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Abstract. The study of the interactions of cellular components is an
essential base step to understand the structure and dynamics of bio-
logical networks. So, various methods were recently developed in this
purpose. While most of them combine different types of data and ¡em¿a
priori¡/em¿ knowledge, methods based on Graphical Gaussian Models
are capable of learning the network directly from raw data. They con-
sider the full-order partial correlations which are partial correlations
between two variables given the remaining ones, for modelling direct
links between variables. Statistical methods were developed for esti-
mating these links when the number of observations is larger than the
number of variables. However, the rapid advance of new technologies
that allow to simultaneous measure genome expression, led to large-
scale datasets where the number of variables is far larger than the
number of observations. To get round this dimensionality problem,
different strategies and new statistical methods were proposed. In this
study we focused on statistical methods recently published. All are
based on the fact that the number of direct relationship between two
variables is very small in regards to the number of possible relation-
ships, ¡em¿p(p-1)/2¡/em¿. In the biological context, this assumption is
not always satisfied over the whole graph. So it is essential to precisely
know the behaviour of the methods in regards to the characteristics of
the studied object before applying them. For this purpose, we evalu-
ated the validity domain of each method from wide-ranging simulated
datasets. We then illustrated our results using recently published bio-
logical data.

Subjclass. 62H12

Keywords. Graphical Gaussian Model, Estimation, Simulation

1. Introduction

Biological systems involve complex cellular processes built up from
physical and functional interactions between molecular entities (genes,
proteins, small molecules,...). Thus, to understand how these processes
are regulated, it is necessary to study the behavior of the molecular ma-
chinery. Recently, biotechnological developments were focused on the
characterization and the quantification of cellular system components
leading to produce a huge amount of various data. So, one of major
challenges is nowadays to understand from these data, how molecular
entities interact i.e. what the functional links are, in the context of a
whole system. To this end, several mathematical and computational
approaches are developing. Some methods based on correlations or
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clustering can reveal proximities between variables but do not bring
to light the direct or functional links. Other methods, such as kernel-
based methods (Okamoto et al., 2007; Yellaboina et al., 2007) imply a
learning phase and so need a training data set. Bayesian approaches
are also used to infer relations between biological entities in order to
understand the regulatory mechanisms of living cells (Husmeier, 2003;
Werhli & Husmeier, 2007). However these methods have to deal with
the prior probability that has a non-negligible influence on the posterior
probability when data are sparse and noisy.

A valuable complement to all of these methods is graphical Gauss-
ian modeling (Kishino & Waddell, 2000; Dobra et al., 2004; Wu & Ye,
2006) that can infer direct relations between variables from a set of
repeating observations of these variables without any a priori knowl-
edge. Graphical modeling is the use of a graph to represent a model. A
graph is a set of nodes and edges which can be represented as a graphic
for a visual study or as a matrix for computer processing. Graphical
modeling is based on the conditional independence concept. In other
words, a direct relation between two variables exists if those two vari-
ables are conditionally dependent given all remaining variables. In the
Gaussian setting, a direct relation between two variables corresponds
to a non-zero entry in the partial correlation matrix. As the partial
correlation matrix is related to the inverse of the covariance matrix,
a direct relation between two variables also corresponds to a non-zero
entry in the inverse of the covariance matrix.

Graphical models are classically used when the number of observa-
tions, denoted n, is larger than the number of variables, denoted p. This
is generally the case in financial or sociological studies where surveys
concern few variables and a lot of observations. But it is not the case in
the post-genomic context where each experiment is costly in time and
money. So the number of repetitions is limited; moreover, each exper-
iment generates numerous data. Then the data set structure, p ≫ n,
does not match with the assumptions of the classical graphical model-
ing approach and the empirical covariance matrix cannot be inverted.
Over the last years, some mathematical and computational researches
were developed for surrounding that dimensionality problem and vari-
ous methods were proposed. Most of them are based on the fact that
the number of direct relations between two variables is very small in
regards to the number of possible relations, p(p − 1)/2.

The purpose of our study is to determine the validity domain of
some of these methods recently proposed. The reason for this work is
to give biologists hints for using the most appropriate methods. Indeed,
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biologists are very interested in infering biological networks but they
generally have a small number of repetitions, the order of ten.

The core of this document is divided in three parts. The first one
describes the statistical methodology involved in Schäfer & Strim-
mer (2005a), Schäfer & Strimmer (2005b) Wille & Bühlmann (2006),
Meinshausen & Bühlmann (2006), Friedman et al. (2007), Kalisch &
Bühlmann (2007) and Giraud (2008) approaches. The second part
presents simulations carried out with each of these methods, under dif-
ferent conditions of dataset structure. The third part illustrates the
interest of the graphical Gaussian modeling with an application to flow
cytometry data produced by Sachs et al. (2005). In the conclusions we
discuss the performances of each method and we bring some recom-
mendations according to their validity domain.

2. STATISTICAL METHODS

Let Γ = {1, . . . , p} be the set of nodes of the graph. The p nodes
of the graph are identified with p Gaussian random variables. Let us
denote by XXX = (X1, . . . , Xp)

T , a p random vector distributed as a multi-
variate Gaussian N (0, Σ). For m a subset of {1, . . . , p} with cardinality
|m|, we denote by XXXm the |m| random vector whose components are
the variables Xc, where c ∈ m. Moreover we denote by Γ−m the set
of nodes that are not in m, Γ−m = Γ \ m, and by XXX−m the p − |m|
random vector whose components are the variables Xc, where c ∈ Γ−m.
There exists an edge between nodes a and b if and only if, the random
variables Xa and Xb are not independent conditionally to XXX−{a,b}. In
other words, assuming that the matrix Σ is nonsingular, there exists
an edge between nodes a and b if and only if the component (a, b) of
the concentration matrix K = Σ−1 is non zero. These graphs are called
concentration graphs or full conditional independence graphs. For each
node a, the set of neighbors of a is defined as the set of nodes in Γ−{a}

that are connected with a. Finally let us denote by E, the set of edges
of the graph.

The statistical challenge is to detect the edges in the graph on the
basis of a n-sample from a multivariate distribution N (0, Σ). For each
i = 1, . . . , n we denote by Xi = (Xi1, . . . , Xip) the ith observation.
When the number of observation n is large enough, at least n ≥ p+1, in
order to guarantee that the sample covariance matrix S is nonsingular,
several methods have been proposed. A detailed review can be found in
a recent paper by Drton & Perlman (2007). However, when the interest
lies on genomic networks, we are generally dealing with data where the
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number of variables p is large and the number of experiments n is small.
Several methods have been proposed recently in that context.

Some of these methods aim at estimating the concentration matrix
K. For instance, Schäfer & Strimmer (2005b,a) proposed methods
based on bagging or shrinkage in order to stabilize either the estima-
tor of P , the correlation matrix associated to Σ, or the estimator of
Π the partial correlation matrix. Then they estimate the probability
of an edge between two nodes (a, b) by estimating the density of the
estimated partial correlation coefficient. More recently some authors
(Yuan & Lin, 2007; Banerjee et al., 2008; Huang et al., 2006; Friedman
et al., 2007) proposed algorithms to estimate K by maximizing the
penalized log-likelihood, the penalty term being proportionnal to the
sum of the absolute values of the components of K. The coefficient
of proportionality may be chosen such as to control the probability of
error in estimating the graphical model.

