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SSB - RR No. 10 M. Mariadassou and S. RobinUnovering Latent Struture in ValuedGraphs: A Variational ApproahM. Mariadassou1, S. Robin1UMR 518 AgroParisTeh/INRA Applied Mathematis and Computer Sienes16, rue C. Bernard, F-75005 Paris, Franemariadas�agroparisteh.frAbstratAs more and more network-strutured datasets are available, the sta-tistial analysis of valued graphs has beome a ommon plae. Looking fora latent struture is one of the many strategies used to better understandthe behavior of a network. Several methods already exist for the binaryase.We present a model-based strategy to unover groups of nodes in valuedgraphs. This framework an be used for a wide span of parametri ran-dom graphs models. Variational tools allow us to ahieve approximatemaximum likelihood estimation of the parameters of these models. Weprovide a simulation study showing that our estimation method performswell over a broad range of situations.Keywords: Latent struture, Mixture model, Random graph, Valued graph,Variational method1 IntrodutionDatasets presenting a network struture are more and more studied in manydi�erent domains suh as soiology, energy, ommuniation or biology (Albertand Barabási (2002)). Statistial tools are therefore needed to analyze the stru-ture of these networks, in order to understand there properties or behavior. Astrong attention has been paid to the study of various topologial harateristissuh as degree distribution, lustering oe�ient, diameter (see e.g. Barabásiand Albert (1999), Newman et al. (2002)). These harateristis are usefulto desribe networks but not su�ient to understand its whole struture. Forthis latter purpose, a proper probabilisti model is desirable (see Pattison andRobins (2007) for a review).Looking for groups of edges having similar onnetion pro�les seems a nat-ural way to apture an underlying struture of the network (Getoor and Diehl(2004), Newman et al. (2002), ...), sometimes refereed to as ommunity stru-ture (Girvan and Newman (2002); Newman (2004b) and Newman (2004a) for anextension to weigthed graphs). This turns into an un-supervised lassi�ation(or lustering) problem whih requires e�ient estimation algorithms sine thedatasets at hand are getting ever larger.1



SSB - RR No. 10 M. Mariadassou and S. RobinSeveral model-based approahes have been proposed, mostly for binary net-works, i.e. when the only information is the presene or absene of the edges.In this framework, the stohasti blok model proposed by Nowiki and Snijders(2001) is the referene at this time. This model is valid for both direted andundireted graphs but the Bayesian estimation strategy leads to strong limita-tions in the network size (limited to 200 nodes). Reently, Daudin et al. (2007)proposed a variational approah (see Jaakkola (2000)) to perform approximatemaximum likelihood estimation of the parameters. This approah turns out tobe muh more e�ient in terms of omputation (Piard et al. (2007)). Methodsnot referring to a spei� random graph model have also been proposed. Forexample, spetral graph lustering (von Luxburg et al. (2007)) aims at detetinglasses of nodes with strong within onnetivity.Binary information only desribes the topology of the network, but does notaount for the intensity of the interations between the nodes. However, power,ommuniation, soial or biologial networks are often valued. The intensityof an edge may typially indiate the amount of energy transported from onenode to another, the number of passengers or the number of o-publiations.A statistial model aounting for these intensities is needed to analyze suhnetworks.In this paper, we propose a general mixture model desribing the onnetionintensities between nodes spread among a ertain number of lasses (Setion 2).A variational approah to get an optimal, in a sense to be de�ned, approximationof the likelihood is then presented in Setion 3. In Setion 4 we give a generalestimation algorithm and derive some expliit formulas for the most populardistributions. The quality of the estimates is studied on syntheti data in Setion5.2 Mixture Model2.1 Model and NotationsNodes. Consider a graph with n nodes, labeled in {1, . . . , n}. In our model, thenodes are distributed among Q groups so that eah node i is assoiated toa random vetor Zi = (Zi1, . . . , ZiQ), with Ziq being 1 if node i belongsto group q and 0 otherwise. The {Zi} are supposed to be independentidentially distributed observations from a multinomial distribution:
{Zi}i i.i.d. ∼M(1; α) (1)where α = (α1, . . . , αQ) (∑q αq = 1).Edges. Eah edge from a node i to a node j is assoiated to a random variable

Xij , oding for the strength of the edge. Conditionally to the group ofeah node, or equivalently knowing the {Zi}, the edges are supposed tobe independent. Knowing group q of node i and group ℓ of node j, Xijis distributed as f(·, θqℓ) := fqℓ(·), where fθqℓ
is a probability distribution2



