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Abstract

Diverse methods have been employed recently to characterise the structure of
biological networks. In particular, the concept of network motif and the related
concept of coloured motif have proven to be useful to model the notion of a func-
tional/evolutionary building block. However, algorithms that enumerate all the
motifs of a network may have a very large output and methods to decide which mo-
tifs should be selected for downstream analysis are needed. A widely used method
is to assess if the motif is exceptional, that is, over- or under- represented with
respect to a null hypothesis. Unlike existing methods, we propose here a method
to assess the exceptionality of coloured motifs which does not require simulations.
We establish analytical formulas for the mean and the variance of the count of a
coloured motif in an Erdös-Rényi random graph model. Using simulations, we fur-
ther show that a Pólya-Aeppli distribution models well the distribution of the motif
count. Altogether, these results now enable to derive a p-value for a coloured motif,
without spending time on simulations.

1 Introduction

Describing the structure of a biological network has two main purposes. On the one
hand, it enables to address questions related to the evolution of the network, that is, how
such a complex structure has been set up in the course of evolution. On the other hand,
structural analysis can be seen as a first necessary step previous to dynamical analysis
which in turn enables to simulate networks and study their response to perturbation.
Usually, three main classes of biological networks are considered (Alm and Arkin (2003)):
protein interaction networks, gene regulatory networks and metabolic networks. When
analysing their structure, these networks are usually modelled as graphs where nodes
represent molecules (metabolites, genes, proteins) and edges represent interactions (direct
or indirect) between these molecules. For instance, in the case of a gene regulatory
network, nodes correspond to genes and there is an edge between a gene coding for a
transcription factor and every gene that this transcription factor regulates.

The structure of a biological network may be apprehended using a variety of measures,
such as node degree (Jeong et al. (2000)), degree correlation (Maslov and Sneppen (2002))
or average shortest path length (Wagner and Fell (2001)).
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In this paper, we focus on the concept of motif. A network motif has been initially
defined as a pattern of interconnections which occurs unexpectedly often in a network
(Milo et al. (2002), Shen-Orr et al. (2002)). The assumption generally made is that
subnetworks sharing the same topology will be functionally similar. Over- (or under-
) represented subnetworks may therefore correspond to conserved (avoided) and thus
important (vital/detrimental) cellular functions. In the context of regulatory networks,
simple patterns such as loops may be interpreted as logical circuits controlling the dynamic
behaviour of a network.

A limitation of the notion of topological motif is that in many cases, the same sub-
graph may in fact correspond to different functions, depending on the nature of the nodes
that compose it. Moreover, in some situations, as for example in the case of protein inter-
action networks, the topology of the network is not fully known. Indeed, high-throughput
experiments used to obtained large-scale protein interaction data are notoriously noisy,
that is, they may detect interactions when there is none (false positive) and they may
miss existing interactions (false negative). In this context, it may be unadequate to look
for exact repetition of a pattern. Therefore, an alternative definition has been proposed,
where a motif is defined using the labels of its nodes and not the topology of the induced
subgraph (Lacroix et al. (2006)).

A coloured motif is defined as a multiset of colours (vertex labels) and an occurrence
of a motif is defined as a connected subgraph whose labels match the motif.

The enumeration of coloured motifs is a non-trivial task which has been the subject of
several works (Lacroix et al. (2006), Hermelin et al. (2007)) which enabled to establish the
complexity of the problem and provide algorithms to efficiently detect all the occurrences
of a motif in a graph. In practice, current methods now enable to enumerate all the motifs
of size 7 of a graph representing the metabolic network of a bacterium in less than two
hours. Beyond the time complexity of the task, a major challenge that remains open is to
make sense of the potentially very large output of such enumeration procedure, especially
when the focus is not on a single motif but on all motifs of a given size.

Ideally, one would need a method to rank the motifs according to their biological
relevance in order to prioritize a small number of motifs for downstream analysis. However,
the notion of biological relevance is generally ill-defined, and a first approximation to it
which is classically used is its statistical exceptionality.

The exceptionality of a motif, that is the over- or under- representation of the mo-
tif with respect to a null model, can be assessed by comparing the observed count of
occurrences of a motif to the expected count of the same motif under a null hypothesis.

Up to now, this procedure was performed in MOTUS (Lacroix et al. (2008), http:
//pbil.univ-lyon1.fr/software/motus/) using simulations, that is, a large number of
random graphs were generated and the motif of interest was sought in each one, generating
a distribution of motif count, to which the observed count could be compared in order to
derive a z-score and a p-value.

The main limit to this procedure is that it adds a multiplicative factor to the time
complexity of the search algorithm. Moreover, it is not trivial to choose what is the
optimal number of simulations to perform in order to get a satisfying estimation of the
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p-value. As a rule of thumb, in order to estimate quite accurately a p-value of 1 over 10i,
10i+2 simulations should at least be performed.

In this paper, we propose a new approach for assessing the exceptionality of coloured
motifs which does not require simulations and therefore ables to circumvent the previously
mentionned limitations.

We were able to establish exact analytical formulas for the mean and the variance of
the count of a coloured motif in an Erdös-Rényi (ER) random graph model. Using these
results, one can already derive a z-score for each motif and therefore rank them according
to their exceptionality.

We then worked on modelling the complete distribution of the count of a coloured
motif in an ER random graph model. For this purpose, we performed a large number of
simulations, using different colour frequencies for the motif and different number of nodes
and edges for the graph. We could establish that the Pólya-Aeppli distribution was a
better approximation than the commonly used Gaussian distribution.

These results can in turn be used to derive a p-value for each motif, and therefore
introduce a cut-off to decide which motifs should be selected for downstream analysis.

