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Abstract

This paper provides a theoretical description of the chromosome architecture
resulting from a given number of generations in a back-cross. It is worth considering
chromosome architecture as depending on a marked point process, whose properties
depend on the crossing-over model used. Resulting architecture is presented here for
two different models : no interference, and complete interference. Exact distributions,
with easy-to-compute formulae, are derived for quantities of interest, as the length
of donor or receiver fragments, for any chromosome length and for both crossing-
over models. Examples are presented to illustrate the use of these distributions in
introgression programs or in population genetics.

Introduction

Introgression is a technique often used for a long period, for instance, by plant
breeders who want to introduce a monogenic character available in a wild genotype
(the donor) into a cultivated variety (the receiver), without altering other characte-
ristics.

Introgression starts with the hybrid (generation 0), which is crossed with the
receiver. Product genotypes containing one copy of the desired gene are selected,
and crossed again with the receiver, and so on for several generations. At each
stage, genotypes bear a complete set of receiver chromosomes, and the other half of
their genome, owing to crossing-over, is a mosaic, which, due to selection, bears the
desired gene. It is well known that the expected length of the donor chromosome
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fragment bearing the gene of interest, reduces at each generation, and that the donor
genome is progressively washed out from the rest of the genome (Fisher R. 1949,
Hanson W. D. 1959, Stam P. and Zeven C., 1981). Naveira H. and Barbadilla A.
(1992) give an extensive review of the question, and provide exact expressions for
the mean and standard deviation of the length, when there is no interference. Hill
(1993) provides expressions for the two first moments of donor contribution (the
proportion of the complete genome copied from the donor).

The aim of this note is to derive a general and complete description of the mo-
saic chromosome structure. It can be adapted to different crossing-over models, and
makes possible the computation of the probability of any event of interest like the
number of remaining segments of the donor chromosome. In an introgression pro-
gram, these computations provide a tool for experimental design. This description
is obtained by constructing a marked point process which contains all needed infor-
mation.

Materials and methods

Genetic models and point process construction

We assume throughout this paper, chromosomes to be independent, hence only
one will be considered, and crossing-over to occur at each generation independently
from the past. Genetic distances will be considered with two different crossing-over
models. In the first one (W), no interference between cross-overs is assumed : they
occur according to a homogeneous Poisson process. In the second one (C'), complete
interference between cross-overs is assumed : one and only one cross-over occurs at
each generation, on each chromosome arm.

At each generation i, a point process, X*, describes the crossing-over. X; is
the coordinate of the jth cross-over having occured at generation i. Consider now
the marked point process (X1,Y") which results from the superposition of all point
processes having occured at each generation between 1 and n ; points are renumbered
and each point, X;L, bears the mark, Y}, of the generation at which the corresponding
cross-over occured (figure 1).

Our claim is that chromosome architecture is determined by the marked point
process (X T,Y), whose properties depend on the crossing-over model. This provides
a way to a complete description of the chromosome architecture

Structure of the mosaic chromosome

Consider first the case of introgression illustrated in figure 1. Due to selection
in the experimental design, the locus of interest, L, is copied from the donor; the
segment, bearing this locus, will be interrupted by the next cross-over, in both
directions. Consider now another fragment copied from the donor chromosome, if
any, which does not bear the selected gene. It starts at a given point of the process
X and stops at the next.
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Let us now examine the relationship between the marked point process (X+,Y)
and the reappearence of a donor genome fragment along the chromosome. We start
on L, the locus to be introgressed. The first point, X", encountered stops the frag-
ment and starts a new interval, copied from the receiver chromosome. Its mark, Y7,
indicates at which generation this interruption occured. All the segment limited by
X" and the next point of X T bearing the same mark, has been copied from the
receiver at generation Y;. From then on, in a back-cross, this entire segment will re-
main a copy of the receiver. This holds at any generation. Hence donor chromosome
will reappear if and only if all marks appeared, each one, an even number of times
(zero is even) since we left the last donor segment, see figure 1.

XO

X1 ; .

X2 0 ‘ .
X34 . * '
Xt 6 — . .
y o 1. 3 3 1: 2.

F1G. 1 — Construction of the marked point process (X*,Y), based on the crossing-
over processes X° at each generation i. Bullets represent cross-overs, diamond the
gene to be introgressed. Chromosome fragments copied from the receiver at each
generation and at the end of the experiment, are indicated by a double line.

Crossing-over without interference on an infinite chromosome

When no interference is assumed, crossing-over occur at each generation, accor-
ding to a homogeneous Poisson process, with intensity one, by definition. In this
section, the problem will be considered on the line; in the next sections it will be
considered on a finite chromosome.

