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Abstract

Gibbs random fields are polymorphous statistical models that can be used to analyse differ-

ent types of dependence, in particular for spatially correlated data. However, when those models

are faced with the challenge of selecting a dependence structure from many, the use of stan-

dard model choice methods is hampered by the unavailability of the normalising constant in the

Gibbs likelihood. In particular, from a Bayesian perspective, the computation of the posterior

probabilities of the models under competition requires special likelihood-free simulation tech-

niques like the Approximate Bayesian Computation (ABC) algorithm that is intensively used

in population Genetics. We show in this paper how to implement an ABC algorithm geared

towards model choice in the general setting of Gibbs random fields, demonstrating in particular

that there exists a sufficient statistic across models. The accuracy of the approximation to the

posterior probabilities can be further improved by importance sampling on the distribution of

the models. The practical aspects of the method are detailed through two applications, the test

of an iid Bernoulli model versus a first-order Markov chain, and the choice of a folding structure

for a protein of Thermotoga maritima implicated into signal transduction processes.

Keywords: Approximate Bayesian computation, model choice, Markov random fields, Bayes fac-

tor, protein folding.
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1 Introduction

Gibbs random fields are probabilistic models associated with the likelihood function

f(x|θ) =
1

Zθ
exp{θTS(x)} , (1)

where x is a vector of dimension n taking values over X (possibly a lattice), S(·) is the potential

function defining the random field, taking values in Rp, θ ∈ Rp is the associated parameter, and

Zθ is the corresponding normalising constant. When considering model selection within this class

of Gibbs models, the primary difficulty to address is the unavailability of the normalising constant

Zθ. In most realistic settings, the summation

Zθ =
∑
x∈X

exp{θTS(x)}

involves too many terms to be manageable and numerical approximations like path sampling [2],

pseudo likelihood or those based on an auxiliary variable [7] are not necessarily available.

Selecting a model with potential S0 taking values in Rp0 versus a model with potential S1 taking

values in Rp1 depends on the Bayes factor corresponding to the priors π0 and π1 on each parameter

space

BFm0/m1
(x) =

∫
exp{θT

0 S0(x)}/Zθ0,0π0(dθ0)
/

∫
exp{θT

1 S1(x)}/Zθ1,1π1(dθ1)

but this is not directly achievable. One faces the same difficulty with the posterior probabilities

of the models since they depend on those unknown constants. To properly approximate those

posterior quantities, it is thus necessary to use likelihood-free techniques such as ABC [8] and we

show in this paper how ABC is naturally tuned for this purpose by providing a direct estimator of

the Bayes factor.

A special but important case of Gibbs random fields where model choice is particularly crucial

is found with Markov random fields (MRF). Those models are special cases of Gibbs random fields

used to model the dependency within spatially correlated data, with applications in epidemiology

[3] and image analysis [4], among others. In this setting, the potential function S takes values in R

and is associated with a neighbourhood structure denoted by i ∼ i′. It means that the conditionnal

density on xi only depends on the xi′ such that i and i′ are neighbours. For instance, the potential

function of a Potts model is

S(x) =
∑
i′∼i

I{xi=xi′} ,
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where
∑

i′∼i indicates that the summation is taken over all the neighbours pairs. In that case, θ is

a scalar. The potential function therefore monitors the number of likewise neighbours over X .

For a fixed neighbourhood, the unavailability of Zθ complicates inference on the scale param-

eter θ, but the difficulty is increased manifold when several neighbourhood structures are under

comparison on the basis of an observation from (1). In this paper, we will consider the toy exam-

ple of an iid sequence [with trivial neighbourhood structure] tested against a Markov chain model

[with nearest neighbour structure] as well as a biophysical example aimed at selecting a protein 3D

structure.

2 Methods

2.1 ABC

As noted above, when the likelihood is not available in closed form, there exist likelihood-free meth-

ods that overcome the difficulty faced by standard simulation techniques via a basic acceptance-

rejection algorithm. The algorithm on which the ABC method [introduced by [8] and expanded

in [1] and [6]] is based can be briefly described as follows: given a dataset x0 associated with the

sampling distribution f(·|θ), and under a prior distribution π(θ) on the parameter θ, this method

generates a parameter value from the posterior distribution π(θ|x0) ∝ π(θ)f(x0|θ) by simulating

a value θ∗ from the prior, θ∗ ∼ π(·), then a value x∗ from the sampling distribution x∗ ∼ f(·|θ∗)
until x∗ is equal to the observed dataset x0. The rejection algorithm thus reads as

Algorithm 1. Exact rejection algorithm:

• Generate θ∗ from the prior π.

