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Abstract

The statistical analysis of complex networks is a challenging task, as learning structure re-
quires appropriate statistical models and efficient computational procedures. One research
has been to develop mixture models for random graphs, and this strategy has been success-
ful in uncovering structure in social or biological networks. The principle of these models
is to assume that the distribution of the edge values follows a parametric distribution con-
ditionnaly to a latent structure which is used to catch connectivity patterns. However,
these methods suffer from relatively slow estimation procedures, since dependencies are
complex and do not necessarily allow for computational simplifications. In this paper, we
adapt online estimation strategies developed for the EM algorithm to the case of models for
which the probability of the missing data conditionally to the available observations is not
tractable. Our work focuses on two methods based for one on the SAEM algorithm for the
other on variational methods. A simulation study is carried out to compare the different
proposed algorithms with existing approaches, and a real data set based on a sample of
the network of the US political websites is studied. We show that our online EM-based
algorithms offer a good trade-off between precision and speed for parameter estimation of
mixture distributions in the context of random graphs.

1. Introduction

Many scientific fields have recently focused on the analysis of networks. Physics, computer
sciences, biology and social sciences, all those disciplines now deal with datasets that can
be represented as networks, such as power grids, friendship and protein-protein interaction
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networks. The best example of this “network” revolution is probably the study of the
Internet. From such networks, knowledge can be learned by studying their structure or
topology. Many strategies have been developed for this purpose, and in this work we focus
on model-based methods, i.e., methods which rely on a statistical model that describes the
distribution of connections in the network.

Considering a mixture of distributions is a strategy that has focused many attentions
(Frank and Harary, 1982; Snijders and Nowicki, 1997; Newman and Leicht, 2007; Daudin
et al., 2008). The basics of this strategy is to consider that nodes are spread among an un-
known number of connectivity classes which are unknown themselves. Conditionally to the
hidden variables (class labels), connections are still independent and Bernoulli distributed,
but their marginal distribution is a mixture of Bernoulli distributions with no independence
between the connections. Many names have been proposed for this model, and in the fol-
lowing, it will be denoted by MixNet, which is equivalent to the Block Clustering model of
Snijders and Nowicki (1997). Block-Clustering for classical binary data can be dated back
to the early work of Govaert (Govaert, 1977). In this article, we consider the general form
of MixNet for which the conditional distribution of edges belongs to the exponential family.

When using MixNet one central question is the estimation of the parameters, and the
associated optimization strategies. With the new challenge of analyzing complex network
structures, one critical aspect of using this method on real data is its speed of execution
and its ability to deal with networks made of tens of thousands of nodes, if not more. To
this extent, Bayesian strategies are limited as they can handle networks with hundreds of
nodes only (Snijders and Nowicki, 1997). One alternative strategy has been to propose
heuristic-based algorithms (Newman and Leicht, 2007), and in this work, we focus on non
Bayesian maximum likelihood methods as proposed by Daudin et al. (2008). Every proposed
strategy face the same difficulty: the distribution Pr{Z|X} of the hidden variables Z (the set
of indicator variables for classes of connectivity) conditionally to the observation X can not
be factorized due to conditional dependency. The variational method proposed by Daudin
et al. (2008) consists in approximating Pr{Z|X} with a mean-field approximation when it
can not be computed directly. In this work we also consider a natural strategy based on the
Monte Carlo simulation of Pr{Z|X}, leading to a SAEM algorithm (Delyon et al., 1999).

We address the question of the acceleration of these estimation methods using on-line
strategies which constitute an efficient alternative to classical batch algorithms when the
dataset grows over time. Their application to mixture models have already been studied
by many authors (Titterington, 1984; Wang and Zhao, 2002; Liu et al., 2006; MacQueen,
1967). Typical clustering algorithms include the on-line k-means algorithm (MacQueen,
1967). More recently Liu et al. (2006) modeled Internet traffic using a recursive EM algo-
rithm for the estimation of Poisson mixture models. In a first section, we present the MixNet
model and its associated log-likelihoods. Then we derive on-line strategies for SAEM and
variational methods in Sections 2 and 3. These accelerations are compared in terms of com-
putational time, parameter estimation and clustering efficiency using simulated datasets.
Then the method is illustrated on the complex network of the US political websites.
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2. A Mixture Model for Networks

2.1 Model and Notations

Let us define a random graph G, where V denotes the set of fixed vertices. Random edges
are described by a set of random variables X = {Xij , (i, j) ∈ V2} coding for the nature
of connection between nodes i and j. We suppose that nodes are spread among Q hidden
classes and we denote by Ziq the indicator variable such that {Ziq = 1} if node i belongs to
class q. We denote by Z = (Z1, . . . ,Zn) the vector of classes which is random such that:

Zi ∼M(1,α = {α1, ..., αQ}),
with α the vector of proportions for classes.

Conditional distribution. MixNet is defined using the conditional distribution of edges
given the label of the nodes. Xijs are supposed to be conditionnaly independent:

Pr{X|Z; η} =
∏

ij

∏

q,l

{Pr{Xij |ZiqZjl = 1; ηql}}ZiqZjl ,

and Pr{Xij |ZiqZjl = 1; ηql} is supposed to belong to the exponential family, with natural
parameter ηql:

log Pr{Xij |ZiqZjl = 1; ηql} = ηt
qlh(Xij)− a(ηql) + b(Xij),

where h(Xij) is the vector of sufficient statistics, a a normalizing constant and b a given
function. Consequently, the conditional distribution of the graph is also from the exponen-
tial family:

log Pr{X|Z; η} =
∑

ij,ql

ZiqZjlη
t
qlh(Xij)−

∑

ij,ql

ZiqZjla(ηql) +
∑

ij

b(Xij).

