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tAs more and more network-stru
tured datasets are available, the sta-tisti
al analysis of valued graphs has be
ome a 
ommon pla
e. Looking fora latent stru
ture is one of the many strategies used to better understandthe behavior of a network. Several methods already exist for the binary
ase.We present a model-based strategy to un
over groups of nodes in valuedgraphs. This framework 
an be used for a wide span of parametri
 ran-dom graphs models. Variational tools allow us to a
hieve approximatemaximum likelihood estimation of the parameters of these models. Weprovide a simulation study showing that our estimation method performswell over a broad range of situations.Keywords: Latent stru
ture, Mixture model, Random graph, Valued graph,Variational method1 Introdu
tionDatasets presenting a network stru
ture are more and more studied in manydi�erent domains su
h as so
iology, energy, 
ommuni
ation or biology (Albertand Barabási (2002)). Statisti
al tools are therefore needed to analyze the stru
-ture of these networks, in order to understand there properties or behavior. Astrong attention has been paid to the study of various topologi
al 
hara
teristi
ssu
h as degree distribution, 
lustering 
oe�
ient, diameter (see e.g. Barabásiand Albert (1999), Newman et al. (2002)). These 
hara
teristi
s are usefulto des
ribe networks but not su�
ient to understand its whole stru
ture. Forthis latter purpose, a proper probabilisti
 model is desirable (see Pattison andRobins (2007) for a review).Looking for groups of edges having similar 
onne
tion pro�les seems a nat-ural way to 
apture an underlying stru
ture of the network (Getoor and Diehl(2004), Newman et al. (2002), ...), sometimes refereed to as 
ommunity stru
-ture (Girvan and Newman (2002); Newman (2004b) and Newman (2004a) for anextension to weigthed graphs). This turns into an un-supervised 
lassi�
ation(or 
lustering) problem whi
h requires e�
ient estimation algorithms sin
e thedatasets at hand are getting ever larger.1
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hes have been proposed, mostly for binary net-works, i.e. when the only information is the presen
e or absen
e of the edges.In this framework, the sto
hasti
 blo
k model proposed by Nowi
ki and Snijders(2001) is the referen
e at this time. This model is valid for both dire
ted andundire
ted graphs but the Bayesian estimation strategy leads to strong limita-tions in the network size (limited to 200 nodes). Re
ently, Daudin et al. (2007)proposed a variational approa
h (see Jaakkola (2000)) to perform approximatemaximum likelihood estimation of the parameters. This approa
h turns out tobe mu
h more e�
ient in terms of 
omputation (Pi
ard et al. (2007)). Methodsnot referring to a spe
i�
 random graph model have also been proposed. Forexample, spe
tral graph 
lustering (von Luxburg et al. (2007)) aims at dete
ting
lasses of nodes with strong within 
onne
tivity.Binary information only des
ribes the topology of the network, but does nota

ount for the intensity of the intera
tions between the nodes. However, power,
ommuni
ation, so
ial or biologi
al networks are often valued. The intensityof an edge may typi
ally indi
ate the amount of energy transported from onenode to another, the number of passengers or the number of 
o-publi
ations.A statisti
al model a

ounting for these intensities is needed to analyze su
hnetworks.In this paper, we propose a general mixture model des
ribing the 
onne
tionintensities between nodes spread among a 
ertain number of 
lasses (Se
tion 2).A variational approa
h to get an optimal, in a sense to be de�ned, approximationof the likelihood is then presented in Se
tion 3. In Se
tion 4 we give a generalestimation algorithm and derive some expli
it formulas for the most populardistributions. The quality of the estimates is studied on syntheti
 data in Se
tion5.2 Mixture Model2.1 Model and NotationsNodes. Consider a graph with n nodes, labeled in {1, . . . , n}. In our model, thenodes are distributed among Q groups so that ea
h node i is asso
iated toa random ve
tor Zi = (Zi1, . . . , ZiQ), with Ziq being 1 if node i belongsto group q and 0 otherwise. The {Zi} are supposed to be independentidenti
ally distributed observations from a multinomial distribution:
{Zi}i i.i.d. ∼M(1; α) (1)where α = (α1, . . . , αQ) (∑q αq = 1).Edges. Ea
h edge from a node i to a node j is asso
iated to a random variable