To our knowledge, there has been no previous work on the enumeration of coloured
motif in random graphs and this is the reason why we focused on the more general
random graph model that is available. We are aware that this may not be the most
suitable model to describe the structure of a biological network. However, we argue that
this work provides a first necessary basis which can later be extended to richer models,
such as a mixture of Erdös-Rényi models as proposed by Daudin et al. (2008).

2 Definition and notations

Coloured random graph model. We consider a random graph G with n vertices
{V1, . . . , Vn}. We assume that random edges are independent and distributed according
to a Bernoulli distribution with parameter p ∈]0, 1] (so-called Erdös-Rényi model). More-
over, vertices are randomly and independently coloured as follows. Let C be a finite set
of r different colours and f a probability measure on C: f(c) is then the probability for a
vertex to be coloured with c ∈ C.

In metabolic networks, colours of reaction nodes can represent the class of the catalyz-
ing enzymes; In regulation networks, colours of gene nodes can represent the functional
class of the genes.

Coloured motif. We consider motifs as introduced in Lacroix et al. (2006): a (coloured)
motif m of size k is a set of k colours {m1, . . . , mk} ∈ Ck. Colours from a motif may not
be different, i.e. one may have mi = mj for some 1 ≤ i, j ≤ k; We then denote by s

m
(c)

the multiplicity of the colour c in m. When there is no ambiguity, s
m

(c) will simply be
denoted by s(c).
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Motif occurrences. We will now define an occurrence of such coloured motif. For
this purpose, we introduce the following notations. If i1, i2, . . . , i` are ` different indexes
from {1, . . . , n}, then G(i1, i2, . . . , i`) represents the subgraph of G induced by the vertices
{Vi1, . . . , Vi`}. Let Ik be the set of all the subsets of size k from {1, . . . , n}. We say that
a motif m = {m1, . . . , mk} occurs at position α = {i1, . . . , ik} ∈ Ik if and only if G(α)
is connected and the colours of G(α), denoted by C(α) are exactly {m1, . . . , mk}. Ik

corresponds then to the set of possible positions for the occurrence of a motif of size k.

Number of occurrences. We introduce the random indicator variable Yα(m) which
equals one if motif m occcurs at position α ∈ Ik in G and zero otherwise:

Yα(m) = I{m occurs at position α}.

Yα(m) is then a Bernoulli random variable whose expectation will be denoted by µ(m):

µ(m) = EYα(m) = P(m occurs at position α).

The probability µ(m) for m to occur at position α will be given in Section 3.1.
The number of occurrences of the motif m in the graph G, denoted by N(m) is defined

by:

N(m) =
∑

α∈Ik

Yα(m). (1)

3 Mean and variance for the count

This section will provide analytical formulas for the mean and the variance of the number
of occurrences of a motif in a random graph. It will involve the computation of the
occurrence probability µ(m) and some probabilities of connectedness.

3.1 Mean number of occurrences

The mean number of occurrences of the motif m in the graph G simply follows from the
count expression (1):

EN(m) =
∑

α∈Ik

EYα(m) =

(
n

k

)
µ(m)

where µ(m) is the occurrence probability of the motif and is given below by equation (3).

Occurrence probability. The probability µ(m) for m to occur at position α is equal
to the product of two probabilities: the probability that G(α) is connected and the prob-
ability to assign colours {m1, . . . , mk} to vertices {Vi1, . . . , Vik}. If we denote the latter
by γ(m), we then have

γ(m) =
k!∏

c∈C

s(c)!

k∏

i=1

f(mi) (2)
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and
µ(m) = g(k, p) × γ(m) (3)

where g(k, p) denotes the probability for a random graph (Erdös-Rényi model) with k
vertices and edge probability p to be connected (put 0! = 1).

Connectivity probability The probability g(k, p) can be calculated by recursion (Gilbert
(1959)) as follows:

g(k, p) = 1 −
k−1∑

i=1

(
k − 1

i − 1

)
g(i, p)(1 − p)i(k−i) (4)

where g(1, p) = 1. For instance, for 2 ≤ k ≤ 5, which is typically the range for the motif
size in practice, we have:

g(2, p) = p,

g(3, p) = 3p2 − 2p3,

g(4, p) = 16p3 − 33p4 + 24p5 − 6p6,

g(5, p) = 125p4 − 528p5 + 970p6 − 980p7 + 570p8 − 180p9 + 24p10.

3.2 Variance of the number of occurrences

To get the variance, we use that VarN(m) = EN 2(m)− (EN(m))2 and we then compute
the moment of order two:

EN2(m) =
∑

α∈Ik

∑

β∈Ik

E[Yα(m)Yβ(m)].

First, the sums over α and β will be done according to the number ` of vertices shared
by the subgraphs G(α) and G(β):

EN2(m) =
k∑

`=0

∑

|α∩β|=`

E[Yα(m)Yβ(m)].

Second, we use that Yα(m) and Yβ(m) are indicator variables which leads to E[Yα(m)Yβ(m)] =
P(Yα(m) = 1 and Yβ(m) = 1). These random variables are not independent but the above
probability can be writen like

E[Yα(m)Yβ(m)] = K(α, β) × Q
m

(α, β) (5)

with

K(α, β) = P(G(α) and G(β) are connected)

Q
m

(α, β) = P(C(α) = C(β) = {m1, . . . , mk}).