Other methods are based on the estimation of a graph that is an
approximation of the full conditional graph. Wille & Bühlmann (2006)
suggested to estimate a lower-order conditional independence graph in
place of the full conditional independence graph. They use a multi-
ple testing procedure for detecting edges. Kalisch & Bühlmann (2007)
considered the PC-algorithm (Spirtes et al. (2000)) to estimate a graph
defined through conditional dependencies on any subset of the vari-
ables. The PC-algorithm starts from the complete graph and deletes
recursively edges based on conditional independencies.

We finally consider a third kind of methods, based on neighborhood
estimation. Meinshausen & Bühlmann (2006) proposed to estimate the
neighbors of each node using a model selection procedure based on the
LASSO method. The choice of the penalty parameter allows to control
the probability of falsy joining distinct connectivity components in the
graph. More recently, Giraud (2008) suggested to estimate graphs using
a model selection procedure based on a penalized empirical risk. The
procedure leads to control the mean square error of prediction and its
performances are established in a non-asymptotic setting.

In the next section we briefly describe these methods, specifying their
theoretical properties if any.

2.1. Estimating the concentration matrix.

2.1.1. Bagging or shrinkage for improving the covariance estimator.

Schäfer and Strimmer proposed to use bagging (Schäfer & Strimmer,
2005a) or shrinkage (Schäfer & Strimmer, 2005b) for obtaining accurate
and reliable estimates of the covariance matrix Σ or its inverse K.
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The bagging approach. Bootstrap aggregation (bagging) is used in order
to reduce the variance of the estimator of the correlation matrix P. For
each bootstrap sample X ∗, the empirical correlation matrix P̂ ∗ is cal-
culated. The bagged estimator is the empirical mean of the P̂ ∗’s from
the bootstrap samples. The partial correlation matrix Π is estimated
from the pseudo inverse of the bagged correlation matrix estimator and

is denoted by Π̂bagged.
The shrinkage approach. The shrinkage estimator is a linear combi-
nation of the empirical covariance matrix S and of a target estima-

tor denoted Ω̂ chosen for its very low variability. Precisely Σ̂(λ) =

λΩ̂+(1−λ)S where the parameter λ is chosen such as to minimize the

quadratic risk function defined as R(λ) = E
{∑

a

∑
b(Σ̂a,b(λ) − Σa,b)

2

}
.

The parameter λ can be explicetly calculated and is estimated using

the data only. Let λ̂ be this estimator. The partial correlation matrix

Π is estimated by Π̂shrinked from the inverse of the matrix Σ̂(λ̂).
Estimating the graph. It remains to define a decision rule for detecting

the significant components of Π. Let us denote by Π̂ either Π̂bagged

or Π̂shrinked. Schäfer and Strimmer assume that the distribution of
the Π̂a,b’s is known up to some parameters that are estimated. They
deduce from this estimator the posterior probability of an edge to be
present in the graph and decide to keep edges such that the posterior
probability is greater than a given threshold 1 − α.

2.1.2. Penalized maximum likelihood. Banerjee et al. (2008) considered
the problem of estimating the parameters of a Gaussian distribution
solving a maximum likelihood problem with an added ℓ1-norm penalty
term. Precisely they proposed to estimate the inverse covariance ma-
trix K by maximizing with respect to Ω in the set of positive definite
matrices the following criteria:

C(Ω, λ) = log(detΩ) − trace(SΩ) − λ
∑

a

∑

b

|Ωab|.

Friedman et al. (2007) recently proposed a performant algorithm allow-
ing to estimate K by showing that solving this optimisation problem
comes to recursively solving and updating a regression LASSO prob-

lem. For a given parameter λ, let us denote by K̂(λ) the estimator

of K. The set of pairs (a, b) such that K̂a,b(λ) is non zero constitutes
the set of edges in the graph. Banerjee and collaborators proposed a
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choice of λ for which the probability to connect two distinct connectiv-
ity components of the graph is bounded by some α. Precisely

(1) λ(α) =
T −1

n−2(1 − α/2p2)√
n − 2 + T −1

n−2(1 − α/2p2)

where Tn−2 is the distribution function of a Student variable with n−2
degrees of freedom.

2.2. Approximation of the concentration graph.

2.2.1. The 0-1 conditional independence graph. Wille and Bühlmann
proposed to infer the first-order conditional independence graph in-
stead of the full conditional independence graph. Their method has
nice computational properties but the drawback is that 0-1 conditional
independence graphs do not generally coincide with concentrations
graphs, though the links between both graphs can be established in
some cases. The 0-1 conditional independence graph is defined as fol-
lows: for each pair of nodes (a, b), let Rab/∅ be the correlation between

the variables Xa and Xb, and for each c ∈ Γ−{a,b}, let Rab/c be the cor-
relation between Xa and Xb conditionally to Xc; there exists an edge
between nodes (a, b) if Rab/∅ 6= 0 and Rab/c 6= 0 for all c ∈ Γ−{a,b}, or
equivalently if

(2) φa,b = min
{
|Rab/c|, c ∈ Γ−{a,b} ∪ ∅

}

is non zero. Therefore, detecting edges in the graph remains to testing
p(p − 1)/2 statistical hypotheses: For each (a, b), 1 ≤ a < b ≤ 1,
there exists an edge between nodes (a, b) if the hypothesis “φab = 0′′ is
rejected. Wille and Bühlmann propose the following testing procedure:
For each (a, b) and c ∈ Γ−{a,b} ∪ ∅ the likelihood ratio test statistic of
the hypothesis “Rab/c = 0” is calculated as well as the corresponding
p-value denoted P (a, b/c). Then the hypothesis “φab = 0′′ is rejected
at level α if

Pmax(a, b) = max
{
P (a, b/c), c ∈ Γ−{a,b} ∪ ∅

}
≤ α.

It remains to calculate the adjusted p-values to take into account the
multiplicity of hypotheses to test, considering for example the Bonfer-
roni procedure or the Benjamini-Hochberg one’s.

Considering 0-1 conditional independence in place of full conditional
independence has several advantages. The test statistics are very easy
to calculate. For each hypothesis to test, “Rab/c = 0”, one considers the
marginal distribution of the 3-random Gaussian vector (Xa, Xb, Xc)

T .
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Therefore, provided that n is large enough, the distribution of the like-
lihood ratio test statistic of the hypothesis “Rab/c = 0” is well approx-
imated by the distribution of a χ2 with 1 degree of freedom. Note that
it is not necessary to assume that p is small. It follows, that, for each
(a, b), the probability to detect an edge between a and b when it does
not exist is smaller than α, if n is large (see Proposition 3 in Wille &
Bühlmann (2006)). Moreover it can be shown that if p increases with
n in such a way that log(p)/n tends to 0 when n tends to infinity, then
the estimators of the Rab/c’s are uniformly convergent for all a, b ∈ Γ

and c ∈ Γ−{a,b} ∪ ∅.
Castelo & Roverato (2006) and Malouche & Sevestre (2007) proposed

a similar approach for estimating “up to q”-order conditional indepen-
dence graphs where the presence/absence of edges is associated to all
marginal distributions up to the order q. We will only present the
method proposed by Wille and Bühlmann in our simulation study.