Xij , 
oding for the strength of the edge. Conditionally to the group ofea
h node, or equivalently knowing the {Zi}, the edges are supposed tobe independent. Knowing group q of node i and group ℓ of node j, Xijis distributed as f(·, θqℓ) := fqℓ(·), where fθqℓ
is a probability distribution2



SSB - RR No. 10 M. Mariadassou and S. Robinknown up to a �nite dimensional parameter θqℓ.
Xij |i ∈ q, j ∈ ℓ ∼ f(·, θqℓ) := fqℓ(·) (2)Up to a relabeling of the 
lasses, the model is identi�able and 
ompletely spe
-i�ed by both the mixture proportions α and the 
onne
tivity matrix θ =

(θqℓ)q,ℓ=1...Q. We denote γ = (α, θ) the parameter of the model.Dire
ted and undire
ted graphs. This modeling 
an be applied to bothdire
ted and undire
ted graphs. In the dire
ted version, the variables Xij and
Xji are supposed to be independent 
onditionally to the groups to whi
h nodes
i and j belong. This hypothesis is not always realisti
 sin
e, for example, thetra�
 from i to j is likely to be 
orrelated to the tra�
 from j to i. A way toa

ount for su
h a dependen
y is to 
onsider an undire
ted graph with edgeslabeled with the bivariate variables {(Xij , Xji)}1≤i<j≤n. All the results pre-sented in this paper are valid for dire
ted graphs. The results for undire
tedgraphs 
an easily be derived and are only brie�y mentioned.2.2 Classi
al DistributionsWe examine some 
lassi
al distributions entering the framework of model.Bernoulli. In some situations su
h as 
o-authorship or so
ial networks, theonly available information is the presen
e or absen
e of the edge. Xij isthen supposed to be Bernoulli distributed:

Xij |i ∈ q, j ∈ ℓ ∼ B(πqℓ).It is equivalent to the sto
hasti
 blo
k model of Nowi
ki and Snijders(2001) or Daudin et al. (2007).Multinomial. In a so
ial network, Xij may inform about the nature of theexisting relation: professional, family, friend, et
. The Xijs 
an then bemodeled by multinomial variables:
Xij |i ∈ q, j ∈ ℓ ∼M(1;pqℓ).The parameter θqℓ to estimate is the ve
tor of probability pqℓ =

(
p1

qℓ, . . . , p
m
qℓ

),
m being the number of possible labels.In dire
ted random graphs, this setting allows to a

ount for some depen-den
y between symmetri
 edges Xij and Xji. We only need to 
onsiderthe equivalent undire
ted graphs where edge (i, j) is labeled with the 
ou-ple (Xij , Xji). m = 4 di�erent labels 
an the be observed: (0, 0) if no edgeexists, (1, 0) for i→ j, (1, 1) for i← j and (1, 1) for i↔ j.Poisson. In a 
o-authorship network, edges may be valued with the numbers ofarti
les two authors 
o-published. Xij 
an then be supposed to be Poissondistributed:

Xij |i ∈ q, j ∈ ℓ ∼ P(λqℓ).3
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θql := λqℓ is the mean number of 
ommon papers (or mean intera
tion)between an author from group q and one from group ℓ.Gaussian. Tra�
 networks des
ribe the intensity of the tra�
 between nodes.The airport network is a typi
al example where the edges are valued a
-
ording to the number of passenger travelling from airport i to airport j.The intensity Xij of the tra�
 
an be assumed to be Gaussian:

Xij |i ∈ q, j ∈ ℓ ∼ N (µqℓ, σ
2
qℓ), θqℓ = (µqℓ, σ

2
qℓ).Bivariate Gaussian. The 
orrelation between symmetri
 edges Xij and Xji
an be a

ounted for, 
onsidering the undire
ted valued graph where edge

(i, j) is valued by (Xij , Xji), whi
h is assumed to be Gaussian. Denoting
Xij = [Xij Xji]

′:
Xij |i ∈ q, j ∈ ℓ ∼ N (µqℓ,Σqℓ) θqℓ = (µqℓ,Σqℓ).Linear regression. In 
ase of real valued edges, the linear Gaussian modelallows to in
lude 
ovariates. Denoting yij the p × 1 ve
tor of 
ovariatesdes
ribing edge (i, j), we set