• Generate x∗ from the model f(·|θ∗).

• Accept θ∗ if x∗ = x0.

This solution is not approximative in that the output is truly simulated from the posterior

distribution π(θ|x0). In many settings, including those with continuous observations x0, it is

however impractical or impossible to wait for x∗ = x0 to occur and the approximative solution is

to introduce a tolerance in the test, namely to accept θ∗ if simulated data and observed data are

close enough, in the sense of a distance ρ(.), given a fixed tolerance level ε.

The ε-tolerance rejection algorithm is then
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Algorithm 2. ε-tolerance rejection algorithm:

• Generate θ∗ from the prior π.

• Generate x∗ from the model f(·|θ∗).

• Accept θ∗ if ρ(x∗,x0) < ε.

This approach is obviously approximative when ε 6= 0 and it amounts to simulating from the

prior when ε → ∞. The output from the algorithm 2 is thus associated with the distribution

π(θ|ρ(x∗,x0) < ε). The choice of ε is therefore paramount for good performances of the method.

If ε is too large, the approximation is poor while, if ε is sufficiently small, π(θ|ρ(x∗,x0) < ε) is a

good approximation of π(θ|x0) but the acceptance probability may be too low to be practical. It is

therefore customary to pick ε as an empirical quantile of ρ(x∗,x0) when x∗ is simulated from the

marginal distribution, and the choice often is the corresponding 1% quantile (see [1]).

The data x0 usually being of a large dimension, another level of approximation is enforced

within the ABC algorithm, by replacing the distance ρ(x∗,x0) with a corresponding distance be-

tween summary statistics ρ(S(x∗), S(x0)) [1]. It is straightforward to see that, when S(.) is a

sufficient statistic, this step has no impact on the approximation but it is rarely the case that a

sufficient statistic of low dimension is available when implementing ABC. As it occurs, the setting

of model choice among Gibbs random fields allows for such a beneficial structure, as will be seen

below. In the general case, the output of the ABC algorithm is therefore a simulation from the

distribution π(θ|ρ(S(x∗), S(x0)) < ε). The algorithm reads as follows:

Algorithm 3. ABC algorithm:

• Generate θ∗ from the prior π.

• Generate x∗ from the model f(·|θ∗).

• Compute the distance ρ(S(x0), S(x∗)).

• Accept θ∗ if ρ(S(x0), S(x∗)) < ε.
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2.2 Model choice via ABC

In a model choice perspective, we face M Gibbs random fields in competition, each one being

associated with a potential function Sm (0 ≤ m ≤ M − 1), i.e. with corresponding likelihood

fm(x|θm) = exp
{
θT
mSm(x)

}/
Zθm,m ,

where θm ∈ Θm and Zθm,m is the unknown normalising constant. Typically, the choice is between

M neighbourhood relations i
m∼ i′ (0 ≤ m ≤ M − 1) with Sm(x) =

∑
i
m∼i′

I{xi=xi′}.

From a Bayesian perspective, the choice between those models is driven by the posterior proba-

bilities of the models. Namely, if we consider an extended parameter that includes the model index

M defined on the parameter space Θ = ∪M−1
m=0 {m} ×Θm, we can define a prior distribution on the

model index π(M = m) as well as a prior distribution on the parameter conditional on the value

m of the model index, πm(θm), defined on the parameter space Θm. The computational target is

thus the model posterior probability

P(M = m|x) ∝
∫

Θm

fm(x|θm)πm(θm) dθm π(M = m) ,

i.e. the marginal of the posterior distribution on (M, θ0, . . . , θM−1) given x. Therefore, if S(.) is a

sufficient statistics for the joint parameters (M, θ0, . . . , θM−1),

P(M = m|x) = P(M = m|S(x)) .