SSB - RR No. 10 M. Mariadassou and S. Robinknown up to a �nite dimensional parameter θqℓ.
Xij |i ∈ q, j ∈ ℓ ∼ f(·, θqℓ) := fqℓ(·) (2)Up to a relabeling of the lasses, the model is identi�able and ompletely spe-i�ed by both the mixture proportions α and the onnetivity matrix θ =

(θqℓ)q,ℓ=1...Q. We denote γ = (α, θ) the parameter of the model.Direted and undireted graphs. This modeling an be applied to bothdireted and undireted graphs. In the direted version, the variables Xij and
Xji are supposed to be independent onditionally to the groups to whih nodes
i and j belong. This hypothesis is not always realisti sine, for example, thetra� from i to j is likely to be orrelated to the tra� from j to i. A way toaount for suh a dependeny is to onsider an undireted graph with edgeslabeled with the bivariate variables {(Xij , Xji)}1≤i<j≤n. All the results pre-sented in this paper are valid for direted graphs. The results for undiretedgraphs an easily be derived and are only brie�y mentioned.2.2 Classial DistributionsWe examine some lassial distributions entering the framework of model.Bernoulli. In some situations suh as o-authorship or soial networks, theonly available information is the presene or absene of the edge. Xij isthen supposed to be Bernoulli distributed:

Xij |i ∈ q, j ∈ ℓ ∼ B(πqℓ).It is equivalent to the stohasti blok model of Nowiki and Snijders(2001) or Daudin et al. (2007).Multinomial. In a soial network, Xij may inform about the nature of theexisting relation: professional, family, friend, et. The Xijs an then bemodeled by multinomial variables:
Xij |i ∈ q, j ∈ ℓ ∼M(1;pqℓ).The parameter θqℓ to estimate is the vetor of probability pqℓ =

(
p1

qℓ, . . . , p
m
qℓ

),
m being the number of possible labels.In direted random graphs, this setting allows to aount for some depen-deny between symmetri edges Xij and Xji. We only need to onsiderthe equivalent undireted graphs where edge (i, j) is labeled with the ou-ple (Xij , Xji). m = 4 di�erent labels an the be observed: (0, 0) if no edgeexists, (1, 0) for i→ j, (1, 1) for i← j and (1, 1) for i↔ j.Poisson. In a o-authorship network, edges may be valued with the numbers ofartiles two authors o-published. Xij an then be supposed to be Poissondistributed:

Xij |i ∈ q, j ∈ ℓ ∼ P(λqℓ).3



SSB - RR No. 10 M. Mariadassou and S. Robin
θql := λqℓ is the mean number of ommon papers (or mean interation)between an author from group q and one from group ℓ.Gaussian. Tra� networks desribe the intensity of the tra� between nodes.The airport network is a typial example where the edges are valued a-ording to the number of passenger travelling from airport i to airport j.The intensity Xij of the tra� an be assumed to be Gaussian:

Xij |i ∈ q, j ∈ ℓ ∼ N (µqℓ, σ
2
qℓ), θqℓ = (µqℓ, σ

2
qℓ).Bivariate Gaussian. The orrelation between symmetri edges Xij and Xjian be aounted for, onsidering the undireted valued graph where edge

(i, j) is valued by (Xij , Xji), whih is assumed to be Gaussian. Denoting
Xij = [Xij Xji]

′:
Xij |i ∈ q, j ∈ ℓ ∼ N (µqℓ,Σqℓ) θqℓ = (µqℓ,Σqℓ).Linear regression. In ase of real valued edges, the linear Gaussian modelallows to inlude ovariates. Denoting yij the p × 1 vetor of ovariatesdesribing edge (i, j), we set

Xij |i ∈ q, j ∈ ℓ ∼ N
(
y′

ijβqℓ, σ
2
qℓ

)
θqℓ = (βqℓ, σqℓ).Covariates an also be involved when edges are integer valued (e.g. Bernoullior Poisson) using the generalized linear model framework.3 Likelihood and Variational InfereneWe now address the estimation of the parameter γ = (α, θ). We show that thestandard maximum likelihood approah an not be applied to our model andpropose an alternative strategy based on a variational approah.3.1 LikelihoodsLet X denote the set of all edges: X = {Xij}i,j=1..n, and Z the set of allindiator variables for nodes: Z = {Zi}i=1,n. In the mixture model literature(MLahan and Peel (2000)) (X,Z) is referred to as the omplete dataset, while

X is referred to as the inomplete dataset.Proposition 1 The log-likelihood of the omplete dataset is
logP(Z,X) =

∑

i

∑

q

Ziq log αq +
∑

i6=j

∑

q,ℓ

ZiqZjℓ log fqℓ(Xij).

