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THEORETICAL DESCRIPTION OFCHROMOSOME ARCHITECTURE AFTERMULTIPLE BACK-CROSSINGFrançois Rodolphe†, Juliette Martin†,∗, Emmanuelle Della-Chiesa‡
† INRA, Unité Mathématique, Informatique et Génome, UR1077, F - 78350 Jouy-en-Josas
∗ INSERM, Equipe de Bioinformatique Génomique et Moléulaire U726, UniversitéParis 7, F75005 Paris.
‡ Laboratoire Statistique et Génome, UMR CNRS 8071 - INRA 1152 - Universitéd'Évry, F - 91000 EvryAbstratThis paper provides a theoretial desription of the hromosome arhitetureresulting from a given number of generations in a bak-ross. It is worth onsideringhromosome arhiteture as depending on a marked point proess, whose propertiesdepend on the rossing-over model used. Resulting arhiteture is presented here fortwo di�erent models : no interferene, and omplete interferene. Exat distributions,with easy-to-ompute formulae, are derived for quantities of interest, as the lengthof donor or reeiver fragments, for any hromosome length and for both rossing-over models. Examples are presented to illustrate the use of these distributions inintrogression programs or in population genetis.IntrodutionIntrogression is a tehnique often used for a long period, for instane, by plantbreeders who want to introdue a monogeni harater available in a wild genotype(the donor) into a ultivated variety (the reeiver), without altering other harate-ristis.Introgression starts with the hybrid (generation 0), whih is rossed with thereeiver. Produt genotypes ontaining one opy of the desired gene are seleted,and rossed again with the reeiver, and so on for several generations. At eahstage, genotypes bear a omplete set of reeiver hromosomes, and the other half oftheir genome, owing to rossing-over, is a mosai, whih, due to seletion, bears thedesired gene. It is well known that the expeted length of the donor hromosome1



SSB - RR No. 2 F. Rodolphe et al.fragment bearing the gene of interest, redues at eah generation, and that the donorgenome is progressively washed out from the rest of the genome (Fisher R. 1949,Hanson W. D. 1959, Stam P. and Zeven C., 1981). Naveira H. and Barbadilla A.(1992) give an extensive review of the question, and provide exat expressions forthe mean and standard deviation of the length, when there is no interferene. Hill(1993) provides expressions for the two �rst moments of donor ontribution (theproportion of the omplete genome opied from the donor).The aim of this note is to derive a general and omplete desription of the mo-sai hromosome struture. It an be adapted to di�erent rossing-over models, andmakes possible the omputation of the probability of any event of interest like thenumber of remaining segments of the donor hromosome. In an introgression pro-gram, these omputations provide a tool for experimental design. This desriptionis obtained by onstruting a marked point proess whih ontains all needed infor-mation.Materials and methodsGeneti models and point proess onstrutionWe assume throughout this paper, hromosomes to be independent, hene onlyone will be onsidered, and rossing-over to our at eah generation independentlyfrom the past. Geneti distanes will be onsidered with two di�erent rossing-overmodels. In the �rst one (W ), no interferene between ross-overs is assumed : theyour aording to a homogeneous Poisson proess. In the seond one (C), ompleteinterferene between ross-overs is assumed : one and only one ross-over ours ateah generation, on eah hromosome arm.At eah generation i, a point proess, X i, desribes the rossing-over. X i
j isthe oordinate of the jth ross-over having oured at generation i. Consider nowthe marked point proess (X+, Y ) whih results from the superposition of all pointproesses having oured at eah generation between 1 and n ; points are renumberedand eah point, X+

j , bears the mark, Yj, of the generation at whih the orrespondingross-over oured (�gure 1).Our laim is that hromosome arhiteture is determined by the marked pointproess (X+, Y ), whose properties depend on the rossing-over model. This providesa way to a omplete desription of the hromosome arhitetureStruture of the mosai hromosomeConsider �rst the ase of introgression illustrated in �gure 1. Due to seletionin the experimental design, the lous of interest, L, is opied from the donor ; thesegment, bearing this lous, will be interrupted by the next ross-over, in bothdiretions. Consider now another fragment opied from the donor hromosome, ifany, whih does not bear the seleted gene. It starts at a given point of the proess
X+ and stops at the next. 2



SSB - RR No. 2 F. Rodolphe et al.Let us now examine the relationship between the marked point proess (X+, Y )and the reappearene of a donor genome fragment along the hromosome. We starton L, the lous to be introgressed. The �rst point, X+
1 , enountered stops the frag-ment and starts a new interval, opied from the reeiver hromosome. Its mark, Y1,indiates at whih generation this interruption oured. All the segment limited by

X+
1 and the next point of X+ bearing the same mark, has been opied from thereeiver at generation Y1. From then on, in a bak-ross, this entire segment will re-main a opy of the reeiver. This holds at any generation. Hene donor hromosomewill reappear if and only if all marks appeared, eah one, an even number of times(zero is even) sine we left the last donor segment, see �gure 1.