Each model has its own sufficient statistic Sm(·). Then, for each model, the vector of statistics

S(·) = (S0(·), . . . , SM−1(·)) is obviously sufficient (since it includes the sufficient statistic of each

model). Moreover, the structure of the Gibbs random field allows for a specific factorisation of the

distribution fm(x|θm). Indeed, the distribution of x in model m factorises as

fm(x|θm) = f1
m(x|S(x))f2

m(S(x)|θm)

=
1

n(S(x))
f2

m(S(x)|θm)

where f2
m(S(x)|θm) is the distribution of S(x) within model m [not to be confused with the distri-

bution of Sm(x)] and

n(S(x)) = ] {x̃ ∈ X : S(x̃) = S(x)}

is the cardinal of the set of elements of X with the same sufficient statistic, which does not depend

on m (the support of fm is constant with m). The statistic S(.) is therefore also sufficient for the

joint parameters (M, θ0, . . . , θM−1).
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That the concatenation of the sufficient statistics of each model is also a sufficient statistic for

the joint parameters (M, θ0, . . . , θM−1) is obviously a property that is specific to Gibbs random

field models.

For Gibbs random fields models, it is then possible to apply the above ABC algorithm in order

to produce an approximation with tolerance factor ε:

Algorithm 4. ABC algorithm for model choice (ABC-MC):

• Generate m∗ from the prior π(M = m).

• Generate θ∗m∗ from the prior πm∗(·).

• Generate x∗ from the model fm∗(·|θ∗m∗).

• Compute the distance ρ(S(x0), S(x∗)).

• Accept (θ∗m∗ ,m∗) if ρ(S(x0), S(x∗)) < ε.

For the same reason as above, this algorithm results in an approximate generation from the

joint posterior distribution

π
{
(M, θ0, . . . , θM−1)|ρ(S(x0), S(x∗)) < ε

}
.

When it is possible to achieve ε = 0, the algorithm is exact since S is a sufficient statistic. We have

thus derived a likelihood-free method to handle model choice.

Once a sample of N values of (θi∗
mi∗ ,m

i∗) (1 ≤ i ≤ N) is generated from this algorithm, a

standard Monte Carlo approximation of the posterior probabilities is provided by the empirical

frequencies of visits to the model, namely

P̂(M = m|x0) = ]{mi∗ = m}
/
N ,

where ]{mi∗ = m} denotes the number of simulated mi∗’s equal to m.

Correlatively, the Bayes factor associated with the evidence provided by the data x0 in favour

of model m0 relative to model m1 is defined by

BFm0/m1
(x0) =

P(M = m0|x0)
P(M = m1|x0)

π(M = m1)
π(M = m0)

=
∫

fm0(x
0|θ0)π0(θ0)π(M = m0)dθ0∫

fm1(x0|θ1)π1(θ1)π(M = m1)dθ1

π(M = m1)
π(M = m0)

.

6
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The previous estimates of the posterior probabilities can then be plugged-in to approximate the

above Bayes factor by

BFm0/m1
(x0) =

P̂(M = m0|x0)
P̂(M = m1|x0)

× π(M = m1)
π(M = m0)

=
]{mi∗ = m0}
]{mi∗ = m1}

× π(M = m1)
π(M = m0)

,

but this estimate is only defined when ]{mi∗ = m1} 6= 0. To bypass this difficulty, the substitute

B̂Fm0/m1
(x0) =

1 + ]{mi∗ = m0}
1 + ]{mi∗ = m1}

× π(M = m1)
π(M = m0)

is particularly interesting because we can evaluate its bias. (Note that there does not exist an

unbiased estimator of BFm0/m1
(x0) based on the mi∗’s.) Indeed, assuming without loss of generality

that π(M = m1) = π(M = m0), if we set N0 = ]{mi∗ = m0}, N1 = ]{mi∗ = m1} and conditionally

on N = N0 +N1, N1 is a binomial B(N, p) rv with probability p = (1+BFm0/m1
(x0))−1. It is then

straightforward to establish that (see Appendix)

E
[

N0 + 1
N1 + 1

∣∣∣∣N] = BFm0/m1
(x0) +

1
p(N + 1)

− N + 2
p(N + 1)

(1− p)N+1 .