Xij |i ∈ q, j ∈ ℓ ∼ N
(
y′

ijβqℓ, σ
2
qℓ

)
θqℓ = (βqℓ, σqℓ).Covariates 
an also be involved when edges are integer valued (e.g. Bernoullior Poisson) using the generalized linear model framework.3 Likelihood and Variational Inferen
eWe now address the estimation of the parameter γ = (α, θ). We show that thestandard maximum likelihood approa
h 
an not be applied to our model andpropose an alternative strategy based on a variational approa
h.3.1 LikelihoodsLet X denote the set of all edges: X = {Xij}i,j=1..n, and Z the set of allindi
ator variables for nodes: Z = {Zi}i=1,n. In the mixture model literature(M
Lahan and Peel (2000)) (X,Z) is referred to as the 
omplete dataset, while

X is referred to as the in
omplete dataset.Proposition 1 The log-likelihood of the 
omplete dataset is
logP(Z,X) =

∑

i

∑

q

Ziq log αq +
∑

i6=j

∑

q,ℓ

ZiqZjℓ log fqℓ(Xij).

4
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omes dire
tly from (1) and (2) and from the de
omposition
logP(Z,X) = logP(Z) + logP(X|Z). �The likelihood of the in
omplete dataset 
an be obtained by summing P(Z,X)over all possible Z's: P(X) =

∑
Z P(Z,X) This summation involves Qn termsand qui
kly be
omes intra
table. The popular E-M algorithm (Dempster et al.(1977)), widely used in mixture problems, allows to maximize logP(X) without
al
ulating it. The E-step relies on the 
al
ulation of the 
onditional distributionof Z given X: P(Z|X). Unfortunately, in the 
ase of network stru
tured data,the strong dependen
y between edges makes the 
al
ulation of this 
onditionaldistribution out of rea
h.Undire
ted graphs. Proposition 1 also holds for undire
ted graphs, repla
-ing the sum over i 6= j by a sum over i < j. This is also true for Propositions 2and 4 given below.3.2 Variational Inferen
eWe propose to use an approximate maximum likelihood strategy based on a vari-ational approa
h (see Jordan et al. (1999) or the tutorial by Jaakkola (2000)).This strategy is for example used in Govaert and Nadif (2005) for a bi
lusteringproblem. We 
onsider a lower bound of the log-likelihood of the in
ompletedataset:

J (RX, γ) = logP(X; γ)−KL(RX(·),P(·|X; γ)) (3)where KL denotes the Kullba
k-Leibler divergen
e and RX stands for some dis-tribution on Z. Classi
al properties of the Kullba
k-Leibler divergen
e ensurethat J has a unique maximum logP(X; γ) and whi
h is rea
hed for RX(Z) =P(Z|X). In other words, if P(Z|X; γ) was tra
table, the maximization of J (RX, γ)with respe
t to γ would be equivalent to the maximization of logP(X; γ).In our 
ase, P(Z|X; γ) 
an not be 
al
ulated and the maximization of J (RX, γ)with respe
t to RX 
an not be a
hieved without some restri
tions on RX. There-fore, we limit our sear
h to the 
lass of 
ompletely fa
torized distributions:
RX(Z) =

∏

i

h(Zi, τ i) (4)where h denotes the multinomial distribution, τ i stands for a ve
tor of proba-bilities: τ i = (τi1, . . . , τiQ) (with ∑q τiq = 1). The τ is must be thought of asvariational parameters to be optimized to �t P(Z|X) to P(Z|X; γ) at best; theydepend on the observed data X. Sin
e we set some restri
tions on the form of
RX, J (RX, γ) is a lower bound of logP(X).Proposition 2 For fa
torized distributions (4), we have
J (RX, γ) = −

∑

i

∑

q

τiq log τiq +
∑

i

∑

q

τiq log αq +
∑

i6=j

∑

q,ℓ

τiqτjℓ log fqℓ(Xij).5



SSB - RR No. 10 M. Mariadassou and S. RobinProof. As shown in Jaakkola (2000), J (RX, γ) 
an be rewritten as
J (RX, γ) = H(RX) +