X0 ♦

X1 ♦ • •

X2 ♦ •

X3 ♦ • •

X+ ♦ • • •• •

Y ♦ •1 •1 •2•3 •3Fig. 1 � Constrution of the marked point proess (X+, Y ), based on the rossing-over proesses X i at eah generation i. Bullets represent ross-overs, diamond thegene to be introgressed. Chromosome fragments opied from the reeiver at eahgeneration and at the end of the experiment, are indiated by a double line.Crossing-over without interferene on an in�nite hromosomeWhen no interferene is assumed, rossing-over our at eah generation, aor-ding to a homogeneous Poisson proess, with intensity one, by de�nition. In thissetion, the problem will be onsidered on the line ; in the next setions it will beonsidered on a �nite hromosome.The resulting point proess, X+, after n generations, is itself a homogeneousPoisson proess of intensity n. Proesses X i being independent, Poisson (memo-ryless), all with the same intensity, marks are distributed independently and atrandom : Y is a series of independent variables with uniform distribution on the in-tegers {1, 2, · · ·n} (a homogeneous Bernoulli proess). Moreover, proesses X+ and
Y are independent. 3



SSB - RR No. 2 F. Rodolphe et al.Donor hromosome fragmentsWaiting time for the next point in proess X+ has an exponential distributionof parameter n, with density of probability gW
n (z) = nexp(−nz). Total length ofthe donor hromosome fragment bearing the gene to be introgressed, orresponds totwo independent waiting times : one on the right, one on the left. It is distributedas (gW

n )∗2(z) = n2z.exp(−nz), the onvolution square of gW
n (z). On the ontrary,unseleted fragments inherited from the donor, have an exponential distribution ofparameter n, with density of probability gW

n (z).Reeiver hromosome fragmentsConsider two urns (�even� and �odd�) with n balls numbered from 1 to n. Startingin a donor fragment, we put all balls in the �even� urn. Eah time we enounter apoint X+
j in the X+ proess, we move the ball numbered Yj. The �even� urn ontainsthe balls numbered as the marks whih appeared an even number of times, sinewe left the last donor fragment. Donor hromosome will reappear when and onlywhen �odd� urn gets empty. The number of balls moved, before returning to zero,equals one plus the number of intervals overed before meeting again the donorhromosome, in the proess X+.Beause of the nature of the proess Y , the number of balls in the �odd� urn is anEhrenfest promenade with parameter n. We an now derive the reeiver hromosomefragment length probability distribution after n generations. Suh a fragment anbe onsidered as a onatenation of intervals of lengths independent and identiallyexponentially distributed, with parameter n. The number of fragments to be ona-tenated is distributed as the zero return time, minus one, of an Ehrenfest promenadewith parameter n.Let Z be the length of a reeiver hromosome fragment, we have for Z, after ngenerations, the following density of probability :

fW
n (z) =

∞
∑

i=1

π
(n)
2i (gW

n )∗(2i−1)(z) =
∞

∑

i=1

π
(n)
2i n2i−1z2(i−1)exp(−nz)/(2(i − 1))!where π

(n)
2i is the probability, zero return time equals 2i (zero return times are even).If n = 1 this formula redues to fW

1 (z) = gW
1 (z) = exp(−z) sine, if there is onlyone ball in an Ehrenfest promenade, zero return time equals 2 with probabilityone. The kth onvolution power of the exponential distribution of parameter n,

(gW
n )∗k(z) = nkzk−1exp(−nz)/(k − 1)!, is the density of probability of the totallength of k suessive segments. It is known as an Erlang distribution, in fat, agamma distribution with integer parameter k.Let GW,k

n (z) be the umulative distribution funtion orresponding to (gW
n )∗k(z),

∀k :
GW,k

n (z) = 1 − exp(−nz)
k−1
∑

i=0

(nz)i/i!