The bias in the estimator B̂Fm0/m1
(x0) is thus {1− (N + 2)(1− p)N+1}/(N + 1)p, which goes to

zero as N goes to infinity.

2.3 Two step ABC

The above estimator B̂Fm0/m1
(x0) is rather unstable (i.e. suffers from a large variance) when

BFm0/m1
(x0) is very large since, when P(M = m1|x0) is very small, ]{mi∗ = m1} is most often

equal to zero. This difficulty can be bypassed by a reweighting scheme. If the choice of m∗ in the

ABC algorithm is driven by the probability distribution P(M = m1) = % = 1−P(M = m0) rather

than by π(M = m1) = 1 − π(M = m0), the value of ]{mi∗ = m1} can be increased and later

corrected by considering instead

B̃Fm0/m1
(x0) =

1 + ]{mi∗ = m0}
1 + ]{mi∗ = m1}

× %

1− %
.

Therefore, if a first run of the ABC algorithm exhibits a very large value of B̂Fm0/m1
(x0), the

estimate B̃Fm0/m1
(x0) produced by a second run with

% ∝ 1
/

P̂(M = m1|x0)

7
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will be more stable than the original B̂Fm0/m1
(x0). In the most extreme cases when no mi∗ is ever

equal to m1, this corrective second is unlikely to bring much stabilisation, though. Note, however,

that, from a practical point of view, obtaining a poor evaluation of BFm0/m1
(x0) when the Bayes

factor is very small (or very large) has limited consequences since the poor approximation also leads

to the same conclusion about the choice of model m0.

3 Results

3.1 Toy example

Our first example compares an iid Bernoulli model with a two-state first-order Markov chain. Both

models are special cases of MRF and, furthermore, the normalising constant Zθm,m can be computed

in closed form, as well as the posterior probabilities of both models. We thus consider a sequence

x = (x1, .., xn) of n binary variables (n = 100). Under model M = 0, the MRF representation of

the Bernoulli distribution B(1/{1 + exp(−θ0)}) is

f0(x|θ0) = exp

(
θ0

n∑
i=1

I{xi=1}

)/
{1 + exp(θ0)}n ,

associated with the sufficient statistic S0(x) =
∑n

i=1 I{xi=1} and the normalising constant Zθ0,0 =

(1 + eθ0)n. Under a uniform prior θ0 ∼ U(−5, 5), the bound ±5 being the phase transition value

for the Gibbs random field, the posterior probability of this model is available since the marginal

when S0(x) = s0 (s0 6= 0) is given by

1
10

s0−1∑
k=0

(
s0 − 1

k

)
(−1)s0−1−k

n− 1− k

[
(1 + e5)k−n+1 − (1 + e−5)k−n+1

]
,

by a straightforward rational fraction integration.

Model M = 1 is chosen as a Markov chain (hence a particular MRF in dimension one with i

and i′ being neighbours if |i− i′| = 1) with the special feature that the probability to remain within

the same state is constant over both states, namely

P(xi+1 = xi|xi) = exp(θ1)
/
{1 + exp(θ1)} .

We assume a uniform distribution on x1 and the likelihood function for this model is thus

f1(x|θ1) =
1
2

exp

(
θ1

n∑
i=2

I{xi=xi−1}

)/
{1 + exp(θ1)}n−1 ,

8
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Figure 1: (left) Comparison of the true P(M = 0|x0) with P̂(M = 0|x0) over 2, 000 simulated

sequences and 4.106 proposals from the prior. The red line is the diagonal. (right) Same comparison

when using a tolerance ε corresponding to the 1% quantile on the distances.
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Figure 2: (left) Comparison of the true BFm0/m1
(x0) with B̂Fm0/m1

(x0) (in logarithmic scales)

over 2, 000 simulated sequences and 4.106 proposals from the prior. The red line is the diagonal.

(right) Same comparison when using a tolerance corresponding to the 1% quantile on the distances.
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with S1(x) =
∑n

i=2 I{xi=xi−1} being the sufficient statistic in that case. Under a uniform prior

θ1 ∼ U(0, 6), where the bound 6 is the phase transition value, the posterior probability of this

model is once again available, the likelihood being of the same form as when M = 0.