Terms K(α, β) and Q
m

(α, β) will now be separately calculated.
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Computation of Q
m

(α, β) Let ` = |α ∩ β|; Subgraphs G(α) and G(β) have thus `
vertices in common, with 0 ≤ ` ≤ k. Let m∗ ⊂ m such that |m∗| = ` and denote
m− = m\m∗; m∗ represents the colours of the ` vertices shared by G(α) and G(β). The
multiplicity of colour c ∈ C in m∗ (respectively in m−) is denoted by s∗(c) (resp. s−(c)).
To calculate P(C(α) = C(β) = m), we start by choosing the ` colours m∗ of G(α)∩G(β)
and the (k − `) remaining colours m− are spread over both G(α)\(G(α) ∩ G(β)) and
G(β)\(G(α) ∩ G(β)). It leads to

Q
m

(α, β) =
∑

m
∗⊂m

γ(m∗)[γ(m−)]2

s(m∗)
(6)

where s(m∗) is the multiplicity of m∗ in m.

Computation of K(α, β) Let again ` = |α ∩ β|. If ` = 0 (G(α) and G(β) are dis-
joint) or ` = 1 (G(α) and G(β) have a unique vertex in common) then the events
{G(α) is connected} and {G(β) is connected} are independent leading to

K(α, β) = g2(k, p), if ` = 0 or 1.

Another easy case is when ` = k: β = α and K(α, β) = g(k, p).
For the other cases, no general formulas have been found so far but, for small values of
k, one can automatically enumerate all the solutions thanks to the edge binary tree. The
idea is to work conditionnally to the subgraph G(α) ∩ G(β) of size 2 ≤ ` ≤ k − 1. This
method is presented in the supplementary material and here are the results for k = 3 and
k = 4 (k = 2 can be processed with the above formulas):

k = 3 and ` = 2 : K(α, β) = 4p3 − 3p4

k = 4 and ` = 2 : K(α, β) = 64p5 − 160p6 + 100p7 + 77p8 − 136p9 + 68p10 − 12p11

k = 4 and ` = 3 : K(α, β) = 27p4 − 60p5 + 46p6 − 12p7.

4 Occurrences of multiple motifs

In some cases, the motif of interest may not be restricted to a single set of colours but
can correspond to several sets of colours. This is typically the case when one allows some
colours to be equivalent at some point. For instance, if C = {red, green, dark blue, light blue},
then one could be interested to look for the occurrences of the “degenerated” motif
{red, blue} = {red, dark blue} ∪ {red, light blue}. Such motif is then the union of several
“single” motifs.

Formally, denote by M a set of coloured motifs. The number of occurrences of M in
the graph G is then the sum of the counts N(m) for m ∈ M. Consequently, the expected
count EN(M) is also the sum of the expected counts EN(m), m ∈ M. The novelty only
appears for the variance because it requires covariance terms:

VarN(M) =
∑

m∈M

Var(N(m)) +
∑

m6=m
′∈M

Cov(N(m), N(m′)).
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In other words, one has to calculate P(Yα(m) = 1 and Yβ(m
′) = 1) for α, β ∈ Ik and

m 6= m′ ∈ M. Similarly to equation (5), this probability is equal to K(α, β)×Q
m,m′(α, β)

where K(α, β) has been previously introduced and Q
m,m′(α, β) = P(C(α) = m, C(β) =

m′). The latter quantity is null when ` = |α ∩ β| > |m ∩ m′|. When ` ≤ |m ∩ m′|,
Q

m,m′(α, β) is calculated like Q
m

(α, β) (see eq. (6)) and we get:

Q
m,m′(α, β) =

∑

m
∗⊂{m∩m

′},|m∗|=`

γ(m∗)γ(m−)γ(m′−)

s(m∗)

where m∗ is still the colour of the ` common vertices and m− and m′− are the remaining
colours from m and m′.

5 Towards the motif count distribution: a simulated

approach

Aim No theoretical results exist so far on the distribution of coloured motifs in random
graphs. In this paper, we propose an approximation for this distribution. Thanks to
simulations, we first studied the quality of the normal approximation which is classically
employed, especially when using z-scores. By analogy with motifs in sequences (Schbath
(1995)), we also considered a Pólya-Aeppli approximation as suggested by Picard et al.
(2008) for topological motifs (i.e. the motif has no colours but a fixed topology) in random
graphs. The idea is that a normal distribution is not adapted for the count of rare events,
whereas compound Poisson distributions are relevant for the count of rare and clumping
events; And network motif occurrences will tend to overlap in networks. The Pólya-Aeppli
distribution (denoted by PA) with parameters (λ, a) is the distribution of

∑C
c=1 Kc where

the number of clumps C is Poisson distributed (C ∼ P(λ)) and the size of the clumps Kc

is geometrically distributed (P(Kc = k) = (1 − a)ak). Its mean is equal to λ/(1 − a) and
its variance equals λ(1 + a)/(1 − a)2. We did not investigate the Poisson approximation
because, as we can see on Table 1, the variance of the count (whatever the coloured motif)
is quite different from the mean count.

Simulation design We have simulated 10,000 Erdös-Rényi random graphs with n
nodes (n ∈ {100, 500, 1000}) and edge probability p ∈ {0.05, 0.01, 0.005}. Nodes have
been randomly coloured with 5 colours (C = {1, 2, 3, 4, 5}) and according to the following
colour frequencies: f = (50, 25, 10, 5, 1)/91. These choices for n, p and f allow to get
coloured motifs of size 3 with a wide range of expected counts. We have then selected
14 motifs of size 3 to cover both this variety of counts and different multiplicity pat-
tern: {1, 1, 1}, {1, 2, 2}, {1, 2, 3}, {1, 1, 4}, {1, 3, 4}, {1, 1, 5}, {2, 4, 4}, {4, 4, 4}, {2, 4, 5},
{3, 4, 5}, {1, 5, 5}, {3, 5, 5}, {4, 5, 5} and {5, 5, 5}.
For each motif and each couple (n, p), we then obtained an empirical distribution which

has been compared with both the normal distribution N (ÊN(m), V̂arN(m)) and the
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Motif 123 (n=500, p=0.01)
 empirical mean = 615.2566
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Motif 244 (n=500, p=0.01)
 empirical mean = 15.2864
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 empirical mean = 2.5112
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Figure 1: Empirical distributions for the count of motifs {1, 2, 3}, {1, 1, 5}, {2, 4, 4} and
{3, 4, 5} in random graphs with n = 500 and p = 0.01. The empirical means are respec-
tively 615, 61, 15 and 2. The red (respectively green) curves correspond to the ad-hoc
normal distributions (resp. Pólya-Aeppli distributions).