4



SSB - RR No. 2 F. Rodolphe et al.The umulative distribution funtion F W
n (·) of Z, orresponding to fW

n , has thefollowing expression :
F W

n (z) =
∞

∑

i=1

π
(n)
2i (GW

n )(2i−1)(z) = 1 − exp(−nz)
∞

∑

i=1

π
(n)
2i

2(i−1)
∑

j=0

(nz)j/j! (1)This formula is not suitable for omputations. A omputable formula, 14, is providedin appendies and . Aording to this formula, F W
n is a linear ombination of nexponentials, depending on onstants βk and dk. Therefore, all expressions whihwill be derived below, an be diretly omputed as �nite linear ombinations ofexponentials too, with no need of numerial integration.These distributions are shown on �gure 2 for a generation number between 1 and

8. As it an be seen on these �gures, the slope of these umulative distributionfuntions is always 1 at the origin. Indeed :
dFW

n

dz
(0) = fW

n (0) =
∞

∑

i=1

π
(n)
2i g∗(2i−1)

n (0) = π
(n)
2 1 =

1

n
n = 1, ∀n (2)This means that reeiver genome fragments, whose lengths generally inrease veryfast with n (mean value is (2n − 1)/n, see appendix ), keep a probability of takingtiny values, very small but quite unsensitive to n.Whole hromosome arhitetureAs an Ehrenfest promenade is a Markov hain, eah return to zero is a renewal,hene all fragments have independent lengths. After n generations of bak-ross,resulting mosai hromosome is a onatenation of fragments of independent lengths,alternatively opied from the donor and the reeiver hromosomes. Fragment lengthsare distributed aording to densities gW

n for the donor, and fW
n for the reeiver. Thedonor fragment bearing the unique gene to be introgressed has a length distribution

(gW
n )∗2.ResultsCrossing-over without interferene on a �nite hromosomeWe now onsider a hromosome of length K (in Morgans). A �nite hromosomeorresponds to a window of length K on the line. As we are no longer onsideringthe proess on the line, but on a �nite hromosome, we must here take into aountthat any segment an be trunated by hromosome ends.Introgression : length of the segment bearing the seleted gene on a �nitehromosome arm without interfereneLet Bl and Br be the left and right ends of the segment opied from the donor andbearing, at lous L, the seleted gene. Both segment ends are independent stohasti5



SSB - RR No. 2 F. Rodolphe et al.variables. Their joint probability density is, for 0 ≤ x ≤ l and l ≤ y ≤ K :
pW

n (x, y) = (ne−n(l−x) + e−nlδ0(x))(ne−n(y−l) + e−n(K−l)δK(y))

= e−n(y−x)(n2 + n(δ0(x) + δK(y)) + δ0(x)δK(y)where δa(x) represents Dira measure on a. Probability density of length Z of theinterval [Bl, Br] is hW
n,l(z) =

∫ l∧(K−z)

0∨(l−z)
pn(x, x + z)dx on [0, K], where a ∧ b and a ∨ bstay for the minimum and the maximum of a and b.

hW
n,l(z) = e−nz(n2(l ∧ (K − z) − 0 ∨ (l − z)) + n(1{z≥l} + 1{z≥K−l}) + δK(z)) (3)Let HW

n,l(z) = P [Z ≤ z] be the umulative distribution funtion of the intervallength. If l < K
2
, HW

n,l(z) has the following expressions :if z ≤ l
∫ z

0
e−nun2udu = 1 − e−nz(1 + nz)if l ≤ z ≤ K − l 1 − e−nl(1 + nl) +

∫ z

l
e−nu(n2l + n)du = 1 − e−nz(1 + nl)if K − l ≤ z 1 − e−n(K−l)(1 + nl) +

∫ z

K−l
e−nu(n2(K − u) + 2n)du + e−nK1{z=K}

= 1 − e−nz(1 + n(K − z)) + e−nK1{z=K}Using a symmetry for the ase l > K
2
, we �nally get :

∀l ∈ [0, K] HW
n,l(z) = 1 − e−nz(1 + n(z ∧ (K − z) ∧ (K − l) ∧ l)) + e−nK1{z=K} (4)Mathematial expetation of Z is :
EW

n,l[Z] =

∫ K

0

(1 − HW
n,l(z))dz =

1

n
(2 − e−nl − e−n(K−l)) (5)On an in�nite hromosome, length expetation is 2

n
, twie the expeted length of anunseleted donor genome segment. Here, −1

n
(e−nl + e−n(K−l)) is the orretion termdue to hromosome �niteness ; it onsists of the trunation probability, e−nl to theleft and e−n(K−l) to the right, times 1

n
, the expetation of eah trunation.No seletion : donor segment length on a �nite hromosome arm withoutinterfereneLeft hromosome end, as any point of the line, is opied from the donor withprobability 2−n. If not, it belongs to a reeiver hromosome fragment, whose length

z is distributed aording to the density n
2n−1

zfW
n (z), the normalized produt ofthe density fW

n (z) of any reeiver hromosome fragment length by its length z.Conditionally on z, hromosome end is uniformly distributed on this interval.Probability of donor disappearane : Let qW
n,K be the probability, the donorgenome totally disappeared at generation n. Probability 1 − qW

n,K that the hromo-some of length K bears a donor genome fragment, equals the probability it starts6



SSB - RR No. 2 F. Rodolphe et al.on suh a segment plus, otherwise, the probability suh a segment starts beforehromosome ends. Thus :
1 − qW

n,K = 2−n + (1 − 2−n)