2.2.2. The strong conditional independence graph. Let us consider graphs
defined as follows : there exists an edge between nodes a and b if and
only if for all set of nodes m ⊂ Γ−{a,b}, the random variables Xa and
Xb are not independent conditionally to XXXm. This graph is subset
of the full conditional independence graph and will be called strong
conditional independence graph.

Such graphs can be estimated using an iterative procedure called
the PC-algorithm proved to be computationnally very fast for sparse
graphs. The procedure starts with the complete graph and removes
edges with zero order conditional independence relations. Then edges
with one order conditional independence relations are removed and so
on. For each step s, let us denote by Es the set edges and for each node
a, by V s

a the set of neighbors of a. At step s+1, we need only to consider
the ordered pairs of nodes (a, b) ∈ Es, such that the cardinality of V s

a

is strictly greater than s. For each of these pairs (a, b), the procedure
consists in keeping an edge between nodes a and b if Xa and Xb are not
independent conditionally to XXXm for all subsets of nodes m contained
in V s

a with cardinality equal to s + 1.
Kalisch & Bühlmann (2007) considered a sample version of the PC-

algorithm as follows : the testing procedure for deciding to keep an edge
between nodes a and b at step s consists in testing, for each subset of
nodes m to be considered, that the correlation between Xa and Xb

conditionally to XXXm is zero. The test statistic is based on the Fisher’s
7



z-transform of the sample partial correlations R̂ab/m. Precisely

Za,b/m =
1

2
log

(
1 + R̂ab/m

1 − R̂ab/m

)
.

and for some α > 0, the null hypothesis is rejected if
√

n − |m| − 3Za,b/m >
Φ−1(1 − α/2), where |m| denotes the cardinality of m and Φ the dis-
tribution function of a Gaussian centered variable with unit variance.
The edge between nodes a and b is removed at step s of the algorithm,
if there exists m with cardinality s such that the test is not rejected,

Under some conditions on the distribution of XXX, the estimated graph
is a consistent estimate of the strong conditional independence graph.
The asymptotic framework considers sparse graphs of high dimension:
when n tends to infinity, the maximum number of neighbors tends to
infinity slower than n, while the number of nodes p may grow like any
power of n and the parameter α has to tend to zero.

For practical issues the choice of the parameter α is an open prob-
lem. Kalisch & Bühlmann (2007) discussed this point on the basis of a
simulation study for estimating the skeleton of a directed acyclic graph.

2.3. Estimating the neighbors.

2.3.1. LASSO procedure. Detecting the neighbors of all nodes leads to
detecting the edges in the graph. Because of the Gaussian assumption
on the distribution of XXX, for each variable Xa, a conditional regression
model can be defined as follows:

(3) Xa =
∑

b∈Γ−{a}

θa,bXb + εa

where the parameters θa,b are equal to −Ka,b/Ka,a. The variable εa is
distributed as a centered Gaussian variable and is independent from the
Xb’s for all b ∈ Γ−{a}. Meinshausen & Bühlmann (2006) proposed to
detect the non zero coefficients of the regression of Xa on the variables
Xb for b ∈ Γ−{a} on the basis of the n-sample (X1, . . . ,Xn), using the
LASSO method as a model selection procedure. Precisely, for a given
smoothing parameter λ, the estimators of {θa,b, b ∈ Γ−{a}} minimize
the sum of squares penalized by the ℓ1-norm of the parameters vector:

(4)

n∑

i=1



Xia −
∑

b∈Γ−{a}

θa,bXib




2

+ λ
∑

b∈Γ−{a}

|θa,b| .

The solution to this minimization problem is given by a set of (θ̂a,b, b ∈
Γ−{a}) that are either equal to zero or not. The set of nodes b ∈ Γ−{a}
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such that θ̂a,b is non zero constitutes V̂a, the estimated set of neighbors
of the node a. Two estimated graphs may be deduced from all these
V̂a for a = 1, . . . , p, depending on whether we decide to put an edge

between nodes a and b if both θ̂a,b are θ̂b,a are non zero or if one of
these is non zero.

Meinshausen and Bühlmann proved that, under some conditions en-
suring that the signal to noise ratio is not too small, the method is

consistent, namely the probability for V̂a to be exactly equal to Va

tends to one. The asymptotic framework is similar to the one consid-
ered by Kalisch & Bühlmann (2007) : sparse graphs of high dimension.
The smoothing parameter λ is assumed to decrease to zero at a rate
smaller than n−1/2.

For the sake of application they propose a choice of λ such that
the probability to connect two distinct connectivity components of the
graph is bounded by some α. Precisely

(5) λ = 2

√√√√
n∑

i=1

X2
iaΦ

−1
(
1 − α/2p2

)
.

This choice is based on the Bonferroni inequality and it is assumed that
the variance of the variables Xa for a = 1, . . . , p are all equal to one.

2.3.2. Model selection procedure. Giraud (2008) considered the prob-
lem of estimating by a model selection procedure the non zero θ’s oc-
curing in the p regression models defined at Equation (3). The pro-
cedure starts with the choice of a collection of graphs with p nodes
or equivalently to the choice of a collection of sets of edges, denoted
{E1, . . . , EL}, where L is the cardinality of the collection. For the sake
of simplicity, we say that a p × p matrix Ω ∼ Eℓ if Ωa,a = 0 and if
Ωa,b = 0 is equivalent to (a, b) /∈ Eℓ. For each set Eℓ in the collec-
tion, the parameters θ are estimated by minimising the residual sums

of squares: θ̂(ℓ) is the p × p matrix that minimizes

SCR(Ω) =
∑

a∈Γ

n∑

i=1

(
Xia −

∑

b∈Γ

Ωa,bXib

)2

with respect to Ω such that Ω ∼ Eℓ. The choice of the best graph

among {E1, . . . , EL} is done by selecting the estimator θ̂(ℓ) that mini-
mizes the following criteria:

Crit(ℓ) =
∑

a∈Γ

q(K, νa(ℓ))
n∑

i=1

(
Xia −

∑

b∈Γ

θ̂a,b(ℓ)Xib

)2
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where νa(ℓ) is the number of neighbors of node a in the graph associated
to Eℓ, K is a constant greater than 1 and q is a penalty function given

in Giraud (2008). We denote by θ̂ this estimator.
The theoretical properties of the method are given in a non-asymptotic

framework with n < p. The graph is assumed to be sparse in the fol-
lowing sense: the maximum number of neighbors over all the nodes in
the graph, denoted D, must be smaller than a a quantity of the order
n/2(log p). Under this assumption, it is proved that the Mean Square

Error of Prediction of the estimator MSEP(θ̂) is bounded above, up to
a log p factor, by a quantity closed to the minimum over ℓ of the Mean

Square Error of Prediction of θ̂(ℓ).
In practice a collection of graphs has to be chosen. For example, one

can choose the set of all graphs with at most D edges. Obviously such
a choice leads to very high computational cost for large values of p.