Numerous classical distributions fit into this framework Mariadassou and Robin (2007).
For example, when the only available information is the presence or the absence of an edge,
then Xij is assumed to follow a Bernoulli distribution :

Xij |ZiqZjl = 1 ∼ B(πql)





ηql = log πql

1−πql
,

h(Xij) = Xij ,

a(ηql) = log(1− πql),
b(Xij) = 0.

If additional information is available to describe the connections between vertices, it may
be integrated into the model. For example, the Poisson distribution might describe the
intensity of the traffic between nodes. A typical example in web access log mining is the
number of users going from a page i to a page j. Another example is provided by co-
authorship networks, for which valuation may describe the number of articles commonly
published by the authors of the network. In those cases, we have

Xij |ZiqZjl = 1 ∼ P(λql)





ηql = log λql,

h(Xij) = Xij ,

a(ηql) = −λql,

b(Xij) = Xij !
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Joint distribution. Since MixNet is defined by its conditional distribution, we first check
that the joint distribution also belongs to the exponential family. Estimating the parameters
in such a distribution family is a well-studied problem that can be tackled via EM-related
strategies. In our context the joint distribution is expressed as

log Pr{X,Z; β} = βtT (X,Z)−A(β) +B(X).

This factorization can be done thanks to the following notations:




Nq =
∑

i Ziq,

Hql(X,Z) =
∑

ij ZiqZjlh(Xij),
Gql(Z) =

∑
ij ZiqZjl = NqNl,

αq = exp(ωq)/
∑

l exp(ωl).

Then we have: 



T (X,Z) = ({Nq}, {Hql(X,Z)}, {Gql(Z)}) ,
β = ({ωq}, {ηql}, {a(ηql)}) ,
A(β) = n log

∑
l expωl,

B(X) =
∑

ij b(Xij).

The sufficient statistics of the complete-data model are : the number of nodes in the classes
(Nq), the characteristics of the between-group links (Hql through function h) and Gql the
product of frequencies between classes. In the following we aim at estimating β.

2.2 Likelihoods and on-line inference

Existing estimation strategies are based on maximum likelihood, and algorithms related to
EM are used for optimization purposes. In this context, the main difficulty is to obtain
good estimations in a reasonnable time for datasets which can be made of tens of thousands
of nodes. The technical difficulty underlying the optimization procedure lies in the complex
dependency structure that exists in the model since Pr{Z|X} can not be factorized and
needs to be approximated (Daudin et al., 2008).

A first strategy to simplify the problem is to consider a classification EM-based strat-
egy, where only the prediction of Z is considered, leaving apart the problem of computing
Pr{Z|X}. This strategy has been the subject of a previous work (Zanghi et al., 2007). It
is known to give biased estimates, but is very efficient from a computational time point
of view. Another possibility relies on the Stochastic Approximation EM approach (Delyon
et al., 1999) which approximates Pr{Z|X} using Monte Carlo simulations. A last strategy
relies on the so-called variationnal approach, which consists in approximating Pr{Z|X} by
R(Z), a newly and more tractable distribution on the hidden variables. In this article, we
suppose that this distribution can be factorized

R(Z) =
∏

i

R(Zi).

This notation will be used for the SAEM algorithm as well.

4



SSB - RR No. 14 H. Zanghi, F. Picard, V. Miele and C. Ambroise

In the following, every strategy will be based on the maximization of Q(β|β′) the con-
ditional expectation of the complete-data log-likelihood defined such that:

Q(β|β′) = EPβ′ {logLC(X,Z; β)|X}
' ER {logLC(X,Z; β)} ,

where Pβ′ stands for the conditional distribution Pr{Z|X;β′}, which is approximated by
R(Z). The SAEM and the variational strategy are considered to solve the problem of
maximum likelihood for models with complex dependency structure. We then need to
assess the problem of computational efficiency, which is done using on-line strategies for the
aforementionned algorithms.

Principle of on-line methods On-line algorithms are incremental algorithms which
recursively update parameters, using current parameters and new observations. Their prin-
ciple is to optimize Q(β|β′) sequentially, while nodes are added. We introduce the following
notations. Let us denote by X[n] = {Xij}n

i,j=1, the adjacency matrix of the data, when n

nodes are present, and by Z[n] the associated labels. In the following, a convenient notation
is also Xi,• = {Xij , j ∈ V}, which denotes all the edges related to node i. Then we define:

Qn

(
β|β[n]

)
the conditional expectation of the complete-data likelihood when n nodes are

present. It is worth mentionning that in the on-line context, there is an identity between
the number of nodes being present, and the iteration increment of the algorithm.

Since on-line methods are based on sequential optimization, we first check thatQn+1

(
β|β[n]

)

linearly depends on Qn

(
β|β[n]

)
. Since we suppose that the hidden variables are condition-

ally independent under the approximate conditional distribution R, we need to study the
joint distribution of X,Z.