Pólya-Aeppli distribution PA(λ̂, â) with λ̂ = (1 − a)ÊN(m) and â = [V̂arN(m) −

ÊN(m)]/[V̂arN(m) + ÊN(m)] (see Figure 1).

Quality of approximation To measure this quality we took two criteria: (1) the
Kolmogorov-Smirnov distance which measures the maximal difference between the empir-
ical cumulative distribution function (cdf) F̂ and the cdf of the normal or the Pólya-Aeppli
distribution. Closer to 0 the KS distance, better the approximation. (2) 1 minus the em-
pirical cdf calculated at the 99% and 99.9% quantiles of the normal or the Pólya-Aeppli
distribution. Closer these values from 1% and 0.1%, better the approximation.

Results Results for different values of n and p are very similar. We only present here
the ones corresponding to n = 500 and p = 0.01 because these values are very close to
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real cases such as the metabolic network of Escherichia coli as considered in Lacroix et al.
(2006). Nevertheless all results are presented in the supplementary material.

We can first notice just by eyes (see Figure 1) that the normal distribution seems
satisfactory for frequent motifs but becomes as bader as the motif becomes rare. The
Pólya-Aeppli distribution seems to fit quite correctly the count distribution whatever the
motif. These points are emphasized when we look at the Kolmogorov-Smirnov distances
(see Table 1): the ones for the Pólya-Aeppli distribution are always smaller than for the
normal distribution and sometimes strongly smaller. In fact, the distance to the normal
distribution is terribly large for very rare motifs (typically when EN(m) ≤ 10). If we
now look at the distribution tails thanks to the empirical probabilities to exceed the 99%
or 99.9% quantiles qN and qPA, we can also notice that they are closer to 1% or 0.1%
for the Pólya-Aeppli distribution than for the normal distribution. The “look-so-bad
performance” of the Pólya-Aeppli distribution for very rare motifs are artefact due to
the fact that the PA and the count distributions are concentrated close to zero and the
ambiguity to compute quantiles for discrete distributions is amplified. Moreover, note
that most of the time the normal distribution underestimates the quantile (the empirical
right tail is overestimated) leading to false positives.

6 Discussion and conclusion

In this paper, we proposed a new way to assess the exceptionality of coloured motifs
in networks which does not require to perform simulations. Indeed, we were able to
establish analytical formulas for the mean and the variance of the count of a coloured
motif in an Erdös-Rényi random graph model. Furthermore, using simulations, we showed
that the motif count distribution can be quite accurately approximated with a Polya-
Aeppli distribution, and that the Gaussian distribution is not relevant. Altogether, these
results now enable to derive a p-value for a coloured motif without performing simulations.
Clearly, when several motifs have to be tested, which is the case in the context of motif
discovery, one has to control for multiple testing. A conservative strategy that is classically
used and that we would recommend is then to use a Bonferroni correction.

In this work, we did not investigate the case of long motifs, but we can anticipate that
motifs containing submotifs which are exceptional, will tend to be exceptional themselves.
This type of phenomenon is also observed for motifs in sequences and a classical way to
deal with it is to control for the number of sequence motifs of size k−1 (by using a Markov
model of order k − 2), when assessing the exceptionality of motifs of size k. However,
in the case of networks, the problem is far from trivial and it is unclear, even for small
values of k if the space of random graphs verifying these constraints will not be too small.
In the worst case, this space may even be reduced to the observed graph itself.

Also, in the case of very rare motifs, the expected distribution of the count is essentially
concentrated on 0. Therefore, a single occurrence of such a motif will often be sufficient
for it to be considered as exceptional. Now if we consider the extreme case of a coloured
graph where each node is assigned a different colour, then all possible motifs will be very
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α = 1% α = 0.1%

motif m EN(m) VarN(m) bEN(m) dVarN(m) ba bλ KSN KSPA qN 1 − bF (qN ) qPA 1 − bF (qPA) qN 1 − bF (qN ) qPA 1 − bF (qPA)
(%) (%) (%) (%) (%) (%)