3. SIMULATIONS

3.1. Methods of simulation.

3.1.1. Simulating a graph. Graphs were simulated according to two
different approaches.

The first approach is based on the Erdös-Rényi model, noted ER
model, which assumes that edges are independent and occur with the
same probability. Practically, we fix the number of nodes p and the
percentages of edges η then we draw the number of edges according to
a binomial distribution with parameters p(p− 1)/2, η. Next we choose
uniformly and independently the positions of the edges.

The second approach was proposed by Daudin et al. (2006) to take
into account the topological features of biological networks such as
connectivity degree or clustering coefficient. Their model called Erdos-
Rényi Mixtures for Graphs, noted ERMG, supposes that nodes are
spread into Q clusters with probabilities {p1, . . . , pQ}, and that the
connection probabilities of each cluster and between clusters are het-
erogenous. These connection probabilities constitute the connectivity
matrix C. The parameters available from Daudin et al. (2006) study,
correspond to a graph with 199 nodes. As we wanted to study the in-
fluence of p, we adapted those parameters to our simulations. However,
we kept the same graph structure by taking a large weakly connected
cluster, a small highly connected cluster and the same group connection
structure. Thus we used the following parameter values

Q = 4, (p1, . . . , pQ) =
(

0.07 0.1 0.18 0.65
)

(6)
10
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C =





0.999 10−6 10−6 0.005
10−6 0.4 0.014 0.003
10−6 0.014 0.2065 0.011
0.005 0.003 0.011 0.013



 .(7)

That leads to a mean percentage of edges η equals to 2.5%.
Whatever the approach, we finally obtain a matrix composed of 0

and 1, the values 1 indicating the edge positions in the corresponding
graph. This matrix is denoted the incidence matrix.

3.1.2. Simulating the data. From the incidence matrix of a given graph,
we simulated n observations as follows: first we generate a partial corre-
lation matrix Π by replacing the values 1 indicating the edge positions
in the incidence matrix, by values drawn from the uniform distribution
between −1 and 1. Then we compute columm-wise sums of the abso-
lute values and set the corresponding diagonal element equal to this
sum plus a small constant. This ensures that the resulting matrix is
diagonally dominant and thus positive definite. Next we standardize
the matrix so that each diagonal entry equals to 1. Finally, we generate
n independent samples from the multivariate normal distribution with
mean zero, unit variance, and correlation structure associated to the
partial correlation matrix Π.

3.2. Simulation setup. We simulated graphs and data for different
values of p, η, n and we estimated graphs from these data using different
methods. We review the methods and the way we carried them out.
Then we present how we assessed their performances.

3.2.1. Methods. The methods for which we present simulation are the
following:

- the Π̂bagged and Π̂shrinked methods, proposed by Schäfer & Strimmer
(2005a,b) with the decision rule based on posterior probabilities. The
threshold 1 − α is fixed at 0.95. Both methods are implemented in R
software (GeneTS package, R-2.2.0; GeneNet package R-2.4.1).

- the glasso proposed by (Friedman et al., 2007) with α = 5% in
accordance with Banerjee et al. (2008). This method is implemented
in R software (glasso package, R-2.4.1).

- the 0-1 conditional independence graph approach, proposed by
Wille & Bühlmann (2006), with the decision rule based on the adjusted
p-values following the Benjamini-Hochberg procedure taking α = 5%.
We implemented the method in R-2.4.1.

11



- the PC-algorithm, as proposed by Kalisch & Bühlmann (2007) with
α = 5%. This method is implemented in R software (pcalg package,
R-2.6.1).

- the Lasso approach, with the two variants and and or proposed
by Meinshausen & Bühlmann (2006) and α = 5%. This method is
implemented in R software using the lars package R-2.4.1. A part of
the algorithm is implemented in R according to the description given
in Section 6.

- the model selection approach proposed by Giraud (2008) taking
K = 3 in the penalty function as suggested by the author to better
control the FDR. The method implemented in R-2.4.1 was kindly pro-
vided by the author. For saving computational time, the collection of
graphs was a subset of the set of all graphs with at most 3 neighbors
per node.

In the continuation of this document we will respectively denote
these methods as bagging, shrinkage, glasso, pcAlgo, WB, MB.and
and MB.or, KGGM.

3.2.2. Assessing the performance of methods. To assess the performance
of the investigated methods we compared each simulated graph with
the estimated graph by counting true positives TP (correctly identi-
fied edges), false positive FP (wrongly detected edges), true negatives
TN (correctly identified zero-edges), and false negatives FN (not rec-
ognized edges). From those quantities we estimated the power and the
false discovery rate FDR, which are defined by:

power = E

(
TP

TP + FN

)

FDR = E

(
FP

TP + FP
|(TP + FP) > 0

)
.

The power and FDR values presented in this work, are the means
over 2000 simulations (according to our preliminary results which showed
that the stability of the FDR estimation was reached with 2000 simu-
lations).

The performance of the methods were evaluated for several combi-
nations of the parameters p, η and n, in regards to the problematic we
wanted to investigate. Moreover, the parameter values were chosen in
order to both make the computer time reasonable and extrapolate the
results to biological fields.

The first problematic we have focused on, is the influence of the sam-
ple size. To this aim, we simulated random graphs fixing the number of
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nodes p equal to 30, η equal to 2.5% and varying the number of obser-
vations n in {15, 22, 30, 60}. Secondly, we investigated the sparsity as-
sumption common to all methods taking η in {0%, 2.5%, 4%, 5%, 10%}.
Third, we were interested in the influence of the node number p. So,
we increased p and chose n in order to keep the p/n rates similar to
the p/n values used in the first considered point. For all of these three
studies, graphs were simulated with the ER method.

The forth problematic we investigated concerns the influence of the
graph structure. In this goal, we also simulated graphs with the ERMG
method fixing p equal to 30 and varying n in {15, 22, 30, 60}.

Finally, we focused on the method proposed by Wille and Bühlmann
to evaluate the consequence of estimating the 0-1 graph instead of the
concentration graph. For this purpose we fixed p = 30 and varied η
from 0.025 to 0.2 and n from 60 to 1200.

3.3. Results and discussion.

3.3.1. Comparing the methods. As shown in Figure 1 methods behave
very differently. Let us first discuss methods presenting high FDR
values.

Comments on shrinkage, glasso and pcAlgo methods. The FDR val-
ues for these methods are very high for all considered values of n when
p = 30 and η = 2.5% as it is shown in Figure 1a. The FDR does
not vary with n and remains close to 47% and 30% for glasso and
pcAlgo respectively, while it increases with n from 45% with n = 15
to 75% with n = 60 for shrinkage. When η = 0, the FDR is small for
shrinkage and glasso methods while it equals 1 for pcAlgo (at least
one rejected edge at each simulation, see Figure 1c). The high FDR
values are associated with high power values. When the graph is sparse
enough, say η smaller than 5%, the methods are powerfull (Figures 1b
and d), particularly glasso: the power varies from 97% to 99% when
η = 2.5% and n varies from 15 to 60. This result suggests that it may
be of interest to look for better choices of the thresholding parameter
α. This will be the object of section 3.3.2.