Proposition 1

log Pr{X[n+1],Z[n+1]} = log Pr{X[n],Z[n]}+ βtT (Xn+1,•,Z[n+1])

− A[1](β) +B(Xn+1,•),

with T (Xn+1,•,Z[n+1]) =
(
Zn+1,q, ξ

[n+1]
ql , ζ

[n+1]
ql

)
the vector of additional information pro-

vided by the addition of a new node, such that:

ξ
[n+1]
ql = Zn+1,q

n∑

j=1

Zjlh(Xn+1,j) + Zn+1,l

n∑

i=1

Ziqh(Xi,n+1)

+ Zn+1,qh(Xn+1,n+1)× I{Zn+1,q = Zn+1,l},
ζ
[n+1]
ql = Zn+1,qN

[n]
l + Zn+1,lN

[n]
q + Zn+1,q × I{Zn+1,q = Zn+1,l}.

A[1] (β) = log
Q∑

l=1

expωl,

B(Xn+1,•) =
n∑

j=1

b(Xn+1,j) +
n∑

i=1

b(Xi,n+1) + b(Xn+1,n+1).
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Proof The proof is straightforward when writing T (X[n+1],Z[n+1]) as a function of T (X[n],Z[n]).
¥

Consequently, on-line methods can be applied to MixNet parameter inference, provided
that the conditional distribution Pr{Z|X} is approximated by a factorizable distribution.
Note that when considering on-line algorithms applied to networks the addition of one node
leads to the addition of n + 1 potential connections, explaining the terms depending on
Xn+1,•. Thanks to Proposition 1, sufficient statistics can be written as follows:

N [n+1]
q = N [n]

q + Zn+1,q,

Hql(X[n+1],Z[n+1]) = Hql(X[n],Z[n]) + ξ
[n+1]
ql ,

Gql(Z[n+1]) = Gql(Z[n]) + ζ
[n+1]
ql .

and those equations will be used for parameter updates in the on-line algorithms.

3. Stochastic Approximation EM for Network Mixture

3.1 Short presentation of SAEM

An original way to estimate the parameters of the MixNet model is to approximate the
expectation of the complete data log-likelihood using Monte Carlo simulations associated
to the Stochastic Approximation EM algorithm Delyon et al. (1999). In situations where
the maximisation of

Q(β|β′) = EPβ′ {logLC(X,Z; β)|X} =
∑

Z

Pr{Z|X; β′} logLC(X,Z; β)

is not in simple closed form, the SAEM algorithm proposes to maximize an approximation
Q̂(β|β′) of the expectation Q(β|β′). The approximation at step [k] is computed using
standard stochastic approximation theory :

Q̂(β|β′)[k] = Q̂(β|β′)[k−1] + γk

(
Q̃(β|β′)− Q̂(β|β′)[k−1]

)
, (1)

where {γk}k≥1 is a sequence of positive step size and Q̃(β|β′) is obtained by Monte Carlo
integration. It is a simulation of the expectation of the complete log-likelihood using the
posterior Pr{Z|X}. Each iteration k of the algorithm is broken down into three steps :

Simulation of the missing data. This can be achieved using Gibbs Sampling of the pos-
terior Pr{Z|X}. The results at iteration number k is m(k) realizations of the latent
class matrix Z : (Z(1), ...,Z(m(k))).

Stochastic Approximation of Q(β|β′) using Eq. 1, with

Q̃(β|β′) =
1

m(k)

m(k)∑

s=1

logLC(X,Z(s);β) (2)

Maximisation of Q̂(β|β′)[k] according to β.

When considering the on-line version of the algorithm, the number of iterations k usually
coincides with n+ 1, the number of nodes of the network.

6



SSB - RR No. 14 H. Zanghi, F. Picard, V. Miele and C. Ambroise

3.2 Simulation of Pr{Z|X} in the on-line context

We used Gibbs sampling which is applicable when the joint distribution is not known
explicitly, but the conditional distribution of each variable is known. Here we generate a
sequence of Pr{Z|X} using Pr{Ziq = 1|X,Z\i} where Z\i stands for the class of all nodes
except node i. The sequence of samples comprises a Markov chain, and the stationary
distribution of that Markov chain is the sought-after joint distribution. Each iteration is as
follows:

1. pick a node i ∈ {1, ..., n} at random (according a uniform distribution);

2. pick a new class Zi according to M(1, θi1, ..., θiQ), where

θiq = Pr{Ziq = 1|X,Z\i},

=
Pr{Ziq = 1,Z\i,X}∑Q

q=1 Pr{Ziq = 1,Z\i,X}
.

In the on-line context, when we simulate the class of the last incoming node using
θn+1,q = Pr{Zn+1,q|X[n+1],Z[n]}, we get the general expression

θn+1,q =
α

[n]
q exp

{∑Q
l=1

∑n
j=1 Z

[n]
jl

(
η

[n]
ql h(Xn+1,j) + a(η[n]

ql )
)}

∑
q α

[n]
q exp

{∑Q
l=1

∑n
j=1 Z

[n]
jl

(
η

[n]
ql h(Xn+1,j) + a(η[n]

ql )
)} ,∀q ∈ {1, ..., Q}. (3)

For example, considering the simple Bernoulli model we get:

θn+1,q =
α

[n]
q exp

{∑Q
l=1

∑n
j=1 Z

[n]
jl

(
log(πXij

ql (1− πql)1−Xij )
)}

∑
q α

[n]
q exp

{∑Q
l=1

∑n
j=1 Z

[n]
jl

(
log(πXij

ql (1− πql)1−Xij )
)} ,∀q ∈ {1, ..., Q}. (4)

3.3 Computing Q̂(β|β′) in the on-line context

Each realisation Z(s) can be used to compute a corresponding complete log-likelihood
logLC(X,Z(s);β). Those m(k) complete log-likelihoods can be averaged to compute

Q̃(β|β′) =
1

m(k)

m(k)∑

s=1

logLC(X,Z(s);β).