111 1023.65 27462.66 1021.97 27446.53 0.93 73.37 2.40 0.78 1407.4 1.6 1436 1.1 1533.9 0.23 1591 0.12
122 767.74 14941.43 766.05 14660.79 0.90 76.08 2.14 0.65 1047.7 1.5 1068 1.0 1140.2 0.25 1181 0.07
123 614.19 8546.68 615.26 8493.22 0.86 83.12 1.75 0.68 829.6 1.4 845 0.8 900.0 0.18 929 0.08
114 307.09 5729.89 307.77 5807.09 0.90 30.98 3.20 0.71 485.0 1.5 505 0.8 543.3 0.28 583 0.08
134 122.84 1305.02 123.06 1311.64 0.83 21.11 3.43 0.78 207.3 1.8 219 0.9 235.0 0.37 257 0.12
115 61.41 1180.68 61.72 1147.95 0.90 6.30 5.72 0.98 140.5 2.3 160 0.8 166.4 0.57 205 0.06
244 15.35 85.99 15.29 85.57 0.70 4.63 8.73 1.07 36.8 2.4 43 0.8 43.9 0.81 55 0.12
245 6.14 27.76 6.20 28.45 0.64 2.22 12.72 1.27 18.6 2.5 23 0.8 22.7 1.09 32 0.10
345 2.46 6.63 2.51 6.58 0.45 1.39 17.97 0.53 8.5 1.9 11 0.5 10.4 0.77 15 0.09
155 1.23 6.94 1.22 6.74 0.69 0.37 34.23 5.75 7.2 3.3 12 0.6 9.2 1.56 20 0.05
444 1.02 2.46 1.02 2.51 0.42 0.59 27.39 3.80 4.7 2.4 7 0.5 5.9 1.48 10 0.09
355 0.25 0.50 0.25 0.50 0.34 0.16 48.47 0.43 1.9 2.5 3 0.4 2.4 0.96 6 2e-05
455 0.12 0.20 0.13 0.20 0.23 0.09 51.63 0.16 1.2 0.6 2 0.1 1.5 0.65 4 0.03
555 0.008 0.01 0.007 0.008 0.035 0.007 52.61 2e-03 0.2 0.03 0 0.03 0.3 0.03 1 2e-05

Table 1: Quality of approximation of the count distribution for n = 500 and p = 0.01. The empirical mean ÊN(m),

variance V̂arN(m) and cumulative distribution function F̂ have been obtained thanks to 10,000 random graphs. (â, λ̂) are
the parameters of the Pólya-Aeppli distribution. KSN and KSPA are the Kolmogorov-Smirnov distances. For α = 1%
then 0.1%, qN is the 1 − α quantile of the normal distribution (idem for the Pólya-Aeppli distribution).
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rare and therefore, they may all be detected as exceptional. In practical cases, such as
for the network representing the metabolic network of the bacterium Escherichia coli, the
situation is less dramatic but indeed a lot of colours are present only once. This issue
may be partially adressed by considering a random graph model where the colours and
the topology are not independent anymore. This would enable to discriminate between
unfrequent poorly connected colours and unfrequent highly connected colours. Motifs
containing the latter type of colours would be expected to have more occurrences and
should therefore not be systematically considered as exceptional when they have a single
occurrence.

More generally, we considered in this paper a very simple random graph model. Even
though we think this work was necessary to establish a framework to assess the exception-
ality of coloured motifs, an important step is now to extend these results to other models
of random graphs which better model the structure of real networks.

Finally, we think there is still room for improvement about the approximation of the
motif count distribution. Indeed, no theoretical evidence has been found so far to use a
Poisson distribution for the number of clumps of occurrences and a geometric distribution
for their size. Getting the third moment and eventually the fourth moment of the count
could certainly allow to investigate other distributions.
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Supplementary material

Connectedness probability for two subgraphs sharing vertices

We describe here how to compute the probability that G(α) and G(β) are both connected
given that they share 2 ≤ ` < k vertices ; Recall that G(α) and G(β) have k vertices.
The principle is to work conditionnally to the subgraph G(α) ∩ G(β):

P(G(α) and G(β) are connected) =∑

G′

P(G(α) ∩ G(β) = G′) × [P(G(α) connected | G(α) ∩ G(β) = G′)]2 (7)

where G′ is any subgraph of ` vertices.
Since k is typically small, both probabilities can be computed by enumerating all possible
subgraphs G′ and G(α). This can be done by traversing the complete edge binary tree
associated to the k(k − 1)/2 potential edges. This tree is composed of k(k − 1)/2 levels,
one for each potential edge and each internal node in this tree has two sons: the left one
corresponds to the presence of the corresponding edge in the graph whereas the right one
corresponds to its absence. It follows that each path from the root to a leaf corresponds
to one of the 2k(k−1)/2 possible graphs of size k.

Figure 2 gives an example for k = 3; Vertices are labelled {i, j, u}, the higher level
corresponds to edge (i, j), the middle one corresponds to edge (i, u) and the lower level
corresponds to edge (j, u). Leaves corresponding to connected graphs are drawn with
a square. In practice, the connectedness of a graph can be checked by calculating its
adjacency matrix to the power k − 1. Indeed a graph of size k with adjacency matrix
A is connected if and only if Ak−1 contains no zero (every vertex can be reached from
any vertex in at most k − 1 step). Additionnally, the binary tree is built such that all
pairs of common vertices between G(α) and G(β) are at the top levels. Therefore, the
probability of each connected graph of size k can be easily calculated when traversing the
tree while taking care of the conditional probabilities that should be to the square (cf.
Equation (7)).

As an illustration, we now detail the computation for k = 3 and ` = 2. Let i and j be
the two common vertices between G(α) and G(β), and let u be the third vertex of G(α)
(α = {i, j, u}). The edge binary tree is given by Figure 2. In this case, there are only two
subgraphs G′ with ` = 2 vertices: either i and j are connected (probability p) or they are
not connected (probability 1− p). In Fig. 2 we indicate with a dashed horizontal line the
separation between edges in G′ (the conditioning event) and edges in G(α)\G′. Overall,
with k = 3, there are four possible connected subgraphs: the triangle (labelled ’a’) and
the three possible ’V’ (labelled ’b’, ’c’, and ’d’). The probability that G(α) is connected
given i ↔ j is obtained from cases ’a’ (proba. p2), ’b’ (proba. p(1 − p)) and ’c’ (proba.
p(1 − p)):

P(G(α) connected | i ↔ j) = p2 + 2p(1 − p).