∫ ∞

0

n

2n − 1
zfW

n (z)
K ∧ z

z
dz

= 2−n + (1 − 2−n)(

∫ ∞

K

nK

2n − 1
fW

n (z)dz +

∫ K

0

n

2n − 1
zfW

n (z)dz)

= 2−n(1 + nK(1 − F W
n (K)) + nKF W

n (K) − n

∫ K

0

F W
n (z)dz)

1 − qW
n,K = 2−n(1 + n

∫ K

0

(1 − F W
n (z))dz) (6)Note that if K = 0 then qW

n,K = 1 − 2−n, and if K ↑ ∞ then qW
n,K → 0 as expetedon an in�nite hromosome.Donor fragment length distribution : On an unlimited hromosome, the lengthof unseleted donor fragments is distributed with probability density gW

n (z). On a�nite hromosome, trunation must be taken into aount. Moreover the number ofdonor fragments left on the hromosome is theoretially unlimited, but the lengthof suh fragments is di�erently distributed aording to their status. Calulation isdone here for the �rst (or last) fragment. Four mutually exlusive situations haveto be onsidered, whether, or not, this fragment is limited by the hromosome endon its left or on its right ; donor disappearane is onsidered as the presene of afragment of length zero. The length probability density gW
n,K(z), z ∈ [0, K] of suhan extremal donor fragment length is :

gW
n,K(z) = qW

n,Kδ0(z) + 2−n(

∫ ∞

z

n2xe−nx 1

x
dx + δK(z)

∫ ∞

K

n2xe−nx (x − K)

x
dx)

+ (1 − 2−n)(

∫ ∞

0

nufW
n (u)

2n − 1

(K − z) ∧ u

u
ne−nzdu +

∫ ∞

K−z

nufW
n (u)

2n − 1

1

u
e−nzdu)

gW
n,K(z) = qW

n,Kδ0(z) + 2−n(ne−nz + δK(z)e−nK

+ n2e−nz((K − z)F W
n (K − z) −

∫ K−z

0

F W
n (u)du + (K − z)(1 − F W

n (K − z))))

+ ne−nz(1 − F W
n (K − z)))We �nally obtain for gW

n,K(z), (z ∈ [0, K])
qW
n,Kδ0(z) + 2−ne−nKδK(z) + 2−nne−nz(2 − F W

n (K − z) + n(

∫ K−z

0

(1 − F W
n (u))du)) (7)The umulative distribution funtionGW

n,K(z) =
∫ z

0
gW

n,K(u)du, results from a straight-forward alulus :
GW

n,K(z) = 1 + 2−ne−nK1{z=K} − 2−ne−nz(1 + n

∫ K−z

0

(1 − F W
n (u))du) (8)7



SSB - RR No. 2 F. Rodolphe et al.De�ning Φn(H) = n
∫ H

0
e−nxF W

n (H −x)dx, mathematial expetation of these frag-ments, onditional on their existene, is :
DW

n,K =
1
n
Φn(K) +

∫ K

0
(1 − F W

n (u))du

1 + n
∫ K

0
(1 − F W

n (u))du
(9)Note that Φn is the length umulative distribution funtion of the onatenation ofa donor and a reeiver fragment. It tends to 1 as K tends to in�nity, and DW

n,K to 1
nas expeted on an in�nite hromosome.Probability of donor multiple ourrenes : Let σW

n,K be the probability thereare two or more donor genome fragments left on the hromosome.
σW

n,K = 2−n

∫ K

0

ne−nxF W
n (K − x)dx

+(1 − 2−n)

∫ ∞

0

∫ K∧z

0

∫ K−y

0

nzfW
n (z)

2n − 1

1

z
ne−nxF W

n (K − y − x)dxdydz

= n2−n

∫ K

0

e−nxF W
n (K − x)dx + n22−n(

∫ K

0

fW
n (z)

∫ z

0

∫ K−y

0

e−nxF W
n (K − y − x)dxdydz

+

∫ ∞

K

fW
n (z)

∫ K

0

∫ K−y

0

e−nxF W
n (K − y − x)dxdydz)Integrating by parts, with Φn(H) = n
∫ H

0
e−nxF W

n (H − x)dx, we have :
∫ K

0

fW
n (z)

∫ z

0

Φn(K − y)dydz = F W
n (K)

∫ K

0

Φn(K − y)dy −
∫ K

0

F W
n (z)Φn(K − z)dzand also, ∫ ∞

K

fW
n (z)

∫ K

0

Φn(K − y)dydz = (1 − F W
n (K))