∑

Z

RX(Z) logP(X,Z; γ) (5)where H(·) denotes the entropy of a distribution. For fa
torized distributions,the entropy is additive over the 
oordinates so H(RX) =
∑

iH(h(·, τ i)) =
−
∑

i

∑
q τiq log τiq. The 
al
ulation of se
ond term of (5) dire
tly derives fromthe 
ombination of Proposition 1:

∑

Z

RX(Z) logP(X,Z; γ) =
∑

i

∑

q

ERX
(Ziq) log αq+

∑

i6=j

∑

q,ℓ

ERX
(ZiqZjℓ) log fqℓ(Xij)where ERX

denotes the expe
tation with respe
t to distribution RX. The resultfollows using (4). �Other form for RX. Considering a broader 
lass of distribution RX wouldprovide a better lower bound of J (RX, γ). Sin
e the se
ond term of (5) onlyinvolves ERX
(Ziq) and ERX

(ZiqZjℓ), it seems natural to 
onsider distributionslike
RX(Z) =

∏

i<j

h(Zi,Zj |τ ij)where τ ij is a square probability matrix of size Q. Su
h distributions 
an a
-
ount for intera
tions between pairs of nodes. Unfortunately, for su
h distribu-tions,H(RX) has no simple expression and its exa
t 
omputation has 
omplexity
O(Qn), so that the bene�ts are outweighted by the in
rease of the 
omputationalburden.3.3 Exponential BoundsFirst order approximation. A lower bound of the likelihood of the ob-served edges P(X) 
an be derived from a general exponential inequality givenin Leisink and Kappen (2001): ∀x, µ ex ≥ eµ(1 + x − µ). When applied to
x = logP(X,Z; γ), it gives for any fun
tion µ(·):P(X; γ) =

∑

Z

elogP(X,Z;γ) ≥
∑

Z

eµ(Z) [1 + logP(X,Z; γ)− µ(Z)]Suppose µ is linear: µ(Z) =
∑

i,q βiqZiq and denote Qµ(Z) = exp[µ(Z)]/Cµ,where Cµ is the normalizing 
onstant su
h that Qµ(·) is a probability distribu-tion fun
tion, we get:P(X; γ) ≥ Cµ(1 − log Cµ) + Cµ

∑

Z

Qµ(Z) logP(X,Z; γ) +H(Qµ) (6)The problem is then to optimize this lower bound with respe
t to parameters
βiq and C. Note that the right hand side of (6) is similar to J (RX, γ) given in(5). It 
an be shown that the optimization of these two quantities are a
tuallyequivalent; analyti
 formula 
onne
ting the optimal ({βiq}, Cµ) and the optimal
{τiq} 
an be derived (Mariadassou (2006)).6
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e our strategy is to minimize a lowerbound of logP(X), we are not interested in se
ond order development of theexponential, whi
h may provide either lower or upper bounds. In Yedidia et al.(2005), su
h an approximation is used and referred to as Bethe method.A tighter lower bound may be derived from a third order exponential inequalitysu
h as:
∀x, µ, ν ex ≥ eν(1 + x− ν) + eµ

(
(1 + ν − µ)

(x− ν)2

2
+

(x − ν)3

6

)
.Again, this may be applied to x = logP(X,Z; γ) for whi
h optimal fun
tions

µ(Z) and ν(Z) have to be determined. This optimization problem 
annot besolved in a general way. It 
an be a
hieved if µ(Z) and ν(Z) are supposedto be linear and equal up to an additive 
onstant. However, ea
h step of theoptimization pro
ess has then 
omplexity O(n6Q6) and the improvement of thebound has the same order of magnitude as the 
omputer numeri
al pre
ision.4 Parameter Estimation4.1 Estimation AlgorithmAs explained in Se
tion 3.2, the maximum likelihood estimator of γ is
γ̂ML = argmax

γ
logP(X; γ) = argmax

γ
max
RX

J (RX, γ).In the variational framework, we restri
t the last optimization problem to fa
-torized distributions. The estimate we propose is hen
e
γ̂ = argmax