4



SSB - RR No. 10 M. Mariadassou and S. RobinProof. This omes diretly from (1) and (2) and from the deomposition
logP(Z,X) = logP(Z) + logP(X|Z). �The likelihood of the inomplete dataset an be obtained by summing P(Z,X)over all possible Z's: P(X) =

∑
Z P(Z,X) This summation involves Qn termsand quikly beomes intratable. The popular E-M algorithm (Dempster et al.(1977)), widely used in mixture problems, allows to maximize logP(X) withoutalulating it. The E-step relies on the alulation of the onditional distributionof Z given X: P(Z|X). Unfortunately, in the ase of network strutured data,the strong dependeny between edges makes the alulation of this onditionaldistribution out of reah.Undireted graphs. Proposition 1 also holds for undireted graphs, repla-ing the sum over i 6= j by a sum over i < j. This is also true for Propositions 2and 4 given below.3.2 Variational InfereneWe propose to use an approximate maximum likelihood strategy based on a vari-ational approah (see Jordan et al. (1999) or the tutorial by Jaakkola (2000)).This strategy is for example used in Govaert and Nadif (2005) for a bilusteringproblem. We onsider a lower bound of the log-likelihood of the inompletedataset:

J (RX, γ) = logP(X; γ)−KL(RX(·),P(·|X; γ)) (3)where KL denotes the Kullbak-Leibler divergene and RX stands for some dis-tribution on Z. Classial properties of the Kullbak-Leibler divergene ensurethat J has a unique maximum logP(X; γ) and whih is reahed for RX(Z) =P(Z|X). In other words, if P(Z|X; γ) was tratable, the maximization of J (RX, γ)with respet to γ would be equivalent to the maximization of logP(X; γ).In our ase, P(Z|X; γ) an not be alulated and the maximization of J (RX, γ)with respet to RX an not be ahieved without some restritions on RX. There-fore, we limit our searh to the lass of ompletely fatorized distributions:
RX(Z) =

∏

i

h(Zi, τ i) (4)where h denotes the multinomial distribution, τ i stands for a vetor of proba-bilities: τ i = (τi1, . . . , τiQ) (with ∑q τiq = 1). The τ is must be thought of asvariational parameters to be optimized to �t P(Z|X) to P(Z|X; γ) at best; theydepend on the observed data X. Sine we set some restritions on the form of
RX, J (RX, γ) is a lower bound of logP(X).Proposition 2 For fatorized distributions (4), we have
J (RX, γ) = −

∑

i

∑

q

τiq log τiq +
∑

i

∑

q

τiq log αq +
∑

i6=j

∑

q,ℓ

τiqτjℓ log fqℓ(Xij).5



SSB - RR No. 10 M. Mariadassou and S. RobinProof. As shown in Jaakkola (2000), J (RX, γ) an be rewritten as
J (RX, γ) = H(RX) +

∑

Z

RX(Z) logP(X,Z; γ) (5)where H(·) denotes the entropy of a distribution. For fatorized distributions,the entropy is additive over the oordinates so H(RX) =
∑

iH(h(·, τ i)) =
−
∑

i

∑
q τiq log τiq. The alulation of seond term of (5) diretly derives fromthe ombination of Proposition 1:

∑

Z

RX(Z) logP(X,Z; γ) =
∑

i

∑

q

ERX
(Ziq) log αq+

∑

i6=j

∑

q,ℓ

ERX
(ZiqZjℓ) log fqℓ(Xij)where ERX

denotes the expetation with respet to distribution RX. The resultfollows using (4). �Other form for RX. Considering a broader lass of distribution RX wouldprovide a better lower bound of J (RX, γ). Sine the seond term of (5) onlyinvolves ERX
(Ziq) and ERX

(ZiqZjℓ), it seems natural to onsider distributionslike
RX(Z) =

∏

i<j

h(Zi,Zj |τ ij)where τ ij is a square probability matrix of size Q. Suh distributions an a-ount for interations between pairs of nodes. Unfortunately, for suh distribu-tions,H(RX) has no simple expression and its exat omputation has omplexity
O(Qn), so that the bene�ts are outweighted by the inrease of the omputationalburden.3.3 Exponential BoundsFirst order approximation. A lower bound of the likelihood of the ob-served edges P(X) an be derived from a general exponential inequality givenin Leisink and Kappen (2001): ∀x, µ ex ≥ eµ(1 + x − µ). When applied to
x = logP(X,Z; γ), it gives for any funtion µ(·):P(X; γ) =

