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We observe m independent and identically distributed binary Markov chains and look for

simultaneous occurrences of runs in several of them. We are interested in the distribution of the

maximum number of simultaneous runs on finite time intervals. First we introduce a natural

exact approach and also explain why it fails to calculate the required probabilities. Then we

find exact upper and lower bounds for the probability of interest. We apply these results to

detect genomic deletions in cancer patients.
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1 Introduction

1.1 Motivations

Occurrences of patterns or motifs on strings generated by Markov chains is now an old
problem in applied probability. The simplest patterns are runs. Molecular biology is an
area which provides a variety of problems on occurrences of patterns (see Robin et al.
(2005)), in particular in DNA or protein sequence analyses. A huge literature exists on
both exact and asymptotic results regarding waiting times, distance between occurrences,
scans, counts, etc. (see Reinert et al. (2000) for a review in the biological context). The
occurrence properties of complex patterns have also been studied (Stefanov et al. (2007),
Nuel (2006)). Most of these works deal with one Markov chain at a time, i.e. with only
one sequence of letters.

The problem of simultaneous occurrences in several sequences has been rarely ad-
dressed. On the other hand, the ever increasing amount of data provided by high through-
put technologies makes it quite interesting. Comparative Genomic Hybridization (CGH)
is one of these techniques that allows to detect losses or amplifications of the genetic
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material in a given patient. Our work is motivated by the simultaneous analysis of the
CGH profiles of a set of patients having the same disease, namely bladder cancer. These
profiles can be viewed as first-order Markov chains on the 3-letter alphabet {’lost’, ’nor-
mal’, amplified’ }, rewritten as {−1, 0, 1}. The loss (resp. amplification) of a large region
is characterised by a succession of ’−1’ in the profile. The detection of region lost by
a large proportion of patient will help in understanding which region are related to the
development of the disease.

Standard techniques, such as Chen-Stein approximations can not be applied here for
two reasons. The first one is that the conditions for the bounds to converge to 0 are not
fulfilled in CGH profile, due to heavy diagonal terms in the transition matrix. The second
and most important one is that, contrarily to DNA sequences, CGH profiles are not very
long, so asymptotic results are not satisfying. We will typically deal with sequences of
few hundreds of letters, observed in about one hundred patients and look for runs of few
letters.

1.2 Model and Notations

We consider m independent binary (the two states are denoted by 0 and 1) Markov
chains (MC) Xi = {Xi,t}t≥1 (i = 1..m) with the same transition intensity matrix Π and
stationary distribution µ. All MC’s are supposed to be stationary, i.e., for all i, Xi,1 ∼ µ.
State 1 is supposed to be a ’rare’ state, that is µ0 > µ1.

Run occurrences. We are interested in occurrences of runs of 1’s with length ℓ (’ℓ-
runs’) in the Xi’s. For such runs we define the binary process Yℓ

i = {Y ℓ
i,t}t≥ℓ which equals

1 every time ℓ-run is completed in Xi, that is

Y ℓ
i,t =

ℓ∏

u=1

Xi,t−u+1.

Note that, according to this definition, (ℓ + 1) successive 1’s achieve two ℓ-runs. For the
sake of brevity, we shall drop the superscript ℓ in most of the following formulas.

Simultaneous occurrences of runs. The aim of this paper is to study the number
of Xi’s which comple a run at the same position. We therefore define the process Y+ =
{Y+,t}t≥ℓ counting simultaneous run occurrences:

Y+,t =

m∑

i=1

Yi,t.

1.3 Problem

Maximum number of simultaneous runs. We are interested in the maximum value
of Y+ when observed between positions 1 and n. Typically, for a given threshold M∗, we
want to evaluate

Pr

{

max
ℓ≤t≤n

Y+t ≥ M∗

}

. (1)
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Outline. In Section 2, we present a general method that gives the exact value of this
probability but leads to intractable computations in practice. We then use part of the
exact results to derive a first upper bound (Section 3). In Section 4 we derive a lower
bound of the probability of interest, based on a different srtrategy.The results are applied
to CGH array data in Section 5. In the last section, we discuss the possible generalization
to other motifs.