γ
max

RX fa
torizedJ (RX, γ)The simultaneous optimization with respe
t to both RX and γ is still too di�
ultso we adopt the following iterative strategy. Denoting by R
(n)
X and γ(n) theestimates after step n, we 
ompute





R

(n)
X = arg max

RX fa
torizedJ (RX, γ(n))

γ(n+1) = argmax
γ
J (R

(n+1)
X , γ)

(7)The two next se
tions are dedi
ated to ea
h of these steps.Initialisation step. The optimization pro
edure (7) only ensures the 
onver-gen
e toward a lo
al optimum so the 
hoi
e of the starting point for γ or RXis 
ru
ial to avoid lo
al optima. This 
hoi
e is di�
ult but, to our experien
e,hierar
hi
al 
lustering seems to be a good strategy to get an initial value for
RX. 7



SSB - RR No. 10 M. Mariadassou and S. Robin4.2 Optimal Approximate Conditional Distribution RXWe 
onsider here the optimization of J with respe
t to RX. For a given valueof γ, we denote τ̂ the variational parameter de�ning the distribution R̂X =
arg max

RX fa
torizedJ (RX, γ).Proposition 3 For a given γ, the optimal variational parameter τ̂ satis�es
τ̂iq ∝ αq

∏

j 6=i

∏

ℓ

[fqℓ(Xij)fℓq(Xji)]
bτjℓ .Proof. We maximize J (RX, γ) su
h as given in Proposition 2 subje
t to the
ondition that, for all i, the τiqs must sum to 1. The derivative with respe
t to

τiq of the quantity to be maximized is
− log τiq − 1 + log αq +

∑

j 6=i

∑

ℓ

τjℓ [log fqℓ(Xij) + log fℓq(Xji)] + Liwhere Li denotes the ith Lagrange multiplier. The result follows. �We obtain here a �xed point relation that 
an be related to a mean �eldapproximation (see Jaakkola (2000)). We get τ̂ simply by iterating this relationuntil 
onvergen
e.Undire
ted graphs. For an undire
ted graph, τ̂ satis�es τ̂iq ∝ αq

∏

j 6=i

∏

ℓ

[fqℓ(Xij)]
bτjℓ .4.3 Parameter EstimatesWe now have to maximize J with respe
t to γ = (α, θ) for a given distribution

RX.Proposition 4 For a given distribution RX 
hara
terized by a variational pa-rameter τ , the optimal α and θ are given by
α̂q =

1

n

∑

i

τiq , θ̂qℓ = arg max
θqℓ

∑

i6=j

τiqτjℓ log f(Xij ; θqℓ).Proof. We maximize J (RX, γ) su
h as given in Proposition 2 subje
t to∑
q αq = 1. �Classi
al distributions. Proposition 4 
an be applied to any distribution

f . Table 1 gives the parameter estimates for the model listed in Se
tion 2.2.The estimates of the mean parameter for the Poisson (λqℓ) and Gaussian (µqℓ)distributions are the same as the estimate of the probability πqℓ in the Bernoulli
ase. The results displayed in this table are all straightforward. Note that allthe estimates are weighted versions of the intuitive ones.8
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lassi
al distributions. Notations are de�nedin Se
tion 2.2. κqℓ stands for 1/
∑

i6=j τiqτjℓ. Wqℓ is the diagonal matrix withdiagonal term τiqτjℓ. # param. is the number of independent parameters inthe 
ase on dire
ted graph, ex
ept for the bivariate Gaussian only de�ned for anon oriented graph.Distribution Estimate # param.Bernoulli π̂qℓ = κqℓ

∑

i6=j

τiqτjℓXij Q2Multinomial p̂k
qℓ = κqℓ

∑

i6=j

τiqτjℓI(Xij = k) (m− 1)Q2Gaussian σ̂2
qℓ = κqℓ

∑

i6=j

τiqτjℓ(Xij − µ̂qℓ)
2 Q2Bivariate Gaussian µ̂qℓ = κqℓ

∑

i6=j

τiqτjℓXij Q(Q + 1)