When considering the on-line version of the SAEM algorithm, it appears that the difference
between the old and the new complete-data log-likelihood is expressed as:

logLC(Zn+1,q = 1,X[n+1]) = logLC(X[n+1],Z[n+1],β)− logLC(X[n],Z[n],β)

= logαq +
∑

l

∑

i<n+1

Zil log Pr{Xn+1,i|Zn+1,qZil}.

Recall that in the on-line framework, the label of the new node has been sampled from the
Gibbs sampler described in Section 3.2. Consequently only one possible label is considered
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in this equation. Then a natural way to adapt Equation 1 to the on-line context is to
consider that:

Q̃n+1(β|β[n])− Q̂n(β|β[n]) = logLC(X[n+1],Z[n+1];β).

Indeed this quantity correponds to the difference between the log-likelihood of the previ-
ous network and log-likelihood of the new one with the additional node. Notice that the
larger the network, the larger its associated complete expected log-likelikelihood. Thus
logLC(X[n+1],Z[n+1],β) becomes smaller and smaller compared to Q(β|β′) when n in-
creases. The decreasing step γn is thus not necessary in this on-line context and we propose
to consider the following update equation for stochastic on-line EM computation of MixNet
conditionnal expectation:

Q̂n+1(β|β[n]) = Q̂n(β|β[n]) + logLC(Zn+1,q = 1,X[n+1]),

where Zn+1 is drawn from the Gibbs sampler.

3.4 Maximizing Q̂(β|β′), and parameters update

The principle of on-line algorithms is to modify the current parameter estimation using the
information brought by a new available [n+1] node and its corresponding connections Xn+1,•
to the already existing network. Maximizing Q̂n+1(β|β[n]) according to β is straightforward
and produces the maximum likelihood estimates for iteration [n+1]. A simple version of the
algorithm can be derived by chosing m(k) = 1 (one simulation of Z|X). When running the
Gibbs sampler once, node i may be changed to another class and the new partition scheme
is Z(1). The difference between Q̂n(β|β[n]) and Q̂n+1(β|β[n]) implies only the terms of the
complete log-likelihood which are function of node n+ 1. Using notation

ψql =
∂a(ηql)
∂ηql

,

we get

α[n+1]
q =

N
[n+1]
q

n+ 1
,

ψ
[n+1]
ql =

Hql(X[n+1],Z[n+1])
Gql(Z[n+1])

,

with

N [n+1]
q = N [n]

q + Zn+1,q,

Hql(X[n+1],Z[n+1]) = Hql(X[n],Z[n]) + ξ
[n+1]
ql ,

Gql(Z[n+1]) = Gql(Z[n]) + ζ
[n+1]
ql .

where (ξql, ζql) have been defined in the previous Section, and where Zn+1,q is the simulated
missing class at new incoming node. Considering the Bernoulli model the estimators become

π
[n+1]
ql = γ

[n+1]
ql π

[n]
ql + (1− γ

[n+1]
ql )

ξ
[n+1]
ql

ζ
[n+1]
ql

,
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where

γ
[n+1]
ql =

N
[n]
q N

[n]
l

Zn+1,qN
[n]
l + Zn+1,lN

[n]
q

,

ξ
[n+1]
ql = Zn+1,q

n∑

j=1

Z
[n]
jl Xn+1,j + Zn+1,l

n∑

i=1

Z
[n]
iq Xi,n+1

+ Zn+1,qXn+1,n+1 × I{Zn+1,q = Zn+1,l},
ζ
[n+1]
ql = Zn+1,qN

[n]
l + Zn+1,lN

[n]
q

+ Zn+1,q × I{Zn+1,q = Zn+1,l}.

Once all the nodes of the network are visited (or known), the parameters can be fur-
ther improved and the complete log-likelihood better approximated by continuing with the
previously described SAEM algorithm.

4. Application of on-line algorithm to variational methods

An alternative to the Stochastic Approximation EM algorithm, when dealing with a un-
tractable conditionnal expectation of the complete log-likelihood (because Pr{Z|X} can not
be factorized) is to be found in variational methods. Their principle is to optimize an ap-
proximation of the incomplete-data log-likelihood, log Pr{X; β}, denoted by J (X,R(Z);β)
(Jordan et al., 1999). This approximation depends on R which is a newly introduced
probability distribution on Z. J (X,R(Z);β) is defined such that:

J (X,R(Z);β) = log Pr{X; β} −KL(R(Z),Pr{Z|X;β}),

with KL(•|•) being the Kullback-Leibler divergence between probability distributions.
One must then choose the form of R. One popular approximation is the mean-field

approximation which consists in considering independency for the hidden variables such
that logR(Z) =

∑
i logR(Zi; τi), where τi is called the variational parameter. In the case

of MixNet, a natural form for R(•; τ) is the multinomial distribution, such that logR(Z) =∑
i

∑
q Ziq log τiq, with the constraint

∑
q τiq = 1. In this case, the form of J (X,R(Z);β)

is:

J (X,R(Z);β) = J (X; τ ,β)
= Q(τ ,β) +H(R(Z; τ )),

=
∑

Z

R(Z; τ ) log Pr{X,Z; β} −
∑

Z

R(Z; τ ) logR(Z; τ ),

with Q(τ ,β) an approximation of the conditional expectation of the complete-data log-
likelihood, and H(R(Z; τ )) the entropy of the approximate posterior distribution of Z. In
the following we denote by Qn(τ ,β) the conditional expectation of the complete-data log-
likelihood when n nodes are present.