The resulting point process, X, after n generations, is itself a homogeneous
Poisson process of intensity m. Processes X being independent, Poisson (memo-
ryless), all with the same intensity, marks are distributed independently and at
random : Y is a series of independent variables with uniform distribution on the in-
tegers {1,2,---n} (a homogeneous Bernoulli process). Moreover, processes X ™ and
Y are independent.
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Donor chromosome fragments

Waiting time for the next point in process X has an exponential distribution
of parameter n, with density of probability ¢}V (2) = nexp(—nz). Total length of
the donor chromosome fragment bearing the gene to be introgressed, corresponds to
two independent waiting times : one on the right, one on the left. It is distributed
as (gVV)**(z) = n%z.exp(—nz), the convolution square of g (z). On the contrary,
unselected fragments inherited from the donor, have an exponential distribution of

parameter n, with density of probability ¢V (z).

Receiver chromosome fragments

Consider two urns (“even” and “odd”) with n balls numbered from 1 to n. Starting
in a donor fragment, we put all balls in the “even” urn. Each time we encounter a
point X;r in the X* process, we move the ball numbered Y. The “even” urn contains
the balls numbered as the marks which appeared an even number of times, since
we left the last donor fragment. Donor chromosome will reappear when and only
when “odd” urn gets empty. The number of balls moved, before returning to zero,
equals one plus the number of intervals covered before meeting again the donor
chromosome, in the process X .

Because of the nature of the process Y, the number of balls in the “odd” urn is an
Ehrenfest promenade with parameter n. We can now derive the receiver chromosome
fragment length probability distribution after n generations. Such a fragment can
be considered as a concatenation of intervals of lengths independent and identically
exponentially distributed, with parameter n. The number of fragments to be conca-
tenated is distributed as the zero return time, minus one, of an Ehrenfest promenade
with parameter n.

Let Z be the length of a receiver chromosome fragment, we have for Z, after n
generations, the following density of probability :

(2 =" (g ) B (z) =Y bt 20 Deap(—nz) /(21 — 1))
i=1 =1

where Wé?) is the probability, zero return time equals 27 (zero return times are even).
If n = 1 this formula reduces to f}V(z) = g]"(z) = exp(—z) since, if there is only
one ball in an Ehrenfest promenade, zero return time equals 2 with probability
one. The kth convolution power of the exponential distribution of parameter n,
(g")*(2) = n*2*texp(—nz)/(k — 1), is the density of probability of the total
length of k successive segments. It is known as an Erlang distribution, in fact, a
gamma distribution with integer parameter k.

Let G!V*(2) be the cumulative distribution function corresponding to (g!")**(2),
VEk :

N
—_

GWHF(2) =1 —exp(—nz) Y (nz)'/i!

i

Il
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The cumulative distribution function FY(-) of Z, corresponding to f, has the
following expression :

o0 o0 (’l 1
=Y m(G)E(2) =1 — eap(—n2) Y75 Y (n2)i /! (1)
i=1 i=1 j=0

This formula is not suitable for computations. A computable formula, 14, is provided
in appendices and . According to this formula, F'' is a linear combination of n
exponentials, depending on constants [y and di. Therefore, all expressions which
will be derived below, can be directly computed as finite linear combinations of
exponentials too, with no need of numerical integration.

These distributions are shown on figure 2 for a generation number between 1 and
8. As it can be seen on these figures, the slope of these cumulative distribution
functions is always 1 at the origin. Indeed :

2

dFY 1
n § *(2z 1) _ (n)l — n=1YV 92
dZ ( 7T2z n ) T nn , VI ( )

This means that receiver genome fragments, whose lengths generally increase very
fast with n (mean value is (2" — 1)/n, see appendix ), keep a probability of taking
tiny values, very small but quite unsensitive to n.

Whole chromosome architecture

As an Ehrenfest promenade is a Markov chain, each return to zero is a renewal,
hence all fragments have independent lengths. After n generations of back-cross,
resulting mosaic chromosome is a concatenation of fragments of independent lengths,
alternatively copied from the donor and the receiver chromosomes. Fragment lengths
are distributed according to densities gV for the donor, and f for the receiver. The
donor fragment bearing the unique gene to be introgressed has a length distribution

(g0 )"

Results

Crossing-over without interference on a finite chromosome

We now consider a chromosome of length K (in Morgans). A finite chromosome
corresponds to a window of length K on the line. As we are no longer considering
the process on the line, but on a finite chromosome, we must here take into account
that any segment can be truncated by chromosome ends.

