ° 1 2 3 °
0.3 0.3 0.3
0.25 0.25 0.25
0.2 0.2 0.2
0.15 0.15 0.15
0.1 0.1 0.1
0.05 0.05 0.05

Figure 1: RMSE of the estimates &,. The z-axis refers to a, s, a3. Top:
n = 100, bottom: n = 500, From left to right: a = 1,0.5,0.2. Solid line: A = 5,
dashed line: A = 2. Symbols depend on 7: o =0.1, V = 0.5, A= 0.9, * = 1.5.

Table 2: Frequency (in %) at which @ is selected for various sizes n.
n
@ 50 100 500 1000
2 82 7 0 0
3 17 90 100 100
4 1 3 0 0

Figure 4 gives ICL as a function of ), while Table 2 returns the frequency
with which each @ is selected. As soon as n is larger than 100, ICL almost
always selects the correct number of classes; For smaller graphs (n = 50), it
tends to underestimate it. The proposed criterion is thus highly efficient.
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Figure 2: RMSE of the estimates Ap,. The z-axis refers to
)\11, )\22, )\337 )\127 )\13, )\23. Same legend as Figure 1.
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Figure 3: Mean (normalized) entropy H/n as a function of . Top: n = 100,
bottom: n = 500, From left to right: a = 1,0.5,0.2. Solid line: A\ = 5, dashed
line: A = 2.

15



SSB - RR No. 10 M. Mariadassou and S. Robin

Figure 4: Mean ICL and 90% confidence interval as a function of Q. From left
to right: n = 50,n = 100, n = 500, n = 1000.
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