We are therefore in a position to evaluate the ABC approximations of the model posterior

probabilities and of the Bayes factor against the exact values. For this purpose, we simulated 1000

datasets x0 under each model, using parameters simulated from the priors and computed the exact

posterior probabilities and the Bayes factors in both cases. Here, the vector of summary statistics

is composed of the sufficient statistic of each model, S(.) = (S0(.), S1(.)), and we use an euclidian

distance.

For each of those datasets x0, the ABC-MC algorithm was run for 4.106 loops, meaning that

4.106 sets (m∗, θ∗m∗ ,x∗) were simulated and a random number of those were accepted when S(x∗) =

S(x0). (In the worst case scenarios, the number of acceptances was 12!)

As shown on the left graph of Figure 1, the fit of posterior probabilities is very good for all

values of P(M = 0|x0). When we introduce a tolerance ε equal to the 1% quantile of the distance,

the results are very similar when P(M = 0|x0) is close to 0, 1 or 0.5, and we observe a slight

difference between these values. We also evaluated the approximation of the Bayes factor (and of

the subsequent model choice) against the exact Bayes factor. As clearly pictured on the left graph

of Figure 2, the fit is very good in the exact case (ε = 0), the poorest fits occurring in the limiting

cases when the Bayes factor is either very large or very small and thus when the model choice is

not an issue, as noted above. In the central zone when log BFm0/m1
(x0) is close to 0, the difference

is indeed quite small, the few diverging cases being due to occurrences of very small acceptance

rates. Once more, using a tolerance ε equal to the 1% quantile does not bring much difference in

the output, the approximative Bayes factor being slightly less discriminative in that case (since the

slope of the cloud is less than the even slope of the diagonal).

Given that using the tolerance version allows for more simulations to be used in the Bayes factor

approximation, we thus recommend using this approach.

3.2 Application to protein 3D structure prediction

In Biophysics, the knowledge of the tridimensional structure, called folding, of a protein provides

important information about the protein, including its function.

There exist two kinds of methods that are used to find the 3D structure of a protein. Exper-

imental methods like spectroscopy provide accurate descriptions of structures, but these methods

are time consuming, expensive, and sometimes unsuccessful. Alternatively, computational methods

10
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have become more and more successful in predicting 3D structures. These latter methods mostly

rely on homology (two sequences are said to be homolog if they share a common ancestor). If the

protein under study, hereafter called the query protein, displays a sufficiently high sequence similar-

ity with a protein of known structure, both are considered as homologous with similar structures.

Then, a prediction based on the structure of its homolog can be built.

As structures are more conserved over time than sequences, methods based on threading have

been developed when sequence similarity is too low to assess homology with sufficient certainty.

Threading consists in trying to fold the query protein onto all known structures; a fitting criterion

is computed for each proposal and the structures displaying sufficiently high criterion values, if any,

are chosen. The result is a list of alignments of the query sequence on different structures. It may

happen that some of those criterion values are close enough to make a decision difficult.

From a statistical perspective, each structure can be represented by a graph such that a node of

this graph is one amino-acid of the protein and an edge between two nodes of the graph indicates

that both amino-acids are in close contact in the folded protein. This graph can thus be associated

with a Markov random field (1) if labels are allocated to each node. When several structures are

proposed by a threading method, algorithm 4 is then available to select the most likely structure.

In the example we discuss in this section, labels are associated with the hydrophobic properties of

the amino-acids, i.e. they are classified as being either hydrophobic or hydrophilic, based on Table

1. Since, for a globular protein in its native folding, hydrophobic amino-acids are mostly buried

inside the structure, and hydrophilic ones are exposed to water, using hydrophobia as the clustering

factor does make sense.

Hydrophilic Hydrophobic

K E R D Q N P H S T G A Y M W F V L I C

Table 1: Classification of amino acids into hydrophilic and hydrophobic groups.