The probability that G(α) is connected given i is not connected with j is obtained from

13
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Figure 2: Complete edge binary tree for vertices i, j and u. Branches are labelled according
to the presence or absence of edges: label ij for instance means that i and j are connected,
whereas ij means the opposite. Leafs which correspond to connected subgraphs are
represented by a square.

case ’d’ (proba. p2), leading to

P(G(α) and G(β) are connected) = p × [2p − p2]2 + (1 − p) × [p2]2

= 4p3 − 3p4.

Approximation quality

Tables 2, 3 and 4 give the results about the approximation quality for n = 100 (p ∈
{0.05, 0.01, 0.005}), n = 500 (p ∈ {0.05, 0.005}) and n = 1000 (p ∈ {0.05, 0.01, 0.005}).
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α = 0.1%

m EN(m) VarN(m) bEN(m) dVarN(m) ba bλ KSN KSPA qN 1 − bF (qN ) qPA 1 − bF (qPA)
(%) (%) (%) (%)

111 194.46 4868.66 194.42 4827.85 0.92 15.05 5.03 1.23 409.1 0.63 461 0.15
122 145.85 2646.09 145.81 2685.28 0.90 15.02 4.42 0.49 305.9 0.54 344 0.07
123 116.68 1520.30 117.19 1551.07 0.86 16.46 3.68 0.90 238.9 0.28 266 0.07
114 58.34 1023.94 58.29 1030.84 0.90 6.24 6.05 0.49 157.5 0.65 194 0.06
134 23.36 234.83 23.42 241.19 0.82 4.14 8.70 0.66 71.4 0.78 92 0.08
115 11.67 211.46 11.57 208.10 0.89 1.22 19.17 6.76 56.1 1.32 91 0.07
244 2.92 15.63 2.90 15.09 0.68 0.93 20.49 3.94 14.9 1.52 25 0.11
245 1.17 5.08 1.16 5.01 0.62 0.44 33.31 1.06 8.1 1.26 16 0.08
345 0.47 1.22 0.47 1.22 0.44 0.26 43.07 0.39 3.9 1.46 8 0.08
155 0.23 1.28 0.23 1.30 0.69 0.07 49.95 1.28 3.8 2.00 13 0.05
444 0.19 0.46 0.19 0.42 0.38 0.11 49.44 1.11 2.2 0.77 6 0.05
355 0.05 0.09 0.04 0.08 0.28 0.03 53.10 0.04 0.9 0.85 3 0.02
455 0.02 0.04 0.02 0.03 0.16 0.02 53.24 4e-03 0.6 0.33 2 0.01
555 0.002 0.002 0.002 0.002 0.05 0.002 51.40 1e-03 0.1 0.01 1 2e-05

111 8.00 29.43 8.00 29.64 0.57 3.40 11.33 2.02 24.8 0.90 32 0.09
122 6.00 16.99 5.94 16.74 0.48 3.11 11.83 0.53 18.6 0.65 24 0.04
123 4.80 11.77 4.75 11.90 0.43 2.71 13.46 0.78 15.4 0.62 20 0.06
114 2.40 6.87 2.36 6.73 0.48 1.23 19.06 1.62 10.4 0.97 16 0.04
134 0.96 2.02 0.95 1.96 0.35 0.62 28.54 0.44 5.3 0.74 9 0.02
115 0.48 1.36 0.48 1.33 0.47 0.25 43.23 0.40 4.0 0.76 9 0.05
244 0.12 0.19 0.11 0.17 0.20 0.09 51.97 0.30 1.4 0.53 4 0.01
245 0.05 0.07 0.05 0.07 0.20 0.04 53.33 0.02 0.9 0.87 3 0.01
345 0.02 0.02 0.02 0.02 0.10 0.01 53.17 3e-03 0.5 0.16 2 2e-05
155 0.01 0.02 0.008 0.01 0.17 0.006 52.35 0.05 0.3 0.16 2 NA
444 0.008 0.01 0.006 0.007 0.08 0.005 52.27 0.01 0.3 0.03 1 0.01
355 0.002 0.002 0.002 0.002 0.047 0.002 51.51 9e-04 0.1 0.01 1 2e-05
455 0.001 0.001 0.001 0.001 < 0 0.001 51.21 - 0.1 2e-05 - -
555 6e-05 7e-05 0 0 - - - - - - - -

111 2.00 4.42 2.01 4.48 0.38 1.243 20.04 2.67 8.5 0.88 13 0.03
122 1.50 2.73 1.49 2.69 0.28 1.07 22.97 0.93 6.6 0.70 10 0.01
123 1.20 2.00 1.17 1.93 0.25 0.89 23.93 0.38 5.4 0.64 8 0.02
114 0.60 1.10 0.59 1.11 0.30 0.41 36.44 1.05 3.9 1.23 7 0.02
134 0.24 0.36 0.24 0.36 0.20 0.19 47.88 0.14 2.1 0.39 4 0.03
115 0.12 0.22 0.13 0.24 0.29 0.09 51.52 0.17 1.6 0.85 4 0.05
244 0.03 0.04 0.027 0.03 0.12 0.02 53.45 0.02 0.6 0.28 2 2e-05
245 0.01 0.01 0.01 0.01 0.08 0.01 52.90 0.02 0.4 0.07 1 0.02
345 0.005 0.005 0.005 0.005 < 0 0.005 52.30 - 0.2 2e-05 - -
155 0.002 0.003 0.004 0.008 0.30 0.003 51.63 0.01 0.3 0.08 1 0.04
444 0.002 0.002 0.002 0.002 < 0 0.002 51.58 - 0.1 2e-05 - -
355 0.0005 0.0005 3e-04 0.0003 < 0 0.0003 50.66 - 0.05 2e-05 - -
455 0.0002 0.0002 4e-04 0.0004 < 0 0.0004 50.76 - 0.06 2e-05 - -
555 2e-05 2e-05 0 0 - - - - - - - -