2 Exact Results

2.1 General case

The exact distribution of Y+ can be determined theoretically in two ways but these do
not lead to evaluation of the probabilities of interest. The first way is based on considering
Y+ as an homogenous Markov chain of order ℓ with state space {0, . . .m}. The second
one, which is equivalent to the first, deals with a first order Markov chain with larger
state space. To mark occurrences of runs in each Xi, we have to to consider the following
ℓ + 1 quantities:

M0,t =
∑

i(1 − Xit),

Ms,t =
∑

i

(1 − Xi,t−s)
s∏

u=1

Xi,t−u+1, for 1 ≤ s ≤ ℓ − 1,

Mℓ,t =
∑

i

ℓ∏

u=1

Xi,t−u+1.

M0,t counts the number of Xi’s in state 0 at position t. Ms,t counts the number of the Xi

in which a run of exactly s 1’s (not more) is ending at position t. Mℓ,t counts the number
of the Xi’s in which an ℓ-run has been achieved before (or at) position t and has not been
interrupted up to position t. These counts summarize the memory of the process Y+.

The process {Mt}t where Mt = (M0,t, ...Mℓ,t), is a first order Markov chain. The
conditional distribution of Mt+1 given Mt is a simple combination of binomial distributions
that is straightforward to write. On the other hand the number of states of this chain is
huge for the cases of interest and probability computations are not viable. More precisely,
the number of states is equal to the number of possible repartitions of m objects into ℓ+1
(possibly empty) sets. This is related to the Stirling number of second kind. In our case,
for m = 100 and ℓ = 10, this number is about 1093, so the calculation of exact results
seems out of reach.

2.2 Runs of length one

The case of 1-runs is trivial but useful for treating ℓ-runs for ℓ > 1. Actually, the
bound introduced in Section 4 is based on properties of 1-runs. Consider the process
X+ = {X+t}t where X+t =

∑

i Xi,t. Also X+t counts the number of the Xi’s that are in
state 1 at position t; that is X+ is equal to Y1

+.

Lemma 1 The process X+ is a homogeneous first order Markov chain. The conditional
distribution of X+,t+1, given X+t, equals the sum of two independent binomial variables
B(m − X+t, π01) and B(X+t, π11), respectively.
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Proof. The process Xi is in state 1 at position t+1 through either moving from state 0
at position t (with probability π01), or moving from state 1 at position t (with probability
π11). The result follows, recalling that the Xi’s are independent and that there are exactly
X+t of the Xi in state 1 at position t, and the remaining m − X+t are in state 0. �

In the following, Γ denotes the one-step transition probability matrix of X+, and
γ(x, y) is its (x, y)-entry. According to Lemma 1, we have

γ(x, y) =

y
∑

u=0

b(u; m − x, π01)b(y − u; x, π11).

with b(x; n, π) =
(

n

x

)
πx(1 − π)n−x.

3 Upper Bound

In the perspective of calculating p-values, we are interested in an upper bound of the
probability (1).

Proposition 1 Let

(i) Y∗ be a Markov chain over the state space with [(ℓ − 1)m − ℓM∗ + ℓ] dimensions:

0, 1, . . . , M∗ − 1
︸ ︷︷ ︸

lower states

, [M∗]1, . . . , [m]1
︸ ︷︷ ︸

1-st excess

, [M∗]2, . . . , [m]2
︸ ︷︷ ︸

2-nd excess

, . . . , [M∗]ℓ−1, . . . , [m]ℓ−1
︸ ︷︷ ︸

(ℓ − 1)-th excess

, [m]∞;

(ii) Γ∗ be the transition matrix on this space state with all zeros elements except for:

γ∗(y, y′) = γ(y, y′),

γ∗(y, [u]1) = γ(y, u),

γ∗([u]k, [u
′]k+1) = γ(u, u′),

γ∗([u]k, y
′) = γ(u, y′),

γ∗([u]ℓ−1, [m]∞) =

r∗∑

u′=0

γ(u, u′),

for 0 ≤ y, y′ < M∗ and M∗ ≤ u, u′ ≤ m;

(iii) µ
∗
1 be a [(ℓ−1)m− ℓM∗ + ℓ]-dimensional row vector with all coordinates zero except

for µ∗
1,y = b(y; m, µ1) for 0 ≤ y ≤ m.