The dataset is built around a globular protein sequence of known structure (this one will be

called the native structure) 1tqgA corresponding to a protein of Thermotoga maritima involved

into signal transduction processes. We used FROST [5], a software dedicated to threading, and

MODELLER [9] to build candidate structures. (All proteins we use are available in the Protein

Data Bank at http://www.rcsb.org/pdb/home/home.do). These candidates thus correspond to the

same sequence (the query sequence) folded on different structures. We used two criteria to qualify

the similarity between the candidates and the query : the percentage of identity between query

and candidate sequences (computed by FROST) and the similarity of the topologies of candidate

11
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structures with the native structure (assessed with the TM-score, 11). Among those, we selected

candidates covering the whole spectrum of predictions that can be generated by protein threading,

from good to very poor as [10] and described in Table 2.

% seq . Id. TM-score FROST score

1i5nA (ST1) 32 0.86 75.3

1ls1A1 (ST2) 5 0.42 8.9

1jr8A (ST3) 4 0.24 8.9

1s7oA (DT) 10 0.08 7.8

Table 2: Summary of the characteristics of our dataset. % seq . Id.: percentage of identity with

the query sequence. TM-score.: similarity between a predicted structure and the native structure.

A score larger than 0.4 implies a structural relationship between 2 structures and a score less than

0.17 means that the prediction is nothing more than a random selection from the PDB library.

FROST score: quality of the alignment of the query onto the candidate structure. A score larger

than 9 means that the alignment is good, while a score less than 7 means the opposite. For values

between 7 and 9, this score cannot be used to reach a decision.

Figure 3: Superposition of the native structure (grey) with the ST1 structure (red.), the ST2

structure (orange), the ST3 structure (green), and the DT structure (blue).

We took three cases for which the query sequence has been aligned with a structure similar

to the native structure. For ST1 and ST2, alignment is good or fair and the difference relies on

the percentage of identity between the sequences. The ST1 sequence is homolog with the query

sequence, (% seq. Id. > 20%), while we cannot be sure for ST2. ST3 is certainly not an homolog

12
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NS/ST1 NS/ST2 NS/ST3 NS/DT

B̂F 1.34 1.22 2.42 2.76

P̂(M = NS|x0) 0.573 0.551 0.708 0.734

Table 3: Estimates of the Bayes factors between model NS and models ST1, ST2, ST3, and

DT, and corresponding posterior probabilities of model NS based on an ABC-MC algorithm using

1.2 106 simulations and a tolerance ε equal to the 1% quantile of the distances.

of the query and the alignment is much poorer. For DT, the query sequence has been aligned with

a structure that only share few structure elements with the native structure. It must be noted that

alignments used to build ST2, ST3, and DT were scored in the FROST uncertainty zone, that

is to say we cannot choose between these predictions based only on the results given by FROST

as shown in Table 2. Differences between the native structure and the predicted structures are

illustrated on Figure 3.

Using ABC-MC, we then estimate the Bayes factors between the model NS corresponding

to the true structure and the models ST1, ST2, ST3, and DT, corresponding to the predicted

structures. Estimated values and posterior probabilities of model NS are given for each case in

Table 3. All Bayes factors are estimated to be larger than 1 so this indicates that data are always

in favour of the native structure, when compared with one of the four alternatives. Moreover, the

value is larger when models are more different. Note that the posterior probability of model NS is

larger when the alternative model is ST2 than when the alternative model is ST1.
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4 Appendix: Binomial expectations

First, given X ∼ B(N, p), we have :

E
[
N −X + 1

X + 1

]
= E

[
N + 2
X + 1

]
− E

[
X + 1
X + 1

]
= (N + 2)E

[
1

X + 1

]
− 1

and

E
[

1
1 + X

]
=

N∑
k=0

1
1 + k

(
N

k

)
pk(1− p)N−k

=
(1− p)N+1

p

N∑
k=0

1
k + 1

(
N

k

){
p

1− p

}k+1

=
(1− p)N+1

p

N∑
k=0

(
N

k

)∫ p
1−p

0
xk dx

=
(1− p)N+1

p

∫ p
1−p

0

N∑
k=0

(
N

k

)
xk dx

=
(1− p)N+1

p

∫ p
1−p

0
(1 + x)N dx

=
(1− p)N+1

p

[
(1 + x)N+1

N + 1

] p
1−p

0

=
1

N + 1
1
p

{
1− (1− p)N+1

}
.

Then

E
[
N + 2
X + 1

]
=

N + 2
N + 1

1
p

{
1− (1− p)N+1

}
−−−−−→
N →∞ 1

p
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