Table 2: Quality approximation of the count distribution for n = 100 and p = 0.05
(top), p = 0.01 (middle), p = 0.005 (bottom). The empirical mean ÊN(m), variance

V̂arN(m) and cumulative distribution function F̂ have been obtained thanks to 10,000

random graphs. (â, λ̂) are the parameters of the Pólya-Aeppli distribution. KS are the
Kolmogorov-Smirnov distances. For α = 0.1% qN is the 1 − α quantile of the normal
distribution (idem for the Pólya-Aeppli distribution). NA indicates numerical problems
to compute the PA distribution, whereas ’−’ indicates quantities that have not been
calculated (â < 0 or null empirical mean and variance).
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α = 0.1%

m EN(m) VarN(m) bEN(m) dVarN(m) ba bλ KSN KSPA qN 1 − bF (qN ) qPA 1 − bF (qPA)
(%) (%) (%) (%)

111 24904.19 10415630 24941.43 10463804 0.99 118.62 2.36 NA 34937.6 0.25 NA NA
122 18678.15 5778818 18675.54 5816997 0.99 119.53 1.74 NA 26128.7 0.18 NA NA
123 14942.52 2922292 14914.40 2934663 0.99 150.83 0.40 NA 20208.2 7e-02 NA NA
114 7471.26 2112934 7479.15 2103159 0.99 53.00 1.75 NA 11960.7 0.25 NA NA
134 2988.50 429279.6 2982.40 420630.6 0.99 42.00 2.53 NA 4986.6 0.32 NA NA
115 1494.25 451540.6 1497.61 454673.2 0.99 9.83 3.68 1.68 3581.3 0.44 4208 0.04
244 373.56 23775.19 373.30 23459.00 0.97 11.69 5.22 1.32 846.6 0.63 977 0.16
245 149.42 6427.06 149.36 6412.56 0.95 6.80 5.66 0.56 396.8 0.77 485 0.11
345 59.77 1180.90 59.57 1159.17 0.90 5.82 6.24 0.47 164.8 0.73 205 0.11
155 29.88 1225.46 30.29 1242.37 0.95 1.44 18.73 16.78 139.2 1.63 220 0.10
444 24.90 350.77 24.80 345.33 0.87 3.32 11.04 4.33 82.2 1.25 110 0.22
355 5.98 57.78 5.98 56.56 0.81 1.14 17.66 7.55 29.2 1.40 48 0.10
455 2.99 17.18 3.00 16.90 0.70 0.91 20.63 4.78 15.7 1.58 27 0.13
555 0.20 0.48 0.20 0.49 0.42 0.12 49.01 1.27 2.3 0.87 6 0.10

111 256.77 2619.15 256.74 2596.12 0.82 46.21 3.30 0.99 414.2 0.35 435 0.13
122 192.58 1433.80 192.47 1412.41 0.76 46.17 3.17 0.85 308.6 0.29 324 0.10
123 154.06 890.78 154.35 893.83 0.70 45.46 2.84 0.45 246.7 0.24 259 0.04
114 77.031 564.99 76.36 558.69 0.76 18.36 5.14 1.25 149.4 0.52 165 0.07
134 30.81 141.53 30.57 140.58 0.64 10.92 5.84 0.51 67.2 0.51 77 0.03
115 15.41 114.06 15.36 111.20 0.76 3.73 9.10 0.33 47.9 0.77 63 0.02
244 3.85 10.74 3.80 10.73 0.48 1.98 15.18 1.72 13.9 1.05 19 0.07
245 1.54 3.77 1.55 3.66 0.40 0.92 23.09 0.46 7.5 0.77 12 0.04
345 0.62 1.06 0.61 1.04 0.26 0.45 35.66 0.51 3.8 0.86 7 0.03
155 0.31 0.96 0.30 0.91 0.50 0.15 47.67 1.27 3.2 1.42 8 0.04
444 0.26 0.42 0.25 0.40 0.24 0.19 47.39 0.95 2.2 0.60 5 0.02
355 0.06 0.09 0.06 0.08 0.16 0.05 53.37 0.03 0.9 0.80 3 2e-05
455 0.03 0.04 0.03 0.04 0.10 0.03 53.58 0.03 0.7 0.32 2 0.01
555 0.002 0.002 0.002 0.003 0.13 0.002 51.38 0.01 0.2 0.01 1 0.01

Table 3: Quality approximation of the count distribution for n = 500 and p = 0.05 (top),

p = 0.005 (bottom). The empirical mean ÊN(m), variance V̂arN(m) and cumulative

distribution function F̂ have been obtained thanks to 10,000 random graphs. (â, λ̂) are the
parameters of the Pólya-Aeppli distribution. KS are the Kolmogorov-Smirnov distances.
For α = 0.1% qN is the 1 − α quantile of the normal distribution (idem for the Pólya-
Aeppli distribution). NA indicates difficulties to compute the PA distribution (empirical
mean greater than 1500).
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α = 0.1%

m EN(m) VarN(m) bEN(m) dVarN(m) ba bλ KSN KSPA qN 1 − bF (qN ) qPA 1 − bF (qPA)
(%) (%) (%) (%)