Then we have

Pr

{

max
ℓ≤t≤n

Y+t ≥ M∗

}

≤ µ
∗
1(Γ

∗)n−1.
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Proof. To observe M∗ simultaneous ℓ-runs, we need at least M∗ of the Xi’s to be in
state 1 in the last ℓ positions, that is for any t,

Pr {Y+t ≥ M∗} ≤ Pr {X+,t−ℓ+1, . . .X+,t−1, X+,t ≥ M∗} .

Note that, in the right-hand term, the Xi’s are not required to be the same along the ℓ

positions, while they are in the left-hand term. When considering the maximum of Y+t,
we get an upper bound for (1):

Pr

{

max
ℓ≤t≤n

Y+t ≥ M∗

}

≤ Pr {∃t ∈ {ℓ, . . . , n} : X+,t−ℓ+1, . . .X+,t−1, X+,t ≥ M∗} . (2)

The calculation of the right-hand term of (2) requires to follow-up the excesses of X+

above M∗. We denote by ξt the excess indicator: ξt = I{X+t ≥ M∗} and define the
Markov chain Y∗ = {Y ∗

t }:

Y ∗
t = X+t if X+t < M∗,

= [X+t]s if (1 − ξt−s)
∏s

v=1
ξt−s+1 = 1

= [m]∞ if X+t ≥ M∗ and
∏ℓ

v=1
ξt−ℓ+1 = 1

The state space of Y∗ is the one given in i above. Since the Xi’s are independent and
stationary, Y ∗

1 has a binomial distribution B(m, µ1). The vector µ
∗
1 given in iii above

provides this distribution.
The process Y∗ is a Markov chain whose transition matrix Γ∗ is given in ii: Y ∗

t

is in state M∗ + us if X+t equals M∗ + u and if X+,t−k+1, . . .X+,t−1 (but not X+,t−k)
already exceeded M∗. X+t constitutes then the kth successive excess above M∗. State
[m]∞ is reached when ℓ successive excesses are observed. So, the upper bound (2) is the
probability for Y∗ to reach the absorbing state [m]∞ before the end (position n), and the
result follows. �

4 Lower Bound

We are not able to derive any theoretical measure of the quality of the upper bound given
in the preceeding section. Therefore we propose here a lower bound of (1). This bound
is based on exact evaluation assuming that the maximum of Yℓ

+ is reached exactly ℓ − 1
positions after X+ has reached its own maximum.

Proposition 2 Denote by B(x; ν, p) the probability for a binomial B(ν, p) random vari-
able to be larger than or equal to x. Then

Pr

{

max
ℓ≤t≤n

Y+t ≥ M∗

}

≥
m∑

u=M∗

Pr

{

max
1≤t≤n−ℓ+1

X+t = u

}

B(M∗; u, πℓ−1

11 ). (3)

Proof. To observe M∗ ℓ-runs at position t, we first need to observe u ones (u ≥ M∗)
at position t − ℓ + 1, and then to complete at least M∗ runs amongst these u sequences.
Since the probability for a 1 to give birth to an ℓ-run is πℓ−1

11 , we have (for ℓ ≤ t ≤ n)

Pr {Y+t ≥ M∗} =

m∑

u=M∗

Pr {X+,t−ℓ+1 = u}B(M∗; u, πℓ−1

11 ).
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We get a lower bound of Pr{max Y+T = M∗}, applying a constraint on the relative
positions of the maximum of X+ and Y+. Denoting T ℓ = arg maxℓ≤t≤n Y+t and T 1 =
arg max1≤t≤n−ℓ+1 X+t, we have

Pr

{

max
ℓ≤t≤n

Y+t ≥ M∗

}

≥ Pr

{(

max
ℓ≤t≤n

Y+t ≥ M∗

)

∩
(
T ℓ = T 1 + ℓ − 1

)
}

.