∫ K

0

Φn(K − y)dythen �nally,
σW

n,K = 2−n(Φn(K) + n

∫ K

0

(1 − F W
n (z))Φn(K − z)dz) (10)Crossing-over with omplete interfereneIn this setion, omplete interferene is assumed : at eah generation, a uniqueross-over ours on eah hromosome arm. By de�nition of geneti distanes, thelength of any hromosome arm is 1 and the ross-over is uniformly distributed onit. Eah proess X i redues to one point. Let l be the position, on the hromosomearm, of the gene to be introgressed (on lous L). The probability for the ross-overto our between the entromer and the lous L is l.The point proess, X+, from the entromer to the end of the hromosome armis onstituted by exatly n independent uniformly distributed points ; eah markappears one. Beause of seletion, the lous of interest, L, is always opied from8



SSB - RR No. 2 F. Rodolphe et al.the donor ; if a ross-over ours before (respetively, after) L, all the segment on itsleft (respetively, right) is opied from the reeiver. The interval whih bears L, isthe only one opied from the donor. It is limited on its right by Br, the �rst pointof X+ after L, or 1, if all ross-overs oured before L. Similarly, it is limited on itsleft by Bl, the last point of X+ before L, or 0, if all ross-overs oured after L.Introgression : length of the segment bearing the seleted gene on a �nitehromosome arm with omplete interfereneThe number N of ross-overs having oured before L has a binomial distributionwith parameters n and l. Given N , ross-overs are distributed uniformly either on
[0, l] or [l, 1], and independent. We have :

P [N = k] = (n
k)lk(1 − l)n−k

P [Bl = 0] = (1 − l)n (then N = 0)

P [0 < Bl < x|N = k] = (x/l)k, ∀k > 0

P [l < Br < y|N = k] = 1 − ((1 − y)/(1 − l))n−k, ∀k < n

P [Br = 1] = ln (then N = n)Let pC
n (x, y) be the joint probability density of Bl and Br. pC

n (x, y) =

(1 − l)nδ0(x) n
1−l

(1−y

1−l
)n−1 +

∑n−1
k=1(

n
k)lk(1 − l)n−k k(n−k)

l(1−l)
(x

l
)k−1(1−y

1−l
)n−k−1 + lnδ1(y)n

l
(x

l
)n−1

= nδ0(x)(1 − y)n−1 +
∑n−1

k=1
n!

(k−1)!(n−k−1)!
xk−1(1 − y)n−k−1 + nδ1(y)xn−1

= nδ0(x)(1 − y)n−1 + n(n − 1)(1 − y + x)n−2 + nδ1(y)xn−1whih leads to the joint umulative distribution funtion of Bl and Br (with 0 ≤
x ≤ l ≤ y ≤ 1) :

P C [Bl ≤ x and Br ≤ y] = (1 − l + x)n − (1 − y + x)n + xn1{y=1}Let Z be the length of the interval [Bl, Br]. Its density of probability hC
n,l(z), on

[0, 1], is ∫ l∧(1−z)

0∨(l−z)
pn(x, x + z)dx, whih leads to :

hC
n,l(z) = n(1 − z)n−1(1{z>l} + 1{z>1−l}) + n(n − 1)(1 − z)n−2(l ∧ (1 − z) − 0 ∨ (l − z))(11)Let HC

n,l(z) =
∫ z

0
hC

n,l(u)du = P [Z ≤ z] be the umulative distribution funtion of
Z ; if l < 1

2
, then if z ≤ l HC

n,l(z) = 1 − (1 − z)n−1(1 + (n − 1)z)if l ≤ z ≤ 1 − l HC
n,l(z) = 1 − (1 − z)n−1(1 + nl − z)if 1 − l ≤ z HC
n,l(z) = 1 − (1 − z)n(n + 1)Using a symmetry for the ase l > 1
2
, we �nally get :

∀l ∈ [0, 1] HC
n,l(z) = 1 − (1 − z)n−1(1 − z + n(z ∧ (1 − z) ∧ (1 − l) ∧ l)) (12)Mathematial expetation of Z is EC

n,l[Z] =
∫ 1

0
(1 − HC

n,l(z))dz

EC
n,l[Z] =

1

n + 1
(2 − ln+1 − (1 − l)n+1) (13)9



SSB - RR No. 2 F. Rodolphe et al.No seletion : Unseleted donor segment length on a �nite hromosomearm with omplete interfereneThere is zero or one segment opied from the donor. For suh a segment toexist, reeiver hromosome must be opied at eah generation in suh a way thatone of the n + 1 intervals de�ned by the proess X+ on the hromosome remainsof the donor type. Given an interval, the probability it belongs to the donor type is
2−n ; probability, 1 − qC

n , that a segment of the donor hromosome remains after ngenerations is (n + 1)2−n. Expeted length of suh an interval (provided it exists)is DC
n = 1

n+1
(there are always n + 1 intervals). Probability distribution of thesesegments, onditional on their existene, is the one of the intervals in the proess