The implementation of variational methods in on-line algorithms relies on the additiv-
ity property of J (X,R(Z);β) when nodes are added. This property is straightforward :

9
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Q(τ ,β) is additive thanks to Proposition 1 (because R(Z) is factorized), and H(R(Z; τ )) is
also additive, since the hidden variables are supposed independent under R and the entropy
of independent variables is additive.

The variational algorithm is very similar to a EM algorithm, with the E-step being
replaced by a variational step which aims at updating variational parameters. Then a
standard M-step follows. In the following, we give the details of these two steps in the case
of a variational on-line algorithm.

4.1 On-line variational step

When a new node is added it is necessary to compute its associated variational parameters
{τn+1,q}q. If we consider all the other τiq for i < n+1 as known, the {τn+1,q}q are obtained
by deriving the criterion

J
(
X[n+1],R(Z[n+1]);β

)
+

n+1∑

i=1

λi




Q∑

q=1

τiq − 1


 ,

where the λi are the Lagrangian parameters. Since function J is additive according to the
nodes, the calculation of its derivative according to τn+1,q gives:

ω[n]
q +

Q∑

l=1

n∑

j=1

τ
[n]
jl

(
η

[n]
ql h(Xn+1,j) + a(η[n]

ql )
)
− log τn+1,q + 1 + λn+1 = 0

This leads to

τn+1,q =
α

[n]
q exp

{∑Q
l=1

∑n
j=1 τ

[n]
jl

(
η

[n]
ql h(Xn+1,j) + a(η[n]

ql )
)}

∑
q α

[n]
q exp

{∑Q
l=1

∑n
j=1 τ

[n]
jl

(
η

[n]
ql h(Xn+1,j) + a(η[n]

ql )
)} , ∀q ∈ {1, ..., Q}. (5)

4.2 Maximization/Update step

To maximize the approximated expectation of the complete log-likelihood according to β,
we solve

∂Qn+1(τ ,β)
∂β

' ER[n]

(
∂ log Pr{X[n+1],Z[n+1]; β}

∂β

)
= 0.

This leads to two different kinds of equations:



ER[n]

(
∂ log Pr{X[n+1],Z[n+1];β}

∂ωq

)
= 0,

ER[n]

(
∂ log Pr{X[n+1],Z[n+1];β}

∂ηql

)
= 0.

The first equation resumes to :

n∑

i=1

τ
[n]
iq + τn+1,q − (n+ 1)α[n+1]

q = 0,

10
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which gives

α[n+1]
q =

1
n+ 1

(
n∑

i=1

τ
[n]
iq + τn+1,q

)
.

Using the same notation

ψql =
∂a(ηql)
∂ηql

,

we also get:

ψn+1
ql =

ER[n]

(
Hql(X[n+1],Z[n+1])

)

ER[n]

(
Gql(Z[n+1])

) ,

where Gql() and Hql() are the previously defined sufficient statistics. Thanks to proposition
1, which gives the relationships between sufficient statistics at two successive iterations,
parameters can be computed recursively using the update of the expectation of the sufficient
statistics, such that

ER[n]

(
N [n+1]

q

)
= ER[n]

(
N [n]

q

)
+ ER[n] (Zn+1,q) ,

ER[n]

(
Hql(X[n+1],Z[n+1])

)
= ER[n]

(
Hql(X[n],Z[n])

)
+ ER[n]

(
ξ
[n+1]
ql

)
,

ER[n]

(
Gql(Z[n+1])

)
= ER[n]

(
Gql(Z[n])

)
+ ER[n]

(
ζ
[n+1]
ql

)
.

In the case of a Bernoulli distribution we get:

π
[n+1]
ql = γ

[n+1]
ql π

[n]
ql + (1− γ

[n+1]
ql )

ER[n]

(
ξ
[n+1]
ql

)

ER[n]

(
ζ
[n+1]
ql

) , (6)

where

γ
[n+1]
ql =

ER[n]

(
N

[n]
q

)
ER[n]

(
N

[n]
l

)

τn+1,qER[n]

(
N

[n]
l

)
+ τn+1,lER[n]

(
N

[n]
q

) ,

ER[n]

(
ξ
[n+1]
ql

)
= τn+1,q

n∑

j=1

τ
[n]
jl Xn+1,j + τn+1,l

n∑

i=1

τ
[n]
iq Xi,n+1

+ τn+1,qXn+1,n+1 × I{Zn+1,q = Zn+1,l},
ER[n]

(
ζ
[n+1]
ql

)
= τn+1,qN

[n]
l + τn+1,lN

[n]
q

+ τn+1,q × I{Zn+1,q = Zn+1,l}.

Note the similarity of the formula compared with the SAEM strategy. Hidden variables Z
are either simulated or replaced by their approximated conditional expectation (variational
parameters).
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5. Experiments

We carried out experiments to assess how well the proposed online clustering algorithms
discover node clusters. We consider simulation experiments using synthetic data generated
according to the assumed random graph model, as well as real data coming from the web.
Using synthetic graphs allows us to evaluate the quality of the parameter estimation for
each algorithm. The real data set consists of over 2,000 political U.S. websites, collected
to analyze the existing communites created by political affinities. An ANSI C++ implemen-
tation of the algorithms is available upon request, as well as an R package named MixNet
.