Since the positions of the two maximums are linked, the maximum of Y+t in the right-hand
term can be replaced by a maximum of X+t and the result follows. �

5 Application

5.1 CGH profiles

CGH technology. Chromosomal aberration, i.e. deletions or amplifications of ge-
nomic regions are associated with many diseases such as cancer or mental retardation.
Comparative Genomic Hybridization (CGH) experiments aim at detecting and mapping
chromosomal imbalances, via the hybridization of targets of genomic DNA between a test
and a reference genome. After some post-processing (see Hupe et al. (2004)), a status is
associated to each position: deletion / normal / amplification. Such a sequence of status
is called a CGH profile. In large studies, the profiles of many patient having the same
disease are collected in order to detect region commonly deleted or amplified Rouveirol
et al. (2006)).

Data. We deal here with a set of m = 84 patients (i = 1..m) with bladder cancer
followed at Institut Curie in Paris (France). Each profile Xi is made of n = 2360 positions
spread along the 24 chromosomes (22 non-sexual + X + Y chromosomes). We are mainly
concern with losses of genetic material, so we consider binary profiles where 0 stand for
normal (or amplified) and 1 for deletion. The estimated transition matrix and stationary
distribution are (in %)

Π =

(
99.72 0.28
2.26 97.74

)

, µ = (88.98 11.08).

Biological question. Among these profiles, some commonly deleted regions appear,
for example, M∗ = 18 patients present a succession of ℓ = 22 deletions ending at position
t = 1340 (chromosome 10). Another run of ℓ = 9 deletions is observed in M∗ = 11
patients at position t = 1191 (chromosome 8). We want to assess the significance of such
regions.

Handling several chromosomes. As explained above, the signal is spread along K =
24 chromosomes. Although it seems reasonable to assume that the sequence of status is
a Markov chain, transition from one chromosome to another are meaningless. Hence the
probability (1) has to be separated into terms corresponding to each chromosome. Note
that, in the shortest chromosome, only few tens of positions are observed. This motivates
our choice not to consider asymptotic results for this application.
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Let nk denote the number of positions in chromosome k (k = 1..K,
∑

k nk = n), Y the
complete process and Yk its reduction to chromosome k. Assuming that independence
between the chromosomes, we have

Pr

{

max
ℓ≤t≤n

Y+t ≥ M∗

}

= 1 −
∏

k

(

1 − Pr

{

max
ℓ≤t≤nk

Y k
+t ≥ M∗

})

.

Plugging a lower (resp. upper) bound in the right-hand terms provides a lower (resp.
upper) bound of the left-hand term.

5.2 Results

Table 1 displays the results for deleted regions observed in the data. The significance is
measured by the p-values. We see that it mainly depends on the number of patients M∗

in which the run is observed, more than on the length ℓ of the run. This is due to the
high value of π11 (97.74%): as soon as a ℓ-run is observed in a large number of patients,
a (ℓ + 1)-run is likely to be observed in the same patients.