Σ̂qℓ = κqℓ

∑

i6=j

τiqτjℓ

(
Xij − µ̂qℓ

) (
Xij − µ̂qℓ

)′ 3

2
Q(Q + 1)Linear regression β̂qℓ =

(
Y′W−1

qℓ Y

)−1

Y′W−1
qℓ X pQ2

σ̂2
qℓ = κqℓ

∑

i6=j

τiqτjℓ

(
Xij − y′

ij β̂qℓ

)2

Q2Exponential family. The optimal θ is not expli
it in the general 
ase, buthas a simpler form if the distribution f belongs to the exponential family.Proposition 5 If the distribution f belongs to the exponential family and if θis the natural parameter:
f(x; θ) = exp [Ψ(x)′θ −A(θ)]the optimal θ is

θ̂ =
(
∇θA

)−1



∑

i6=j

τiqτjℓΨ(Xij)
′


Proof. A

ording to Proposition 4, we look for θ̂ = arg max

θ

∑
i6=j τiqτjℓΨ(Xij)

′θ−

A(θ). The derivative of the quantity to be maximized with respe
t to θ has tobe null: ∑

i6=j

τiqτjℓΨ(Xij)
′ −∇θA(θ) = 0and the result follows. �
9
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e of the Number of GroupsIn pra
ti
e the number of 
lasses is unknown and should be estimated. Many
riterion, su
h as BIC or AIC (Burnham and Anderson (1998)), are based on thelikelihood of observed data P(X), whi
h 
an not be 
al
ulated here. Therefore,we propose a Bayesian model sele
tion 
riterion based in the Integrated Classi�-
ation Likelihood (ICL) 
riterion developed by Bierna
ki et al. (2000). The ICL
riterion is an approximation of the 
omplete-data integrated likelihood de�nedsu
h that:
logP(X,Z|mQ) =

∫
logP(X,Z|γ, mQ)g(γ|mQ)dγ,where logP(X,Z|γ, mQ) is the 
omplete-data likelihood of model mQ with Q
lasses.Proposition 6 For a model mQ with Q 
lasses where θ involves PQ indepen-dent parameters, the ICL 
riterion is :

ICL(mQ) = max
γ

logP(X, Z̃|γ, mQ)−
1

2
{PQ log[n(n− 1)]− (Q− 1) log(n)} .Proof. The derivation of this 
riterion is des
ribed in Daudin et al. (2007) inthe 
ase of a binary non oriented graph. The only di�eren
e lies in the numberof parameters PQ whi
h is Q(Q + 1)/2 for the Bernoulli or Poisson model, butmay di�er in the general 
ase. �Note that the penalty term − 1

2 {PQ log[n(n− 1)]− (Q− 1) log(n)} is similarto the one of BIC, where the log term refers to number of data. In the 
aseof graphs, the number of data is n (i.e. the number of nodes) for the ve
tor ofproportions α (Q− 1 independent parameters), whereas it is n(n− 1) (i.e. thenumber of edges) for parameter θ.5 Simulation Study5.1 Quality of the estimatesSimulation parameters. We 
onsidered undire
ted networks of size n = 100and 500 with Q = 3 
lasses. To study balan
ed and unbalan
ed proportions,we set αq ∝ aq, with a = 1, 0.5, 0.2. a = 1 gives uniform proportions, while
a = 0.2 gives very unbalan
ed proportions: α = (80.6%, 16.1%, 3.3%). We�nally 
onsidered symmetri
 
onne
tion intensities λpq, setting λpp = λ′ for all
p and λpq = λ′γ for p 6= q. Parameter γ 
ontrols the di�eren
e between within
lass and between 
lass 
onne
tion intensities (γ = 0.1, 0.5, 0.9, 1.5) while λ′ isset so that the mean 
onne
tion intensity λ (λ = 2, 5) depends neither on γ nor
a. γ 
lose to one makes the distin
tion between the 
lasses di�
ult. γ largerthan one makes the within 
lass 
onne
tivities less intense than the betweenones. We expe
t the �tting to be rather easy for the 
ombination {n = 500, a =
1, λ = 5, γ = 0.1} and rather di�
ult for {n = 100, a = 0.2, λ = 2, γ = 0.9}.10
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h 
ombination of the parameters,we simulated S = 100 random graphs a

ording to the 
orresponding mixturemodel. We �tted the parameters using the algorithm des
ribed in Se
tion 4. Tosolve the identi�ability problem of the 
lasses, we systemati
ally ordered themin des
ending estimated proportion order: α̂1 ≥ α̂2 ≥ α̂3. For ea
h parameter,we 
al
ulated the estimated Root Mean Squared Error (RMSE):
RMSE(α̂p) =