Comments on bagging, WB, MB, and KGGM methods. For these methods
the FDR values never exceed 6% except with the bagging method for
n = 15. The FDR values obtained with MB.or remain steady around
5.5% whereas the FDR values obtained with MB.and never exceed 1%.
KGGM behaves similarly as MB.or, with slightly smaller FDR and power
values. FDR from bagging reaches 18% when n = 15 then deeply
declines below 3%. The power represented in Figure 1b gradually in-
creases with the number of observations n except with the bagging
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Figure 1. FDR and power of the different methods
tested, in function of the sample size (plots a) and
b), respectively) and the edge percentage (plots c) and
d), respectively). Plots a) and b) were obtained with
η = 0.025. Plots c) and d) were obtained with n = 22.
All plots correspond to p = 30.

method which shows a drop for n = p. This phenomena was com-
mented by the authors in Schäfer & Strimmer (2005a). Let us notice
that MB.or and MB.and do not work when n = 15. This is due to the
fact that when n, α, p satisfy Equation (11), no edge will be detected
whatever the data.
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The influence of the edge percentages η is shown in Figure 1c and 1d,
for n = 22. When η in {2.5%, 4%, 5%}, the FDR values, shown in
Figure 1c, stay under 1% with WB and MB.and methods, around 5% for
KGGM and exceed 5% with bagging and MB.or . For all methods the
power dramatically falls as η increases and is close to 0 when η equals
10%, whatever the method used. Similar graphics were obtained for
n = 30 and n = 60. When η = 0, the FDR values lie between 0 for the
MB methods and 2.4% for WB.

Considering the reliability feature (low FDR), the results presented
in Figure 1 reveal that the MB.and and WB methods perform quite well
in all cases. Referring to the power, the MB.or and KGGM methods
outperfom the others. The MB.and and WB methods are less powerfull
with the advantage of producing smaller FDR values. The bagging

appears as the less competitive method in terms of power. All methods
similarly show a strong decrease of the power when η increases, in
accordance with the sparsity assumption.

3.3.2. Focus on the high FDRs. Previously we have seen that the
FDR values of the shrinkage, glasso and pcAlgo methods were very
high. This behavior may be due to a bad choice of the thresholding
parameter α occurring in each of these methods. Hence it may be
worthwhile to verify if a more severe thresholding leads to reduce the
FDR keeping at the same time a good power. Therefore, we estimated
by simulation the power and the FDR for decreasing values of the
thresholding parameter using p = 30, η = 0.025 and n varying from 15
to 60.

The curves of the power versus the FDR are shown at Figure 2 for
shrinkage and glasso methods and n = 22. For the sake of compar-
ison, we represent the corresponding curve for the MB.or method on
the same graphic. This graphic shows that we cannot both reduce the
FDR and keep a good power with the shrinkage and glasso methods.
When the FDR equals 5%, the power of MB.or, glasso and shrinkage

are respectively equal to 0.86, 0.47, 0.05. These values are obtained
when α equals 1% for MB.or and α equals 10−12 for shrinkage. For
glasso FDR values smaller than 0.45 could not be obtained by varying
α. Indeed, when α equals 10−12, λ given by Equation (1) equals 0.981,
FDR equals 0.46 and power 0.95. Therefore we carried out the glasso

procedure by varying the values of λ. We got FDR equals 0.05 with
λ = 0.9996.

When η increases (η = 4%, 5%, 10%) or when p is taken equal to 60,
these two methods behave in the same way (results not shown). There-
fore they cannot be used for estimating graphs if one wants to control
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the FDR to a value around 5%. Then we did not keep shrinkage and
glasso methods for further studies.

For the pcAlgo algorithm, power decreases with α while the FDR
is not a monotone function of α, as shown in Figure 3. Indeed the
pcAlgo algorithm is a stepwise procedure and at each step only nodes
for which the estimated neighborhood is large enough are involved in
the next step. If α is too small not enough nodes are kept for the
following step. So edges may appear between two nodes even though
they are linked through a dropped node. One interesting feature of the
variation of FDR versus α is that the FDR is minimum in α = 0.1%
whatever the values of n (Figure 3). Simulations (not shown) with
η = 4% lead to the same result: the FDR is a convex function of α
and is minimum for α = 0.1% whatever the values of n. Therefore we
tested again the performances of pcAlgo method using α = 0.1% for
different values of n and η. FDR decreases from 8.4% to 1.6% when n
increases (Figure 4a). It is equal to 47% when η = 0, remains around
5% when η varies between 2.5% and 5%, and equals 8.8% when η = 10%
(Figure 4b). Concerning the power, the pcAlgo behaves nearly as the
WB method.

3.3.3. Influence of the number of nodes. In Section 3.3.1 we showed
that all methods loose in power when η increases. We now investigate
the influence of the number of nodes, p, on that loss of power. The
graphic in Figure 5 represents the power in function of η, for different
values of p, with n = p. Results are shown for MB.and procedure, the
behavior of the other procedures being similar. In all cases the FDR
is smaller than 1%. Figure 5 shows that whatever the value of p, the
power decreases when η increases. However, the larger p, the faster the
loss of power with η. Consequently, all methods are efficient for sparse
graphs, and the edge percentage from which the methods fail depends
on the number of nodes.

3.3.4. Influence of the numbers of neighbors. In Section 3.3.1 we showed
that if the graph is highly connected, the methods are not powerful
anymore. In this section we aim at understanding why, and we show
in particular the behavior of the methods according to the number of
neighbors of the nodes. We focus on the procedure proposed by Mein-
shausen and Bühlmann and we consider the experiment simulation for
p = 30, η = 0.025 and n = 30. For each node of the 2000 simulated
graphs we count the number of neighbors and the number of correctly
detected neighbors. In Table 1 we present for i in {1, . . . , 5}, the num-
ber ni of nodes with i neighbors and the percentage pi,j of nodes for
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Figure 2. Power in function of FDR for the glasso

and shrinkage methods. The curves for MB.or method
is given as reference. Plots correspond to p = 30, n = 22
and η = 0.025.

which the method has correctly detected j neighbors exactly, for j in
{0, . . . , i}.

The percentage (pii)i=1,...,5 of nodes for which the whole set of neigh-
bors is correctly detected decreases when the number of neighbors i
increases. In other words when a node has several neighbors, it often
happens that at least one neighbor is not detected. This may explain
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Figure 3. Influence of α on FDR and power (plots a)
and b), respectively) for different values of n. The level
α = 0.001 is indicated by the dashed line. Plots corre-
spond to p = 30 and η = 0.025.

Figure 4. Performance of pcAlgo for α = 0.001; a)
FDR and power in function of sample size for η = 0.025;
b) FDR and power in function of the edge percentage for
n = 22. Plots correspond to p = 30.

the loss of power previously observed (see Section 3.3.1) when η in-
creases, because the average number of neighbors increases with η.