5.1 Comparison of algorithms

In these experiments, we assume that edges are Bernoulli distributed. We consider a simple
affiliation model where two types of egdes exist : egdes between nodes of the same class
and egdes between nodes of different classes. Each type of edge has a given probability,
respectively πqq = λ and πql = ε. Five affiliation models were considered (see Table 1) with
λ = 1− ε to limit the number of varying parameters in the experiment.

The parameter λ controls the complexity of the model. The difference among the five
models is related to their modular structure, which varies from no structure (almost the
Erdős-Rényi model) to strong modular structure (low inter-module connectivity and strong
intra-module connectivity or strong inter-module connectivity and low intra-module con-
nectivity).

[Figure 1 about here.]

[Table 1 about here.]

For each affiliation model, we generate graphs with Q ∈ {2, 5, 20} groups mixed in the
same proportions α1 = ... = αQ = 1

Q and with n ∈ {100, 250, 500} nodes. We thus generated
a total of 45 graph models.

We used the adjusted Rand index (Hubert and Arabie, 1985) to evaluate the agreement
between the true and the estimated partitions. The computation of this index is based on
a ratio between the number of node pairs belonging to the same and to different classes
when considering the true partition and the estimated partition. It lies between 0 and 1,
two identical partitions having an adjusted Rand index equal to 1.

In a previous work, we compared the variational MixNet approach with alternative
clustering methods. We considered the following algorithm competitors : an online clas-
sification MixNet (Zanghi et al., 2007) which is called online CEM in this paper, a basic
spectral clustering algorithm (Ng et al., 2002), and a kmeans-like algorithm (considering a
dissimilarity matrix based on shortest paths as input). We concluded that MixNet models
produce more accurate results than the two others methods and that online methods re-
duced significatively the computational cost. In the forthcoming experiments, we compare
our two new online algorithms, online variational MixNet and online SAEM, with the online
CEM and the variational (batch MixNet) as references.

We simulated 30 networks for each of the 45 models and run our algorithms to evaluate
the parameter estimations and the estimated hidden partitions. Notice that as any local
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optimization algorithm, the proposed online MixNet estimation strategy strongly depends
on the initialization. A common way to circumvent this problem consists in starting the
algorithm with multiple initialization points and in selecting the best result in terms of
likelihood. Thus, for each simulated network, the algorithm is run 10 times and the number
of clusters is chosen using the Integrated Classification Likelihood criterion, as proposed in
Daudin et al. (2008).

Online algorithms produce parameter estimates while discovering the graph nodes, but
can further improve the parameter of the model if the nodes are visited many times (Zanghi
et al., 2007). In these first experiments we use for the online algorithms the same stopping
condition than the variational batch MixNet condition which is based on a stabilisation of
the estimated parameters. The parameter comparison is done at the end of each epoch (one
visit of all network nodes).

In Table 2, we observe that for the three highly structured models (models 1, 2, 5) the
estimation is, for each algorithm, very close or equal to the true parameters (with a two digits
round approximation after the comma) and exhibits no or negligible variance. But in model
3, we notice that all algorithms do not behave identically. The Batch MixNet still estimates
correctly the true parameters while other algorithms have more difficulty. Note that the
online classification algorithm (CEM) performs best among the online versions, followed by
the online variational algorithm. In the fourth model algorithms retrieve correct parameters
with a small bias and variance for the online SAEM and CEM algorithm.

[Table 2 about here.]

When considering Table 3, we observe that the poor estimation of λ reveals a small
Rand index. This means that the poor estimation of λ makes it impossible to retrieve the
modular structure of the network. For example, model 3 has a poor Rand Index for the
online algorithms which have produced poor estimation of parameters. Figure 2 displays
the Rand Index evolution for λ ∈ {0.58, 0.59, . . . , 0.68}. We observe that the online CEM
and online variational algorithms perform always better than the online SAEM and the
online CEM algorithm is better than the variational algorithm until λ = 0.61.

[Table 3 about here.]

[Figure 2 about here.]

Let us observe also that good estimates do not always lead to a correctly estimated
partition. For example, in model 4 althougth our algorithms produce good estimates, they
do not find the correct partition because of the non modular structure of the network.

In Table 4, we observe that the larger the number of nodes, the better the algorithm’s
retrieval of the modular structure. We observe that the phenomenon reverses when the
number of classes increases.

[Table 4 about here.]

In the previous experiments, let us remind the reader that the same stop condition is
used for both batch and online algorithms. But in numerous applications, online algorithms
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are prefered because they are faster than batch algorithms and better adapted when the data
set grows over time. They allow the reduction of the latent period between the appearance
of new data and its treatment (its classification). Thus, if one does not reconsider nodes
in the network, the stopping condition corresponds to a single epoch. We obtain Table 5
which shows means of the Rand index and of the execution time for different network sizes
with a fixed q and λ.

[Table 5 about here.]

The important speed difference between the batch variational algorithm with our online
algorithms (Figure 3) with the low loss of quality in the estimated partition make online
algorithms attractive and suitable for large graphs.

[Figure 3 about here.]

5.2 The 2008 U.S. Presidential WebSphere

As mentionned in Adamic and Glance (2005), the 2004 U.S. Presidential Election was the
first one in the United States in which the web and more precisely blogging played an impor-
tant part. Although a minority of Americans actually used these Weblogs, their influence
was extended beyond their readership through their interactions with national mainstream
media. With the impact of new social network websites like Myspace or Facebook, the web
should have a stronger influence during the U.S.political campaign in 2008.

[Figure 4 about here.]