X+, with umulative distribution funtion 1 − (1 − z)n, and density of probability
n(1 − z)n−1. Their unonditioned umulative distribution funtion is GC

n (z) = 1 −
(1 − qC

n )(1 − z)n, and their density is gC
n (z) = qC

n δ0(z) + (1 − qC
n )n(1 − z)n−1.Comparison of both rossing-over modelsIn order to ompare both rossing-over models, no interferene or omplete in-terferene, we must onsider similar situations. Model without interferene will the-refore be onsidered, in this setion, on a hromosome arm of length K = 1 Morgan,with, eventually, a seleted lous L at l.The major qualitative di�erene is ertainly that, if interferene is omplete,there is a unique donor hromosome segment in an introgression sheme (at mostone, if there is no seletion), whereas, without interferene, donor genome has apositive probability to reappear, and the number of suh fragments is theoretiallyunlimited. We already noted (equation 2) that, even after a large generation number,reurrene probability of a very short reeiver fragment remains almost onstant. Butsomewhat surprisingly, this seems to be of little relevane in pratie, as shown bynumerial results (�g. 3 and 4, �g. 5, �g. 6, �g. 7, �g. 9 and �g. 10 ).Otherwise, qualitative and quantitative di�erenes between both models are ra-ther small. Seleted genes are beared by fragments, whih are, in the average andnot taking into aount shortening due to trunation, twie as long as fragmentsobtained without seletion, provided they exist.Examples of use of these omputationsWhen designing a bakross, generally one has �rst to de�ne the desired maximalsize of the introgressed segment. Computations presented in this artile allow tomanage this step : length umulative distribution funtion of the donor segmentbearing the seleted gene an be easily omputed for any hromosome length, forany generation number and for di�erent rossing-over models (equations 4, 12 and�gures 3, 4) with its mathematial expetation (equations 5, 13 and �gure 5). Forexample, for a gene to be introgressed standing on the middle of a 1 Morgan longhromosome and assuming no interferene, after 5 generations of bakrossing, thedonor segment arrying the seleted gene has probability .80 to be smaller than10
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55 M (one half to be less than 34 M) (see table 1 and �gure 3). The gain pergeneration an be measured by the length redution for a given probability (here,about 10 M between generations 5 and 6). Similar omputations an also be madefor a model with omplete interferene (see Table 2 and �gure 4).Conversely the number of generations needed to ahieve a given length redu-tion an also be omputed. For example, if a length less than 50 M is wanted, 4generations are needed to ensure this happens with a probability of at least .5 (seeTables 1 and 2).Another harateristi important to be de�ned in a bakross design, is the pro-portion of donor fragments tolerated in unseleted hromosomes. Whereas somepubliations only study the struture of the seleted hromosome (Frish and Mel-hinger 2001, Hospital 2001), we here also provide formulae for the distribution ofdonor fragment length and number on unseleted hromosomes. Hene, in additionto the ontrol of the seleted hromosome, reeiver genome return on other hromo-somes an also be ontrolled. For any generation number, we an ompute (i) theprobability of donor disappearane (equations 6, subsetion and �gure 7), (ii) theprobability of donor multiple ourrenes in a model without interferene (multipleourenes annot our with omplete interferene) (equation 10 and �gure 8), (iii)the umulative distribution funtion of unseleted donor segment length (equation8, and �gures 9, 10), (iv) the mathematial expetation of unseleted donor segmentlength, onditional on their existene (equation 9, subsetion and �gure 6).DisussionWe presented here a general and omplete desription of the mosai hromosomestruture, whih requires only simple omputations ; in partiular, no numerialintegration is needed. Equations provided here make possible the omputation ofthe probability of any event of interest. Moreover, they an be adapted to di�erentrossing-over models.Computations presented in this artile allow to design introgression programs asthey an provide the probability of any feature on seleted and unseleted hromo-somes after any generation number. Before beginning an introgression program, theuser is able to �nd in a few seonds an optimal ompromise between objetives and�nanial means.Many publiations presented similar results on marker assisted bakrossing, i.e.probabilities to have a given size of donor segments onditional on the genotype atmarkers (Hill 1993, Hospital 2001, Frish and Melhinger 2001, Servin et al 2002,Frish and Melhinger 2005). Here, omputations are as easy as the published onesbut are unonditionned. Hene, in a �rst step, omputation with equations presentedhere an be made to evaluate the expeted struture of the genome and to help tohoie marker positions for a marker assisted bakrossing.Suh a desription, in terms of marked point proesses, ould be extended toother rosses and provide a fruitfull point of view.It is also of larger onern, for instane in population genetis. In any population,11