Let us now compare the results obtained with MB.and and MB.or

procedures. In Section 3.3.1 we showed that MB.or procedure is more
18
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Figure 5. Power according to the edge percentage, for
different values of p with n = p and for Meinshausen and
Bühlmann method using its and variant.

powerful and we recover in Table 1 that the percentages of nodes for
which the whole set of neighbors is correctly detected are significantly
larger with MB.or procedure than with MB.and procedure. Let us con-
sider for example, as illustrated in Figure 6, a node a with two neighbors
b and c such that a is the only neighbor of b and of c. As it has been
noticed just before, the procedure of Meinshausen and Bühlmann will
detect more easily that a is the neighbor of b and c than the nodes b
and c are both neighbors of a. This is the reason why MB.or procedure
is more powerful than MB.and procedure.
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i 1 2 3 4 5
ni 21398 7684 1788 287 38

percentage pi,j obtained with MB.and

@
@

@j
i

1 2 3 4 5

0 0.182 0.078 0.062 0.066 0.105
1 0.818 0.643 0.465 0.380 0.263
2 0.279 0.414 0.411 0.500
3 0.059 0.139 0.132
4 0.004 0.000

percentage pi,j obtained with MB.or

@
@

@j
i

1 2 3 4 5

0 0.022 0.016 0.030 0.049 0.079
1 0.978 0.267 0.097 0.063 0.105
2 0.717 0.370 0.195 0.079
3 0.503 0.387 0.132
4 0.306 0.447
5 0.158

Table 1. Number of nodes with i neighbors and per-
centages of nodes for which exactly j neighbors have been
correctly detected by both methods of Meinshausen and
Bühlmann with n = 30. Graphs are simulated according
to the ER model with p = 30, η = 0.025.

Figure 6. Node a with two neighbors b and c such that
a is the only neighbor of b and of c.

3.3.5. Influence of the graph structure. In this section we present re-
sults when graphs are simulated according to the ERMG model de-
scribed in Section 3.1.1. Our aim is to evaluate the influence of hetere-
geneous clusters in the graph. Results are shown in Figure 7 for p = 30
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and for n taking the values 15, 22, 30 and 60 and for all methods cho-
sen for their low FDR. The parameter α for the pcAlgo method was
taken equal to 0.1% in accordance with results given at Section 3.3.2.
For the parameters given in Equations (6) and (7) the percentage η of
edges equals 2.5% which makes the results comparable with those of
Figure 1a, 1b and 4.

Using the ERMG model for simulating graphs does not change the
shapes of FDR and power curves. As in Figure 1a the FDR value
obtained with bagging is high when n = 15 then deeply declines, and
the power drops for n = p. Moreover we recover that the FDR values
stay very low with WB and MB.and procedure, stay under 5% for KGGM
and are larger with MB.or and pcAlgo procedures. Referring to the
power, as in Figure 1b the MB.or and KGGM procedures outperform the
others.

The main difference when graphs are simulated according to the
ERMG models is that the power remains under 0.8 even for large n
(Figure 7b) whereas it achieves 0.95 when ER model is used (Figure 1b).
So, the methods are less powerful when graphs are simulated according
to the ERMG model than according to the ER model. The next section
shed light on this loss of power.

Figure 7. FDR (a)) and power (b)) obtained with the
different methods tested, in function of the sample size.
Graphs were simulated according to the ERMG model
with p = 30.
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3.3.6. Influence of the neighborhood structure. In this section we study
why the methods are less powerful when graphs are simulated according
to the ERMG model than according to the ER model and we underline
in particular, the influence of the neighborhood structure.

We consider the same experiment study as in Section 3.3.4 except
that the graphs are simulated according to the ERMG model. In Ta-
ble 2, one can read for each i in {1, . . . , 6}, the number ni of nodes with
i neighbors and the percentage pi,j of nodes for which the method has
correctly detected j neighbors, for j in {0, . . . , i}. Results are obtained
with the procedure MB.or.

i 1 2 3 4 5 6
ni 16326 6720 2603 941 332 63

percentage pi,j obtained with MB.or

@
@

@j
i

1 2 3 4 5 6

0 0.042 0.129 0.289 0.530 0.654 0.841
1 0.958 0.305 0.206 0.148 0.133 0.048
2 0.566 0.256 0.128 0.075 0.048
3 0.249 0.121 0.057 0.032
4 0.073 0.054 0.000
5 0.027 0.032
6 0.000

Table 2. Number of nodes with i neighbors and per-
centages of nodes for which j neighbors have been cor-
rectly detected by the MB.or procedure with n = 30.
Graphs are simulated according to the ERMG model
with p = 30.

Comparing Tables 1 and 2 shows that the number of nodes with 1
and 2 neighbors is smaller for the ERMG model than for the ER model,
while the number of nodes with more than 3 neighbors is greater. It
appears also that the percentages p1j are similar in both tables for nodes
with one neighbor. But when the number of neighbors i is larger than
one, the percentage of nodes pii for which the whole set of neighbors
is correctly detected are smaller in Table 2 than in Table 1. Moreover
the main difference between Table 1 and 2 concerns the percentage of
nodes for which no neighbors is detected: these percentages pi0 are
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very small in Table 1, but large in Table 2 and increases with the
number of neighbours. In other words, for graphs simulated according
to the EMRG model, detecting no neighbor often happens, especially
for nodes with a large number of neighbors. This can be explained
by the structure of the neighbors, which is more complex for graphs
simulated according to the ERMG model. This point is illustrated
above.

In the following we present the FDR and the power estimated into
each cluster and between the clusters. We first simulate a graph G
according to the ERMG model with the parameters defined in Sec-
tion 3.1.1 in order to fix the number of nodes and the localisation of
edges in each cluster and between clusters. We simulate a graph with
p = 120 nodes to ensure that each cluster contains a minimal num-
ber of nodes. We denote by (n1, . . . , nQ) the number of nodes in each
cluster and by Nedges the matrix which specifies the number of edges
within each cluster and between two clusters. For the simulated graph
G, these parameters are:

(n1, . . . , nQ) =
(

7 11 23 79
)

and

Nedges =





21 0 0 3
0 21 6 3
0 6 38 19
3 3 19 35



 .

We simulate 2000 data matrix as described in Section 3.1.2 from this
graph G and we estimate the FDR and the power for detecting edges
within and between clusters. The results obtained with the MB.or

procedure and with n = p, are presented in the matrices FDR and
power given at Equations (8) and (9). The component (a, b)a6=b of the
matrix FDR (respectively power) gives the estimated false discovery
rate (respectively power) of edges between clusters a and b. When
there is no edge between two clusters, estimating the power does not
make any sense and we put Na. The elements on the diagonal give the
estimated false discovery rate (respectively power) of edges within each
cluster.