∑

Z

elogP(X,Z;γ) ≥
∑

Z

eµ(Z) [1 + logP(X,Z; γ)− µ(Z)]Suppose µ is linear: µ(Z) =
∑

i,q βiqZiq and denote Qµ(Z) = exp[µ(Z)]/Cµ,where Cµ is the normalizing onstant suh that Qµ(·) is a probability distribu-tion funtion, we get:P(X; γ) ≥ Cµ(1 − log Cµ) + Cµ

∑

Z

Qµ(Z) logP(X,Z; γ) +H(Qµ) (6)The problem is then to optimize this lower bound with respet to parameters
βiq and C. Note that the right hand side of (6) is similar to J (RX, γ) given in(5). It an be shown that the optimization of these two quantities are atuallyequivalent; analyti formula onneting the optimal ({βiq}, Cµ) and the optimal
{τiq} an be derived (Mariadassou (2006)).6



SSB - RR No. 10 M. Mariadassou and S. RobinThird order approximation. Sine our strategy is to minimize a lowerbound of logP(X), we are not interested in seond order development of theexponential, whih may provide either lower or upper bounds. In Yedidia et al.(2005), suh an approximation is used and referred to as Bethe method.A tighter lower bound may be derived from a third order exponential inequalitysuh as:
∀x, µ, ν ex ≥ eν(1 + x− ν) + eµ

(
(1 + ν − µ)

(x− ν)2

2
+

(x − ν)3

6

)
.Again, this may be applied to x = logP(X,Z; γ) for whih optimal funtions

µ(Z) and ν(Z) have to be determined. This optimization problem annot besolved in a general way. It an be ahieved if µ(Z) and ν(Z) are supposedto be linear and equal up to an additive onstant. However, eah step of theoptimization proess has then omplexity O(n6Q6) and the improvement of thebound has the same order of magnitude as the omputer numerial preision.4 Parameter Estimation4.1 Estimation AlgorithmAs explained in Setion 3.2, the maximum likelihood estimator of γ is
γ̂ML = argmax

γ
logP(X; γ) = argmax

γ
max
RX

J (RX, γ).In the variational framework, we restrit the last optimization problem to fa-torized distributions. The estimate we propose is hene
γ̂ = argmax

γ
max

RX fatorizedJ (RX, γ)The simultaneous optimization with respet to both RX and γ is still too di�ultso we adopt the following iterative strategy. Denoting by R
(n)
X and γ(n) theestimates after step n, we ompute





R

(n)
X = arg max

RX fatorizedJ (RX, γ(n))

γ(n+1) = argmax
γ
J (R

(n+1)
X , γ)

(7)The two next setions are dediated to eah of these steps.Initialisation step. The optimization proedure (7) only ensures the onver-gene toward a loal optimum so the hoie of the starting point for γ or RXis ruial to avoid loal optima. This hoie is di�ult but, to our experiene,hierarhial lustering seems to be a good strategy to get an initial value for
RX. 7



SSB - RR No. 10 M. Mariadassou and S. Robin4.2 Optimal Approximate Conditional Distribution RXWe onsider here the optimization of J with respet to RX. For a given valueof γ, we denote τ̂ the variational parameter de�ning the distribution R̂X =
arg max

RX fatorizedJ (RX, γ).Proposition 3 For a given γ, the optimal variational parameter τ̂ satis�es
τ̂iq ∝ αq

∏

j 6=i

∏

ℓ

[fqℓ(Xij)fℓq(Xji)]
bτjℓ .Proof. We maximize J (RX, γ) suh as given in Proposition 2 subjet to theondition that, for all i, the τiqs must sum to 1. The derivative with respet to

τiq of the quantity to be maximized is
− log τiq − 1 + log αq +

∑

j 6=i

∑

ℓ

τjℓ [log fqℓ(Xij) + log fℓq(Xji)] + Liwhere Li denotes the ith Lagrange multiplier. The result follows. �We obtain here a �xed point relation that an be related to a mean �eldapproximation (see Jaakkola (2000)). We get τ̂ simply by iterating this relationuntil onvergene.Undireted graphs. For an undireted graph, τ̂ satis�es τ̂iq ∝ αq