In this real community extraction experiment, we used a real data set gathered in
November the 7th 2007 by RTGI with a specific methodology similar to Fouetillou (2007).
This data set consists of a single day snapshot of over two thousand websites of which
one thousand comes from two online directories : http://wonkosphere.com and http:
//www.politicaltrends.info. The first site provides a manual classification and the
second an automatic classification based on text analysis. From this seed (the thousand
previoulsy mentionned sites) a web crawler (Drugeon, 2005) collects a maximum of 100
pages per hostname. External links are examined to check the connectivity with visited
or unvisited websites. If websites are still unvisited and if there exists a minimal path of
distance less than two between a hostname which belongs to the seed and these websites
then the web crawler collects them.

According to that seed extension, 200,000 websites have been gathered and a network
of websites was created where nodes represent hostnames (a hostname contains a set of
pages) and edges represent hyperlinks between different hostnames. If several links exist
between two different hostnames, we collapse them into a single one. Note that intra domain
links can be considered if hostnames are not similar. On this web network, we computed
an auhority score (Kleinberg, 1999) and keyword score TF/IDF (Salton et al., 1975) on
focused words (political entities) in order to identify respectively nodes with high-quality
website (high authority scores) and centered on those topic (on a political corpus). 870 new
websites came out of these two criteria. They have been checked by experts and the validity
of the seed has been confirmed.
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In the end, there were 130,520 links and 1,870 sites : 676 liberal, 1,026 conservative
and 168 independent. Considering that website’s authors tend to link according to political
affinities, this network presents a priori an interesting community organization.

In our experiment, we benefit from a three groups manual partition as reference which
allows us to analyze the agreement between both real and estimated partitions. A first
interesting experiment consists in comparing this manual partition with an estimated one
of three groups. From here, we will use the online variational algorithm to predict the
partitions. Table 6 shows a contingency table of the counts of given and estimated website
groups. We observe a relative coherence between these two partitions confirmed by an
acceptable randIndex = 0.25 and a modularity = 0.20.

[Table 6 about here.]

However, reducing the US polical communities to three groups may be considered as
an oversimplification and it appears relevant to find a more realistic number of groups. As
the algorithm relies on a statistical model, it is possible to use the Integrated Classification
Likelihood (ICL) to choose the optimal number of classes. This choice is made by running
our online algorithm concurrently for models from 2 to Q classes and selecting the solution
which maximizes the ICL criterion. Using ICL, we obtain an optimal number of groups
Q = 20 which reflects more effectively the diversity of communities based on political
opinions. Then, considering this new number of classes, we produce a new contingency table
of counts of given and estimated website groups. We observe very interesting subdivisions
and some of them are described here.

The first example deals with four liberal clusters (C6, C7, C13 and C8) the size of which
is decreasing and where the mean of node degrees increases. In addition, when analyzing
the probability of connectivity between clusters : πql for q, l ∈ {1, .., 20}, we notice that the
sum of these probabilities :

∑
l πql, with q fixed, increases. This behaviour is due to the

increasing degree of nodes in these clusters and the presence of significant connectivities
with other clusters. As far as political communities are concerned, this phenomenon reveals
their degree of opening to others. By opening we mean that a cluster of one class will be
connected to many cluster of different classes. Indeed, the most liberal cluster C6 which
can be represented by the famous feministe.us, links mainly to liberal clusters what can
be explained by its the radical political positions.

In the conservative part of the network, our algorithm produces clusters C10, C9, C19,
and C16 with a behaviour similar to liberal clusters. Again, we notice the increasing mean
degree of nodes and the increasing opening to other communities. Moreover, it seems
important to notice that clusters C19 and C16 which own the best conservative autorities
(nodes with high degree) have also a greater intra-cluster connectivity than their comparable
liberal clusters (C13 and C8). This tendency was already observed by Adamic and Glance
(2005) during the 2004 U.S. Presidential Election.

Furthermore, we remark a media cluster C17 made up of the four main US online portals
(nytimes.com, washingtonpost.com, cnn.com, msn.com). These well known websites own
the greatest node degree in the network and their cluster C17 has consequently meaningful
connectivities with all clusters. It is interesting to note that the probability to have an
edge from C17 to C17 is the weakest transition probability of this cluster. It means that
cluster C17 is an interface cluster linked with everybody and where it is hard to stay
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in. Considering the need for bloggers to base their arguments on famous medias and the
competition bewteen medias which disallows links among them, the comprehension of this
phenomenon is obvious.

Besides, largest clusters C11, C1, C2 and C5 possess websites with small node degrees.
They are constituted of liberal and conservative websites which are not influential (few
incoming links) and are not hubs (important outgoing links). In these clusters, we can
observe very weak connectivities with others.Then, their greatest connectivity is for the
media cluster C17 (close with all the clusters).

Finally cluster C5 has the weakest connectivity transitions of all the estimated clusters.
Then C5 has nodes with very poor degrees. Given that our algorithm requires the knowledge
of node neighbourhoods to enable its classification, we can predict important mistakes in
this cluster. Generally this kind of cluster is our trash cluster and in this experiments it
aggregates nodes of the three manual groups.

[Table 7 about here.]