SSB - RR No. 2 F. Rodolphe et al.a hromosome an be onsidered as a mosai of fragments inherited from the anes-tors n generations bakward. Eah of these fragments is inherited through one of the
2n di�erent possible paths, and its length is distributed as in a bak-ross after n ge-nerations. In a population, hromosomes bearing a point mutation remain identialto the original hromosome, where the mutation oured, all along a segment, whihis one suh fragment, or several of them, owing to the fat that ontiguous frag-ments an be eventually opied from the same anestor. Haplotype determinationin a sample provides a dating tool : the shorter the onserved haplotype, the higherthe number of generations. But, owing to possible reombinations in the sample oa-lesent, a orret desription requires to take into aount possible reombinationsbetween opies of the anestral hromosome. Theoretial distributions as providedhere, an help building dating on�dene intervals.For onservation poliies direted toward small endangered populations, it isruial to maintain a su�iently large geneti diversity. Similar alulations, provi-ded the genealogy is known, make possible to estimate whih proportion of a givenanestor genome is still present in the population.
Appendix : Ehrenfest promenadeConsider two urns ontaining n balls in total. Eah time, a ball is hosen atrandom and moved to the other urn. The Ehrenfest promenade of parameter n isthe number of balls in a given urn. It is a Markov hain with period 2 (odd,even),therefore return times are even. An Ehrenfest promenade is ergodi and all returntimes have �nite expetations.Zero return time distributionThe Ehrenfest promenade has the following transition matrix :

Pn =





















0 1 0 0 0 · · · · · · · · · 0
1
n

0 n−1
n

0 0 · · · · · · · · · 0
0 2

n
0 n−2

n
0 · · · · · · · · · 0

0 0 3
n

0 n−3
n

· · · · · · · · · 0
0 · · · · · · · · · · · · · · · · · · · · · 0
0 · · · · · · · · · 0 · · · n−1

n
0 1

n

0 · · · · · · · · · 0 · · · 0 1 0



















Binomial distribution with parameter (n, 1/2), is the stationnary distribution.Zero return time expetation is the inverse of the stationnary probability of 0, heneequals 2n. Beause of periodiity, zero return time an be alulated from the hainsampled at even instants, with a state spae redued to even values. The transitionmatrix to be onsidered is (in this example with an ending orresponding to n even) :12
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Mn =

















1
n

n−1
n

0 · 0 · · · · · · · · · · · · 0
2
n2

5n−8
n2

n2−5n+6
n2 · 0 · · · · · · · · · · · · 0

0 · · · · · · · · · · · · ·
0 0 · · · · i(i−1)

n2

n+2i(n−i)
n2

(n−i)(n−i−1)
n2 · 0 0

· · · 0 · · · · · · · · · ·
0 · · · 0 · 0 · · · · · · 0 n−1

n
1
n















Index i is used here for the row orresponding to row i of P 2
n , whose rows andolumns are numbered as the states of the proess, from 0 to n. Row named i ishene the ( i

2
+ 1)− th row of Mn. The number of rows or olumns of Mn, m + 1, isthe number of even states for the Ehrenfest promenade ; m = n−1

2
if n is odd, m = n

2if n is even. Mn is tridiagonal and an be written as :
Mn =

[

α v
u A

]with α = 1/n, u = (2/n2, 0, · · ·0)
′ , v = ((n − 1)/n, 0, · · ·0).Zero return time probabilities are given by : π

(n)
2 = 1/n, π

(n)
2i = vAi−2u, i ≥ 2.

Appendix : Deriving a omputable formula for FW
nA general method to ompute π

(n)
2i = vAi−2u starts with a diagonalization ofmatrix A. A is real, nonnegative and tridiagonal, hene has real eigenvalues ; Ais stritly submarkovian, hene has eigenvalues of modulus stritly less than one(Perron-Frobenius theorem). A very e�etive algorithm exists for the numerial dia-gonalization of tridiagonal matries (Horn R. A. 1990).Let ωk, k = 1, . . .m be a omplete set of linearly independent left-eigenvetorsof A, with orresponding eigenvalues dk. Let c

′

1 = (1, 0, . . . 0), then, sine ω1, . . . ωkare linearly independent, there is a unique set of values γ1, . . . γk suh that c
′

1 =
∑m

k=1 γkωk. Then vAiu = n−1
n

∑m

k=1 γkωkA
ic1

2
n2 . Let βk = 2(n−1)

n3 γk < ωk, c1 >, then
vAiu =

∑m

k=1 βkd
i
k, i ≥ 0.Using these onsiderations and equation 1, F W

n (z) an now be written as a �nitelinear ombination of exponentials, with known oe�ients and parameters.
13
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F W

n (z) = 1 − e−nz

∞
∑
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2i

2(i−1)
∑
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(nz)j
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∞
∑
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∞
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∑
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∞
∑
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∞
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∑
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∞
∑
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∑
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dk))(14)Moments of F W

n an be derived from (14). For instane E[Z] = 1
n
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k=1
2βk