FDR =





0.000 0.001 0.016 0.008
0.001 0.005 0.004 0.012
0.016 0.004 0.006 0.014
0.008 0.012 0.014 0.021



(8)
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power =





0.10 Na Na 0.46
Na 0.26 0.22 0.61
Na 0.22 0.29 0.61
0.46 0.61 0.61 0.87



(9)

We can notice from Equation 8 that all estimated FDR values are
small. Moreover, the estimated powers vary a lot according to the
clusters. Indeed, in the first cluster which contains 21 edges among the
n1(n1 − 1)/2 = 21 possible edges, the power is very small whereas in
the fourth cluster which contains 35 edges among the n4(n4 − 1)/2 =
3081 possible edges, the power is large. The neighbors of the neigh-
bors also influence the power. This can be observed by comparing
the power for detecting edges between the second and third clusters,
power[2, 3] = 0.22, with the power for detecting edges in the fourth
cluster, power[4, 4] = 0.87. So, it appears that it is more difficult to
detect edges between clusters 2 and 3 than within cluster 4, while in
both cases the percentage of edges to detect is approximately equal to
0.01. This comes from the fact that clusters 2 and 3 are both highly
connected. Therefore these two clusters involves nodes for which the
structure of the neighbors is complex.

Because of these highly connected parts, the power estimated over
the whole graph G is smaller than if the edges were distributed uni-
formly in the graph. Indeed, the FDR and the power estimated for the
whole graph G equal respectively 0.016 and 0.44. For graphs simulated
according to the ER model with p = 120 and η = 0.025, the aver-
age FDR and power estimated over 2000 simulations with the MB.or

procedure and n = 120 equal respectively 0.009 and 0.50.

3.3.7. Inferring a concentration graph using a 0-1 conditional indepen-

dence graph. If the gaussian distribution is faithfull for the concentra-
tion graph G (see Proposition 1 in Wille & Bühlmann (2006)), then
all edges in G are edges in the 0-1 conditional independence graph de-
noted G{0,1}. A comparison between G and G{0,1} is given at Table 3.
For each concentration matrix whose values are simulated as described
in Section 3.1.2, and for each pair (a, b), 1 ≤ a < b ≤ 1, we calculated
φa,b defined at Equation (2). It appears that, as it was already noticed
by Wille and Bühlmann, the number of edges in G{0,1} may be consid-
erably larger than in G. The power and FDR for estimating the graph
G are reported on Figure 8, a) and b). It shows that the FDR increases
with n and reaches its maximum for η = 10%. This behaviour can be
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G ∩ G{0,1} G{0,1} \ G
η Number mean range Number mean range

0.025 11 0.72 [10−4, 0.99] 0.3 0.09 [10−4, 0.33]
0.05 22 0.57 [10−5, 0.99] 17 0.05 [10−6, 0.46]
0.1 43 0.35 [10−7, 0.99] 217 0.02 [10−9, 0.41]
0.15 65 0.24 [10−9, 0.99] 322 0.012 [10−9, 0.30]
0.2 87 0.18 [10−8, 0.99] 337 0.01 [10−9, 0.21]
0.3 131 0.11 304 0.009

Table 3. Comparison of G{0,1} and G for p = 30 and
several values of η. The column G∩G{0,1} gives the mean
(over 2000 simulations) number of edges that are both in
G and G{0,1}, followed by the mean and range of the φa,b’s
corresponding to these edges. The column G{0,1}\G gives
the sames results for edges that are in G{0,1} and not in
G. In all simulations the edges of G are edges of G{0,1}.

easily explained by looking at Figure 8, c) and d) where the FDR and
the power for estimating G{0,1} are reported. It shows that the FDR
for estimating G{0,1} stays very small and that the power increases with
n, as expected. Unfortunatly the edges detected in G{0,1} are not in G,
leading to increase the FDR for detecting edges in G.

When η is small, say η ≤ 2.5%, the number of edges that are in G{0,1}

but not in G is very small, and then the FDR for detecting edges in
G is not changed. But when η is large the FDR becomes very large,
up to 20% for η = 10%. Nevertheless when η is larger, the FDR de-
creases. This can be explained by the values of the φa,b’s that are
smaller when η increases as it is shown in table 3. Obviously the be-
haviour of the procedure proposed by Wille and Bühlmann shown in
this simulation study, may depend on the way we simulate the con-
centration matrix. Nevertheless, we have to keep in mind that if the
graph is highly connected, or if a part of it is highly connected, then,
inferring a concentration graph on the basis of its approximation by a
0-1 conditional independence graph, may lead to detect edges wrongly.

4. APPLICATION TO BIOLOGICAL DATA

In this section, we apply the different methods to the multivariate
flow cytometry data produced by Sachs et al. (2005). These data con-
cern a human T cell signaling pathway whose deregulation may lead to
carcenogenesis. Therefore, this pathway was extensively studied in the
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Figure 8. FDR and power for estimating G (plots a)
and b)), and G{0,1} (plots c) and d)), in function of η for
p = 30 and different values of n.

literature and a network involving 11 proteins and 18 interactions was
conventionally accepted (Sachs et al., 2005). This network we denoted
Graf is represented in Figure 9. Sachs et al. ’s data consist of amounts
of these 11 proteins, simultaneously measured from single cells under
several disturbed conditions. In the sequel, we focus on one general
disturbance (+ ICAM-2) that overall stimulates the cellular signaling
network. In this condition the quantities of the 11 proteins were mea-
sured in 902 cells. Let denote D this data set constituted of p = 11
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variables and n = 902 observations. A log-transformation of the data
was made to fit the gaussian assumption better, and the vector of the
n-observations for each protein were centered and normalized.

Contrary to most of postgenomic data, flow cytometry data provide
a large sample of observations that allow us to measure the influence
of the sample size on the power of the estimation methods. From this
data set we first compare the networks inferred using the five methods
retained for their low FDR. As such abundance of data is rarely avail-
able in postgenomic data, we secondly carry out a study to determine
the influence of the observation number on the methods.

Figure 9. Graf . Classic signaling network of the human
T cell pathway. The connections well-established in the
literature are in grey and the connections cited at least
once in the literature are represented by red dashed lines.

We represent the estimated graphs in Figure 10. The graphs inferred
with the bagging, WB and pcAlgo methods are identical. This graph
involving 10 edges is denoted G1. The KGGM method and the two vari-
ants MB.or and MB.and infer the same graph denoted G2. This graph
involves 9 edges and is identical to G1 except for the edge between PKA
and Erk1/2 which is missing. To assess the quality of the methods,
we refer to the conventionally acccepted network shown in Figure 9.
This network involves 18 connections among which 16 connections are
well-established. As the data set D is obtained by considering only
one disturbed condition we do not expect the methods to detect all
the connections established in the literature. In fact, 10 connections
are detected by three of the five methods. Among those connections,
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Figure 10. Inferred graphs. The graph G1 estimated
with the bagging, WB and pcAlgo methods is represented
in blue. The graph G2 estimated with the KGGM, MB.or
and MB.and methods is in green dashed line. The values
of the partial correlation matrix associated to the data
set D are reported along each edge.

nine of them were well-established or cited at least once in the litera-
ture. The tenth one, between p38 and JNK, was detected by the five
methods previously cited. Moreover the same ten connections were
detected by Sachs et al. (2005) (Supplementary Material) applying a
bayesian network analysis. Therefore, in the following, we assume that
the graph G1 represents the conditional independence structure of the
data set D.