t∗ chrom. ℓ M∗ Pr{X+ ≥ M∗} p(upper) Pr{max X+ ≥ M∗} p(lower)
1340 10 22 18 8.57 e–8 5.75 e–9 6.69 e–5 1.24 e–11
2347 24 13 17 4.62 e–7 1.80 e–6 3.73 e–4 1.21 e–7
320 2 3 16 2.32 e–6 6.85 e–4 1.93 e–3 5.93 e–4
1161 9 2 16 2.32 e–6 1.13 e–3 1.95 e–3 1.09 e–3
1387 11 3 15 1.08 e–5 3.20 e–3 8.25 e–3 2.80 e–3
1152 9 2 15 1.08 e–5 5.07 e–3 8.33 e–3 4.87 e–3
996 8 7 13 1.88 e–4 1.42 e–2 1.05 e–1 7.15 e–3
1413 11 2 13 1.88 e–4 7.52 e–2 1.11 e–1 7.28 e–2
1690 13 2 13 1.88 e–4 7.52 e–2 1.11 e–1 7.28 e–2
1430 11 3 12 6.90 e–4 1.72 e–1 3.13 e–1 1.57 e–1
1688 13 2 12 6.90 e–4 2.32 e–1 3.15 e–1 2.26 e–1
1455 11 5 11 2.32 e–3 2.94 e–1 6.56 e–1 2.28 e–1
1187 9 2 11 2.32 e–3 5.53 e–1 6.67 e–1 5.41 e–1
1880 16 2 10 7.12 e–3 8.88 e–1 9.43 e–1 8.80 e–1
584 4 6 9 1.98 e–2 9.09 e–1 9.98 e–1 8.12 e–1
2072 18 3 9 1.98 e–2 9.87 e–1 9.99 e–1 9.80 e–1
1696 13 2 9 1.98 e–2 9.95 e–1 9.99 e–1 9.94 e–1

Table 1: Significance of observed runs of deletions. p(·): upper and lower bounds of the
p-value Pr{maxt Y+t ≥ M∗}.

For most regions, the upper and lower bounds derived in Sections 3 and 4 are close.
The relative difference between them is about few percents. The difference is large for
long regions. At this time, we have no argument to decide which bound is the most
affected when ℓ increases. In a statistical perspective, the significance is assessed by the
upper bound. For long runs, the results tend to be conservative.

Several non-overlapping short regions are detected in chromosome 9; for two of them,
the upper bound of the p-value is smaller than 1 percent. This is consistent with previously
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available knowledge: deletions in chromosome 9 are known to be associated with the
development of bladder cancer. Further investigations are leaded at this time for the
other regions. Very long regions (ℓ = 13 or 22) may correspond to complete losses of one
chromosome arm.

6 Discussion

We addressed here the problem of simultaneous runs in independent Markov chains. The
problem could be generalized to any motif, i.e. any small sequence w = (w1, . . . , wℓ) ∈
{0, 1}ℓ. The method we proposed in Section 2 could probably be generalized to any motif
using the FMCE technique, but the size of the state space would still increase. Again,
this approach is likely to fail in practice.

The upper bound proposed in Section 3 could be generalized in the following way.
Denoting now Y+t the number of processes Xi in which an occurrence of w ends at
position t, the probability Pr {Y+t ≥ M∗} is smaller than

Pr

{
⋂

u:wu=1

(X+,t−ℓ+u ≥ M∗)
⋂

u:wu=0

(m − X+,t−ℓ+u ≥ M∗)

}

.

However, this approach works well in the case of runs of 1, 1 being the rare state. For a
general motif, the quality of this bound will be reduced in case of numerous 0 in w.

The lower bound proposed in Section 4 may also be generalized to other motifs. Its
quality will mainly depends on the first state. If the motif start with a frequent state (e.g.
0), the constraint on the relative positions of the maximum of X+ and Y+ will turned to
be very restrictive and the bound is expected to be poor. For motifs starting with a rare
state (e.g. 1), the quality should be comparable with the case studied in this paper.
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Rouveirol, C., Stransky, N., Hupé, P., La Rosa, P., Viara, E., Barillot,

E. and Radvanyi, F. (2006). Computation of recurrent minimal genomic
alterations from array-CGH data. Bioinformatics. 22 (7) 849–856.

Stefanov, V., Robin, S. and Schbath, S. (2007). Waiting times for clumps of
patterns and for structured motifs in random sequences. Discrete Appl. Math.
(155) 868–80.

9