∏

j 6=i

∏

ℓ

[fqℓ(Xij)]
bτjℓ .4.3 Parameter EstimatesWe now have to maximize J with respet to γ = (α, θ) for a given distribution

RX.Proposition 4 For a given distribution RX haraterized by a variational pa-rameter τ , the optimal α and θ are given by
α̂q =

1

n

∑

i

τiq , θ̂qℓ = arg max
θqℓ

∑

i6=j

τiqτjℓ log f(Xij ; θqℓ).Proof. We maximize J (RX, γ) suh as given in Proposition 2 subjet to∑
q αq = 1. �Classial distributions. Proposition 4 an be applied to any distribution

f . Table 1 gives the parameter estimates for the model listed in Setion 2.2.The estimates of the mean parameter for the Poisson (λqℓ) and Gaussian (µqℓ)distributions are the same as the estimate of the probability πqℓ in the Bernoulliase. The results displayed in this table are all straightforward. Note that allthe estimates are weighted versions of the intuitive ones.8



SSB - RR No. 10 M. Mariadassou and S. RobinTable 1: Estimates of θqℓ for some lassial distributions. Notations are de�nedin Setion 2.2. κqℓ stands for 1/
∑

i6=j τiqτjℓ. Wqℓ is the diagonal matrix withdiagonal term τiqτjℓ. # param. is the number of independent parameters inthe ase on direted graph, exept for the bivariate Gaussian only de�ned for anon oriented graph.Distribution Estimate # param.Bernoulli π̂qℓ = κqℓ

∑

i6=j

τiqτjℓXij Q2Multinomial p̂k
qℓ = κqℓ

∑

i6=j

τiqτjℓI(Xij = k) (m− 1)Q2Gaussian σ̂2
qℓ = κqℓ

∑

i6=j

τiqτjℓ(Xij − µ̂qℓ)
2 Q2Bivariate Gaussian µ̂qℓ = κqℓ

∑

i6=j

τiqτjℓXij Q(Q + 1)

Σ̂qℓ = κqℓ

∑

i6=j

τiqτjℓ

(
Xij − µ̂qℓ

) (
Xij − µ̂qℓ

)′ 3

2
Q(Q + 1)Linear regression β̂qℓ =

(
Y′W−1

qℓ Y

)−1

Y′W−1
qℓ X pQ2

σ̂2
qℓ = κqℓ

∑

i6=j

τiqτjℓ

(
Xij − y′

ij β̂qℓ

)2

Q2Exponential family. The optimal θ is not expliit in the general ase, buthas a simpler form if the distribution f belongs to the exponential family.Proposition 5 If the distribution f belongs to the exponential family and if θis the natural parameter:
f(x; θ) = exp [Ψ(x)′θ −A(θ)]the optimal θ is

θ̂ =
(
∇θA

)−1



∑

i6=j

τiqτjℓΨ(Xij)
′


Proof. Aording to Proposition 4, we look for θ̂ = arg max

θ

∑
i6=j τiqτjℓΨ(Xij)

′θ−

A(θ). The derivative of the quantity to be maximized with respet to θ has tobe null: ∑

i6=j

τiqτjℓΨ(Xij)
′ −∇θA(θ) = 0and the result follows. �
9



SSB - RR No. 10 M. Mariadassou and S. Robin4.4 Choie of the Number of GroupsIn pratie the number of lasses is unknown and should be estimated. Manyriterion, suh as BIC or AIC (Burnham and Anderson (1998)), are based on thelikelihood of observed data P(X), whih an not be alulated here. Therefore,we propose a Bayesian model seletion riterion based in the Integrated Classi�-ation Likelihood (ICL) riterion developed by Biernaki et al. (2000). The ICLriterion is an approximation of the omplete-data integrated likelihood de�nedsuh that:
logP(X,Z|mQ) =

∫
logP(X,Z|γ, mQ)g(γ|mQ)dγ,where logP(X,Z|γ, mQ) is the omplete-data likelihood of model mQ with Qlasses.Proposition 6 For a model mQ with Q lasses where θ involves PQ indepen-dent parameters, the ICL riterion is :

ICL(mQ) = max
γ

logP(X, Z̃|γ, mQ)−
1

2
{PQ log[n(n− 1)]− (Q− 1) log(n)} .Proof. The derivation of this riterion is desribed in Daudin et al. (2007) inthe ase of a binary non oriented graph. The only di�erene lies in the numberof parameters PQ whih is Q(Q + 1)/2 for the Bernoulli or Poisson model, butmay di�er in the general ase. �Note that the penalty term − 1