We now investigate the influence of the observation number n on the
power of the methods for estimating the graph G1. We choose n equal
to 15, 30, 100, 200, and 300. For each value of n, 2000 n−samples
are drawn from D without replacement. From each sample, we esti-
mate graphs using the five methods and we compare each estimated
graph with the graph G1. We compute the proportion of wrongly de-
tected edges among the detected edges and the proportion of correctly
identified edges among the edges of G1. The means of these quantities
over the 2000 simulations are denoted FDR and power. Results are
presented in Table 4. As expected, the power of all methods increases
with the number of observations n. However, n has to be large in order
to detect most of the edges. It comes from the fact that the graph
G1 involves 11 proteins and 10 edges, which corresponds to a large
percentage of edges (18%). In this study, we notice that the edges
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Raf −Mek1/2 and Erk1/2−Akt are detected in most of the simula-
tions even for small n and whatever the method; on the contrary the
edge PKA − Erk1/2 is less often detected. It is in accordance with
the values of the partial correlation matrix given in Figure 10: indeed
the largest values of the partial correlation matrix correspond to the
most often detected edges.

Let us now compare the methods according to the number of obser-
vations at our disposal. When n is small (n = 15), the pcAlgo and
KGGM methods are the most powerful with a FDR around 1%. When n
is moderate (n = 30 or n = 100), we advise to use the MB.or procedure,
because the FDR is small and the benefit in power is large. When n is
very large and referring to the power, all methods perform quite well.
Nevertheless KGGM is slightly less powerfull. The FDR obtained with
the MB.and procedure being null, this procedure is recommended.

FDR
n bagging WB MB.and MB.or pcAlgo KGGM

15 0.0227 0.0037 0.0007 0.0017 0.0086 0.0106
30 0.0159 0.0020 0.0011 0.0044 0.0030 0.0051
100 0.0117 0.0017 0.0001 0.0067 0.0018 0.0051
200 0.0098 0.0010 0.0000 0.0111 0.0011 0.0068
300 0.0056 0.0005 0.0000 0.0136 0.0005 0.0056

Power
n bagging WB MB.and MB.or pcAlgo KGGM

15 0.27 0.33 0.23 0.26 0.38 0.40
30 0.43 0.47 0.47 0.62 0.48 0.57
100 0.68 0.69 0.68 0.77 0.69 0.69
200 0.79 0.79 0.77 0.81 0.79 0.75
300 0.85 0.83 0.82 0.83 0.83 0.79

Table 4. FDR and power for estimating the graph G1.
Results for the different methods and for different values
of n.

5. CONCLUSION

In this work, we were interested in recent methods that infer di-
rect links between entities, from experimental datasets. The results
we obtained underline both common features and specificities of these
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methods regarding the parameters p, n and η of the application context.
The most relevant points from our simulation study are the following:

- If one aims to control the FDR at a low level, shrinkage and
glasso should not be used.

- pcAlgo gives a better control of the FDR when the parameter α
is suitably chosen. However there is no simulation condition where it
performs better than the MB methods for example.

- The bagging procedure is less powerfull than the others though
the FDR is not better controled.

- The WB method has good performances, but we have to keep in
mind that it aims at estimating an approximation of the concentration
graph, and may lead to high FDR values when the 0-1 conditional
independence graph differs from the concentration graph.

- KGGM performs well, particularly when n is small. However, this
procedure cannot be carried out when p is large, say larger than 40.

- We recommend to use the MB procedure when it can be applied (n
large enough so that Equation (11) is not satisfied). If one can accept
a false discovery rate of the order 5%, then we recommend to use the
variant MB.or which is more powerfull than the variant MB.and. This
last one must be preferred when the false discovery rate has to be very
small.

The structure of the graph should also be considered; if the edges are
not uniformly distributed over the nodes as in the Erdös-Rényi model,
then edges localized in highly connected parts of the graph or edges
joining two highly connected parts may be difficult to detect.

In the end, methods inferring graphs do not behave equivalently
faced to the graph and dataset structures. Consequently, we have to
pay great attention to the validity domain of each method before car-
rying it out.

6. Appendix. Algorithm for the MB method

For each variable a ∈ Γ, let (θ̂a,b(λ), b ∈ Γ−{a}) be the LASSO esti-
mators of the parameters θa,b defined in Equation (4). In this section

the algorithm used for detecting the θ̂a,b that are non zero is described.
The first step of the algorithm consists in using the LARS algorithm
for ranking the variables XXX−{a} according to the covariance structure
of the matrix XXX. Then, for the chosen value of λ, the non zero compo-

nents of (θ̂a,b(λ), b ∈ Γ−{a}) are detected. This second step is described
below.
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Let us define the following notations: for x a vector with q compo-
nents, ‖x‖2 =

∑q
l=1 x2

l , ‖x‖∞ = supl=1,...,q |xl|. For the sake of sim-

plicity, we set YYY = XXXa, UUU = XXX−{a}, and we assume that YYY and the
columns of UUU are centered and scaled such that ‖YYY ‖2 = n and for all
b = 1, . . . , q (q = p − 1), ‖UUU b‖2 = n. Let

(10) β̂(λ) = Arg min
β∈Rp−1

‖YYY −UUUβ‖2 + λ

p−1∑

b=1

|βb|.

We will use the following properties

Property A. β̂(λ) is solution of Equation (10) if and only if there exists
a p − 1-vector v satisfying

• for all b = 1, . . . , p − 1, vb = sign(β̂b(λ)) if β̂b(λ) 6= 0 and
vb ∈ [−1, 1] if not

• λv = 2UUUT (YYY −UUUβ̂(λ)).

Property B. Solving (10) is equivalent to solving the following con-
straint mimimization problem

β̂(t) = Arg min
Pp−1

b=1
|βb|≤t

‖YYY −UUUβ‖2 .

Therefore, for all λ, there exists tλ such that β̂(λ) = β̂(tλ).
Property C. Let

C(t) = 2
∥∥∥UUUT

(
Y −UUUβ̂(t)

)∥∥∥
∞

.

It can be shown that the function C satisfies the following properties:
C is a decreasing function of t (see Efron et al. (2004), lemma 7), and
λ = C(tλ).

From Property A it comes out that λ ≥ 2‖UUUTYYY ‖∞ is equivalent to

β̂(λ) = 0. As 2‖UUUTYYY ‖∞ ≤ 2n, we get that β̂(λ) = 0 as soon as λ ≥ 2n.
Comparing this lower bound with the value λ given by Meinshausen
and Bühlmann (see Equation (5)), it appears that the parameters will
be estimated by zero whatever the data if

(11) n ≤
{
Φ−1(1 − α/2p2)

}2
.

Consider now the case where λ < 2‖UUUTYYY ‖∞ and let us denote by
A(t) the set of active parameters :

A(t) =
{

b ∈ {1, . . . , p − 1} , β̂b(t) 6= 0
}

.

When t increases A(t) becomes larger. The LARS algorithm gives the
values of t, t0 = 0, t1, t2, . . ., for which A(t) gains a variable: for each
k = 0, 1, 2 . . ., for all t ∈]tk−1, tk], A(t) is constant and equals A(tk).
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Thanks to the third property it remains to find k∗ = min {k, C(tk) < λ}.

The non zero components of (θ̂a,b(λ), b ∈ Γ−{a}) are then equal to
A(tk∗).
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