(1−dk)2
)(yet known to equal (2n − 1)/n), and E[Z2] = 2
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)14
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(1)
2 = 1. Hene : F W

1 (z) = 1 − e−z, with mean 1 and variane 1.For n = 2,
M2 =

[

1/2 1/2
1/2 1/2

]

π
(2)
2j = 2−j , j > 0 (remember π

(2)
0 = 0). Straightforward alulation leads to :

F W
2 (z) = 1 − 2+

√
2

4
e−(2−

√
2)z − 2−

√
2

4
e−(2+

√
2)z, with mean 3/2 and variane 11/4.For n = 3,

M3 =

[

1/3 2/3
2/9 7/9

]

π
(3)
2 = 1/3, π

(3)
2j = (4/27) × (7/9)j−2, j > 0.

F W
3 (z) = 1 − 1

7
e−3z − 3+

√
7

7
e−(3−

√
7)z − 3−

√
7

7
e−(3+

√
7)z, with mean 7/3 and variane

67/9.For n = 4,
M4 =





1/4 3/4 0
1/8 3/4 1/8
0 3/4 1/4



eigenvalues d1, d2 and left-eigenvetors ω1, ω2 of A are :
d1 = 4+

√
10

8
, ω1 = (2 +

√
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√
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8
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√
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√
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10)z,with mean 15/4 and variane 973/48.Referenes� Fisher R. 1949 Theory of juntions in inbreeding, in Theory of inbreeding (120p.)� Hanson W. D. 1959, Early generation analysis of lengths of heterozygous withbakrossing or sel�ng. Genetis 44, 833-837� Stam P. and Zeven C. 1981. The theoretial proportion of the donor genomein near-isogeni lines of self-fertilizers bred by bakrossing. Euphytia 30, 227-238� Horn R. A. 1990 Matrix analysis Cambridge University Press (560 p.)15



SSB - RR No. 2 F. Rodolphe et al.� Naveira H. and Barbadilla A. 1992. The theoretial distribution of lengths ofintat hromosome segments around a lous held heterozygous with bakros-sing in a diploid speies, Genetis 130 :205-209.� Hill W. 1993. Variation in the geneti omposition in bakrossing programs.Journal of Heredity 84 :212-213.� Frish M. and Melhinger A. E. 2001. The length of the intat donor hromo-some segment around a target gene in marker-assisted bakrossing, Genetis157 :1343-1356.� Frish M. and Melhinger A. E. 2005. Seletion theory for marker-assisted ba-krossing, Genetis 170 :909-917.� Hospital F. 2001. Size of donor hromosome segments around introgressed loiand redution of linkage drag in marker- assisted bakross programs. Genetis158 :1363-1379.� Servin B., Dillmann C., Deoux G., and Hospital F. 2002. Mdm : a program toompute fully informative genotype frequenies in omplex breeding shemes.Journal of Heredity 93 :227-228.
n x suh as P (Z < x) = 80% x suh as P (Z < x) = 50% P (Z < 0.5) P (Z < 0.3)1 ≃ 1 0.84 0.09 0.042 0.89 0.63 0.26 0.123 0.73 0.53 0.44 0.234 0.63 0.42 0.59 0.345 0.55 0.34 0.71 0.44Tab. 1 � Probability of the length Z of the donor segment arrying the introgres-sed gene on a hromosome of length K = 1 M, without interferene, at di�erentbakrossing generation numbers (n). Introgressed gene lies at l = 0.5 M.n x suh as P (Z < x) = 80% x suh as P (Z < x) = 50% P (Z < 0.5) P (Z < 0.3)1 0.90 0.75 0 02 0.74 0.59 0.25 0.093 0.63 0.49 0.50 0.224 0.55 0.39 0.69 0.355 0.49 0.31 0.81 0.47Tab. 2 � Probability of the length Z of the donor segment arrying the introgressedgene on a hromosome of length K = 1 M, with omplete interferene, at di�erentbakrossing generation numbers (n). Introgressed gene lies at l = 0.5 M.
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Fig. 3 � Donor hromosome segment length umulative distribution funtions, fordi�erent positions of the seleted gene, and di�erent bak-ross generation numbers,
n, on a hromosome of length 1, without interferene. Absissa is in Morgan units.
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Fig. 4 � Ibidem, with omplete interferene.18
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Fig. 9 � Length umulative distribution funtions of the �rst (or last) donor hromo-some segment, without seletion, on a hromosome of length 1, without interferene.
n is the number of generations
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Fig. 10 � Ibidem, with omplete interferene.21