A last remark is that a popular method to cluster nodes of a graph is to use the com-
munity algorithm proposed by Newman (2006). However Newman aims at finding modules
which are defined by high intra connectivity and low inter connectivity, whereas MixNet
aims at merging nodes which share the same connectivity profile without any constraint on
the between clusters connections. The quality of a partition in terms of Newman’s modules
can be measured by the so-called modularity of the partition. The value of this modu-
larity is a scalar bewteen -1 and 1 and measures the density of links inside communities
as compared to links between communities (Newman, 2006). As MixNet classes are not
necessarily in the form of modules, it is expected to get modularity index which are not
“optimal” using our approach. For instance when choosing the optimal number of clusters
Q = 20, we obtain a modularity = 0.04 which is smaller than for the run with Q = 3.
This last observation emphasises the fact that MixNet groups together nodes with the same
behaviour in terms of connectivity and does not aim to maximize the modularity.

6. Conclusion

In this paper we proposed online versions of estimation algorithms for random graphs which
are based on mixture of distributions. These strategies allow the estimation of the model
parameters in a reasonnable computational time for datasets which can be made of thou-
sands of nodes. These methods constitute a trade-off between the amount of data, which
one can deal with and the quality of estimation : even if online methods are not as precise as
”batch” methods for estimation, they provide an answer when the size of the network is too
large for any existing estimation strategy. Furthermore, our simulation study shows that
the quality of the remaining partition is goods when using online methods. In the network
of the 2008 US political websites we have found coherent clusters composed by nodes with
close degree and with a significative common edges. It appears to provide a very interesting
overview of networks which differs from other community detection algorithms. Overall, the
MixNet model seems promising for the investigation of the structure of the political sphere,
and the application of online algorithm in this context should allow the investigation of
structure in larger networks.
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Figure 1: Top left : low inter-module connectivity and strong intra-module connectivity
(model 1), Top right : strong inter-module connectivity and low intra-module
connectivity (model 5), Bottom center : Erdős-Rényi model (model 4).
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Figure 2: Rand Index evolution for λ ∈ {0.58, 0.59, . . . , 0.68}. The plain line represents the
online SAEM algorithm, line with 4 represents the online CEM algorithm and
line with ◦ represents the online variational algorithm.
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Figure 3: Algorithm speed in seconds for different network sizes. The plain line represents
the batch variational algorithm and the line with ◦ represents the online varia-
tional algorithm.
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Figure 4: Network of the US political websites.
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Model ε λ

1 0.3 0.7
2 0.35 0.65
3 0.4 0.6
4 0.5 0.5
5 0.9 0.1

Table 1: Parameters of the five affililation models considered in the experimental setting.
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online SAEM online Variational batch MixNet online CEM
Model ε̄ λ̄ ε̄ λ̄ ε̄ λ̄ ε̄ λ̄

model 1 0.30 0.69 0.30 0.70 0.30 0.70 0.30 0.70
model 2 0.36 0.60 0.35 0.64 0.35 0.65 0.35 0.64
model 3 0.44 0.44 0.44 0.45 0.40 0.60 0.43 0.47
model 4 0.51 0.48 0.50 0.50 0.50 0.50 0.51 0.48
model 5 0.10 0.90 0.10 0.90 0.10 0.90 0.10 0.90

Table 2: Parameters of the four affililation models of the experiment. The Q modules are
mixed in the same proportion. Each model considers n = 500 nodes and Q = 5
groups.
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online SAEM online Variational batch MixNet online CEM
Model rand σrand rand σrand rand σrand rand σrand

model 1 0.98 0.02 0.98 0.02 0.99 0.02 0.98 0.02
model 2 0.96 0.07 0.97 0.07 0.98 0.01 0.97 0.07
model 3 0.13 0.13 0.10 0.15 0.85 0.14 0.25 0.16
model 4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
model 5 1 0.00 1 0.01 1 0.01 1 0.01

Table 3: Means and standard deviations of the Rand index for all models with q and n
fixed.
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online SAEM online Variational batch MixNet online CEM
N rand σrand rand σrand rand σrand rand σrand

n = 100 0.16 0.09 0.26 0.14 0.26 0.14 0.23 0.13
n = 250 0.94 0.08 0.97 0.06 0.99 0.01 0.97 0.06
n = 500 0.97 0.07 0.97 0.07 1 0.00 0.97 0.07

Table 4: Means and standard deviations of the Rand index for all models with n fixed.
q = 5, model 2
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online SAEM online Variational batch MixNet online CEM
N rand time rand time rand time rand time

n = 100 0.14 0.07 0.14 0.11 0.26 0.21 0.14 0.07
n = 250 0.47 0.76 0.48 0.77 0.99 2.08 0.48 0.74
n = 500 0.64 0.97 0.67 1.02 1 25.00 0.66 0.95
n = 750 0.82 2.20 0.83 2.36 1 125.3 0.83 2.14

Table 5: Means of the Rand index with speed of the algorithms. q = 5, model 2
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True
Conservative Independent Liberal

cluster 1 734 135 238
Estimated cluster 2 290 26 8

cluster 3 2 7 430

Table 6: Contingency table comparing true and estimated partitions.

28



SSB - RR No. 14 H. Zanghi, F. Picard, V. Miele and C. Ambroise

True
Conservative Independent Liberal

C1 210 2 2
C2 393 11 3
C3 13 37 31
C4 0 1 25
C5 192 97 219
C6 0 0 58
C7 0 0 51
C8 0 0 20
C9 66 0 0
C10 55 0 1

Estimated C11 3 5 199
C12 0 0 37
C13 0 0 23
C14 1 0 0
C15 10 10 3
C16 22 2 0
C17 0 3 1
C18 19 0 0
C19 36 0 0
C20 0 0 3

Table 7: Contingency table comparing true and estimated partitions
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