111 199833.7 314809999 199562.5 317861578 0.999 250.42 1.17 NA 254657.2 0.31 NA NA
122 149875.2 175755625 149798.2 179968751 0.998 249.16 1.21 NA 191254.5 0.21 NA NA
123 119900.2 86883859 120091.4 85519373 0.997 336.81 0.64 NA 148668.9 0.16 NA NA
114 59950.1 63565443 59924 64198229 0.998 111.76 1.27 NA 84684.1 0.21 NA NA
134 23980.04 12670746 24019.74 12797890 0.996 89.99 1.62 NA 35074.8 0.23 NA NA
115 11990.02 13673678 11987.86 13594556 0.998 21.12 2.31 NA 23381.8 0.27 NA NA
244 2997.50 682659.7 3000.27 697930.4 0.991 25.68 4.18 NA 5581.9 0.51 NA NA
245 1199.00 176888.0 1201.13 179141.7 0.987 16.00 3.85 0.56 2509.1 0.53 2819 0.05
345 479.60 31096.36 481.62 31496.74 0.970 14.51 3.96 0.46 1030.1 0.54 1166 0.08
155 239.80 29743.89 240.65 29747.06 0.984 3.86 8.55 2.36 773.6 1.19 1024 0.16
444 199.83 8536.03 199.96 8581.79 0.954 9.11 6.80 1.95 486.2 0.87 575 0.19
355 47.96 1300.61 48.33 1323.87 0.929 3.40 9.53 2.86 160.8 1.12 216 0.17
455 23.98 359.80 24.17 368.78 0.877 2.97 10.64 3.34 83.5 1.29 114 0.20
555 1.60 7.15 1.61 7.37 0.641 0.58 27.84 8.08 10.0 1.23 19 0.20

111 8213.85 682747.2 8197.27 683834.4 0.98 194.20 1.58 NA 10752.7 0.23 NA NA
122 6160.39 374345.9 6164.75 374787.5 0.97 199.52 1.12 NA 8056.6 0.18 NA NA
123 4928.31 200136 4927.37 204984.5 0.95 231.32 1.05 NA 6326.5 0.11 NA NA
114 2464.16 139786.6 2460.80 138179.1 0.96 86.11 1.72 NA 3609.5 0.18 NA NA
134 985.66 29788.37 984.84 29629.79 0.93 63.36 2.19 0.53 1516.8 0.22 1580 0.09
115 492.83 29351.43 494.34 29697.4 0.97 16.19 3.28 0.75 1026.9 0.31 1152 0.07
244 123.21 1772.00 123.54 1739.11 0.87 16.39 4.25 0.65 252.4 0.48 282 0.06
245 49.28 523.43 49.58 530.73 0.83 8.47 5.93 0.68 120.8 0.58 143 0.09
345 19.71 108.05 19.80 108.17 0.69 6.13 7.79 0.65 51.9 0.72 63 0.09
155 9.86 119.19 9.87 117.56 0.84 1.53 18.36 12.03 43.4 1.29 67 0.09
444 8.21 36.60 8.29 36.64 0.63 3.06 12.01 2.69 27.0 1.08 36 0.14
355 1.97 6.83 1.98 6.94 0.55 0.88 23.34 2.74 10.1 0.95 17 0.11
455 0.99 2.35 0.98 2.31 0.40 0.58 28.66 1.21 5.7 1.05 10 0.07
555 0.07 0.10 0.06 0.09 0.17 0.05 53.16 0.18 1.0 0.30 3 2e-05

111 2060.35 55750.96 2058.76 55507.45 0.93 147.26 2.06 NA 2786.8 0.27 NA NA
122 1545.26 30335.99 1544.53 30678.85 0.90 148.06 1.34 NA 2085.8 0.17 NA NA
123 1236.21 17343.32 1235.04 17059.00 0.86 166.76 1.36 0.59 1638.6 0.17 1668 0.09
114 618.11 11620.72 617.55 11686.33 0.90 61.99 2.67 0.79 951.6 0.25 991 0.10
134 247.24 2644.45 246.68 2612.29 0.83 42.57 2.99 0.71 404.6 0.33 427 0.11
115 123.62 2393.86 124.32 2378.23 0.90 12.35 4.33 0.49 275.0 0.45 315 0.08
244 30.90 174.02 30.94 174.27 0.70 9.33 6.19 0.52 71.7 0.61 83 0.13
245 12.36 56.14 12.49 55.82 0.63 4.57 9.63 1.02 35.6 0.66 45 0.11
345 4.94 13.38 5.00 13.45 0.46 2.71 12.90 1.18 16.3 0.62 22 0.08
155 2.47 14.03 2.43 13.40 0.69 0.74 27.60 7.84 13.7 1.56 24 0.06
444 2.06 4.97 2.07 4.99 0.41 1.21 20.01 3.06 9.0 1.19 13 0.08
355 0.49 1.02 0.49 0.99 0.34 0.32 40.73 0.63 3.6 0.94 7 0.04
455 0.25 0.40 0.24 0.39 0.22 0.19 47.91 0.11 2.1 0.42 5 2e-05
555 0.02 0.02 0.01 0.02 0.04 0.01 53.22 0.01 0.4 0.05 1 0.01

Table 4: Quality approximation of the count distribution for n = 1000 and p = 0.05
(top), p = 0.01 (middle), p = 0.005 (bottom). The empirical mean ÊN(m), variance

V̂arN(m) and cumulative distribution function F̂ have been obtained thanks to 10,000

random graphs. (â, λ̂) are the parameters of the Pólya-Aeppli distribution. KS are
the Kolmogorov-Smirnov distances. For α = 0.1% qN is the 1− α quantile of the normal
distribution (idem for the Pólya-Aeppli distribution). NA indicates difficulties to compute
the PA distribution (empirical mean greater than 1500).
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