2 {PQ log[n(n− 1)]− (Q− 1) log(n)} is similarto the one of BIC, where the log term refers to number of data. In the aseof graphs, the number of data is n (i.e. the number of nodes) for the vetor ofproportions α (Q− 1 independent parameters), whereas it is n(n− 1) (i.e. thenumber of edges) for parameter θ.5 Simulation Study5.1 Quality of the estimatesSimulation parameters. We onsidered undireted networks of size n = 100and 500 with Q = 3 lasses. To study balaned and unbalaned proportions,we set αq ∝ aq, with a = 1, 0.5, 0.2. a = 1 gives uniform proportions, while
a = 0.2 gives very unbalaned proportions: α = (80.6%, 16.1%, 3.3%). We�nally onsidered symmetri onnetion intensities λpq, setting λpp = λ′ for all
p and λpq = λ′γ for p 6= q. Parameter γ ontrols the di�erene between withinlass and between lass onnetion intensities (γ = 0.1, 0.5, 0.9, 1.5) while λ′ isset so that the mean onnetion intensity λ (λ = 2, 5) depends neither on γ nor
a. γ lose to one makes the distintion between the lasses di�ult. γ largerthan one makes the within lass onnetivities less intense than the betweenones. We expet the �tting to be rather easy for the ombination {n = 500, a =
1, λ = 5, γ = 0.1} and rather di�ult for {n = 100, a = 0.2, λ = 2, γ = 0.9}.10



SSB - RR No. 10 M. Mariadassou and S. RobinSimulations and Computations. For eah ombination of the parameters,we simulated S = 100 random graphs aording to the orresponding mixturemodel. We �tted the parameters using the algorithm desribed in Setion 4. Tosolve the identi�ability problem of the lasses, we systematially ordered themin desending estimated proportion order: α̂1 ≥ α̂2 ≥ α̂3. For eah parameter,we alulated the estimated Root Mean Squared Error (RMSE):
RMSE(α̂p) =

√√√√ 1

S

S∑

s=1

(
α̂p

(s) − αp

)2

, RMSE(λ̂pq) =

√√√√ 1

S

S∑

s=1

(
λ̂pq

(s)
− λpq

)2

,where the supersript (s) labels the estimates obtained in simulation s. We alsoalulated the mean posterior entropy
H =

1

S

∑

s

(
−
∑

i

∑

q

τ
(s)
iq ln τ

(s)
iq

)
,whih gives us the degree of unertainty of the lassi�ation.Results. Figure 1 (resp. 2) gives the RMSE for the proportion αq (resp.onnetion intensities λpq). As expeted, the RMSE is lower when n is larger.The parameters a�eting the RMSE are mainly a and γ, whereas λ has nearlyno e�et. The departures observed for α1 and α3 in the balaned ase (a = 1.0)are due to the systemati reordering of the proportions.Sine the graph is undireted, λpq = λqp, so only non redundant parametersare onsidered in Figure 2. The overall quality of the estimates is satisfying,espeially for the diagonal terms λqq . The within intensity parameter of thesmallest lass λ33 is the most di�ult to estimate. The worst ase orrespondsto a small graph (n = 100) with very unbalaned lasses (a = 0.2) for parameter

λ12. In this ase, the algorithm is unable to distinguish the two larger lasses(1 and 2), so that the estimates extra-diagonal term λ̂12 is lose to the diagonalones λ̂11 and λ̂22, whereas its true value is up to ten times smaller.Figure 3 gives the mean entropy. Not surprisingly, the most in�uent param-eter is γ: when γ is lose to 1, the lasses are almost indistinguishable. For smallgraphs (n = 100), the mean intensity λ has almost no e�et. Beause of theidenti�ability problem already mentioned, we did not onsider the lassi�ationerror rate.5.2 Model SeletionWe onsidered an undireted graph of size n = 50, 100, 500 and 1000with Q⋆ = 3lasses. We onsidered the ombination {a = 0.5, λ = 2, γ = 0.5} whih turnedout to be a medium ase (see Setion 5.1) and omputed ICL for Q rangingfrom 1 to 10 (from 1 to 5 for n = 1000) before seleting the Q maximizing ICL.We repeated this for S = 100 simulations.11
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Figure 1: RMSE of the estimates α̂q. The x-axis refers to α1, α2, α3. Top:
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Figure 2: RMSE of the estimates λ̂pq . The x-axis refers to
λ11, λ22, λ33, λ12, λ13, λ23. Same legend as Figure 1.
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