√√√√ 1

S

S∑

s=1

(
α̂p

(s) − αp

)2

, RMSE(λ̂pq) =

√√√√ 1

S

S∑

s=1

(
λ̂pq

(s)
− λpq

)2

,where the supers
ript (s) labels the estimates obtained in simulation s. We also
al
ulated the mean posterior entropy
H =

1

S

∑

s

(
−
∑

i

∑

q

τ
(s)
iq ln τ

(s)
iq

)
,whi
h gives us the degree of un
ertainty of the 
lassi�
ation.Results. Figure 1 (resp. 2) gives the RMSE for the proportion αq (resp.
onne
tion intensities λpq). As expe
ted, the RMSE is lower when n is larger.The parameters a�e
ting the RMSE are mainly a and γ, whereas λ has nearlyno e�e
t. The departures observed for α1 and α3 in the balan
ed 
ase (a = 1.0)are due to the systemati
 reordering of the proportions.Sin
e the graph is undire
ted, λpq = λqp, so only non redundant parametersare 
onsidered in Figure 2. The overall quality of the estimates is satisfying,espe
ially for the diagonal terms λqq . The within intensity parameter of thesmallest 
lass λ33 is the most di�
ult to estimate. The worst 
ase 
orrespondsto a small graph (n = 100) with very unbalan
ed 
lasses (a = 0.2) for parameter

λ12. In this 
ase, the algorithm is unable to distinguish the two larger 
lasses(1 and 2), so that the estimates extra-diagonal term λ̂12 is 
lose to the diagonalones λ̂11 and λ̂22, whereas its true value is up to ten times smaller.Figure 3 gives the mean entropy. Not surprisingly, the most in�uent param-eter is γ: when γ is 
lose to 1, the 
lasses are almost indistinguishable. For smallgraphs (n = 100), the mean intensity λ has almost no e�e
t. Be
ause of theidenti�ability problem already mentioned, we did not 
onsider the 
lassi�
ationerror rate.5.2 Model Sele
tionWe 
onsidered an undire
ted graph of size n = 50, 100, 500 and 1000with Q⋆ = 3
lasses. We 
onsidered the 
ombination {a = 0.5, λ = 2, γ = 0.5} whi
h turnedout to be a medium 
ase (see Se
tion 5.1) and 
omputed ICL for Q rangingfrom 1 to 10 (from 1 to 5 for n = 1000) before sele
ting the Q maximizing ICL.We repeated this for S = 100 simulations.11
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Figure 1: RMSE of the estimates α̂q. The x-axis refers to α1, α2, α3. Top:
n = 100, bottom: n = 500, From left to right: a = 1, 0.5, 0.2. Solid line: λ = 5,dashed line: λ = 2. Symbols depend on γ: ◦ = 0.1, O = 0.5, M= 0.9, ∗ = 1.5.Table 2: Frequen
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h Q is sele
ted for various sizes n.

n
Q 50 100 500 10002 82 7 0 03 17 90 100 1004 1 3 0 0Figure 4 gives ICL as a fun
tion of Q, while Table 2 returns the frequen
ywith whi
h ea
h Q is sele
ted. As soon as n is larger than 100, ICL almostalways sele
ts the 
orre
t number of 
lasses; For smaller graphs (n = 50), ittends to underestimate it. The proposed 
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Figure 2: RMSE of the estimates λ̂pq . The x-axis refers to
λ11, λ22, λ33, λ12, λ13, λ23. Same legend as Figure 1.
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Figure 3: Mean (normalized) entropy H/n as a fun
tion of γ. Top: n = 100,bottom: n = 500, From left to right: a = 1, 0.5, 0.2. Solid line: λ = 5, dashedline: λ = 2. 15
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Figure 4: Mean ICL and 90% 
on�den
e interval as a fun
tion of Q. From leftto right: n = 50, n = 100, n = 500, n = 1000.
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