Introgression : length of the segment bearing the selected gene on a finite
chromosome arm without interference

Let B; and B, be the left and right ends of the segment copied from the donor and
bearing, at locus L, the selected gene. Both segment ends are independent stochastic
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variables. Their joint probability density is, for 0 <z </l and | <y < K :

py (z,y) = (ne 7% 4 e7Gg(2)) (ne W=D + e KD (y))
= e "W (n? 4+ n(dy(z) + dx (y)) + So(7)dk (y)

where 0,(x) represents Dirae measure on a. Probability density of length Z of the

interval [By, B,] is hY, fol\//\((lez pn(z, 2 + 2)dz on [0, K|, where a Ab and a Vb

stay for the mlnlmurn and the maximum of a and b.
hm(z) =e ™ n*(IN(K—2)—0V(—2)+ n(lgsn + 1esk-n) +0x(2))  (3)

Let H)"(z) = P[Z < z] be the cumulative distribution function of the interval
(

length. If [ < %, H,If’/l z) has the following expressions :

if 2 <1 Jy e nfudu =1 — e (1 4 nz)
ifl<z<K-—I L—e (1 +nl)+ [fe™(n*l +n)du=1—e"(1+nl)
fK—1<z 1—e D1 4nl)+ [1_ e™(n*(K —u)+2n)du+ e "1 i
=1—e(1+n(K—2)+e "1,k

Using a symmetry for the case [ > & we finally get :
VIe[0,K] HY(2) =1—e™(1+n(zA (K —2)A(K=1)AD))+e ™1k (4)

Mathematical expectation of Z is :

EY[7) = /0 (1= B (2))dz = (2~ ¢ — () (5)

On an infinite chromosome, length expectation is %, twice the expected length of an
unselected donor genome segment. Here, = (e™" + e™"(K=1) is the correction term
due to chromosome finiteness; it consists of the truncation probability, e™™ to the
left and e=™%=Y to the right, tlmes E the expectation of each truncation.

No selection : donor segment length on a finite chromosome arm without
interference

Left chromosome end, as any point of the line, is copied from the donor with
probability 27", If not, it belongs to a receiver chromosome fragment, whose length
z is distributed accordlng to the density 2<zf) (z), the normalized product of
the density f(z) of any receiver chromosome fragment length by its length z.
Conditionally on z, chromosome end is uniformly distributed on this interval.

Probability of donor disappearance : Let qKK be the probability, the donor
genome totally disappeared at generation n. Probability 1 — qKK that the chromo-
some of length K bears a donor genome fragment, equals the probability it starts
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on such a segment plus, otherwise, the probability such a segment starts before
chromosome ends. Thus :

—-n —n > n
=gl = 202 [t
0

K
/\de

= e @ [ R ()

= 27"(1+nK(1 - EY(K))+nKEY(K) —n/OKFX/(z)dz)

l—q)x = 2—"(1+n/0 (1—FY(2))dz) (6)

Note that if K = 0 then qXYK =1—-27" and if K T oo then qXYK — 0 as expected
on an infinite chromosome.

Donor fragment length distribution: On an unlimited chromosome, the length
of unselected donor fragments is distributed with probability density ¢/ (z). On a
finite chromosome, truncation must be taken into account. Moreover the number of
donor fragments left on the chromosome is theoretically unlimited, but the length
of such fragments is differently distributed according to their status. Calculation is
done here for the first (or last) fragment. Four mutually exclusive situations have
to be considered, whether, or not, this fragment is limited by the chromosome end
on its left or on its right; donor disappearance is considered as the presence of a
fragment of length zero. The length probability density ¢)"x(2), z € [0, K] of such
an extremal donor fragment length is :
> (z — K)

o 1
Inxc(2) = QKK‘SO(Z%LQ_”(/ nzxe_mgd‘”jL(SK(z)/ nzxe_dex)
z K

_ CnufV(u) (K —2)ANu  _ /OO nufW(u)1 _
1—9"n n nz n - —nz
+ )(/0 T . ne” " du + T e du)

g,‘;VK(z) = qKK(SO(z) +27"(ne™ " + 0x (2)e

+ n?e (K — 2)FYV (K — 2) —/0 h FYV(u)du+ (K — 2)(1 — FY(K — 2))))
+ ne (1 - FV(K — 2)))
We finally obtain for g, (2), (z € [0, K])

q,‘Z/K(So(z) + 27" Mk (2) + 27 e (2 - EV(K — 2) + n(/0 _Z(l — FY(u))du)) (7)

The cumulative distribution function G}V (2) =[5 g2/ (u)du, results from a straight-
forward calculus :

K—=z
GYg(z) =142 ™ 1 gy — 27" ™ (1+ n/ (1—FV(u))du)  (8)
0

7
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Defining ®,(H) =n fo e " FW(H — z)dz, mathematical expectation of these frag-
ments, condltlonal on their existence, is :

W 2Pu(E) + [y (1= B (w)du
M e [R (1= BV (u))du

(9)

Note that ®,, is the length cumulative distribution function of the concatenation of
a donor and a receiver fragment. It tends to 1 as K tends to infinity, and D,V;/K to %
as expected on an infinite chromosome.

Probability of donor multiple occurrences : Let 0", be the probability there
are two or more donor genome fragments left on the chromosome.

K
O’X/K =27 / ne ™ FW(K — x)dx

KAn: K-y W
+(1—-27" / / / nzf ] 1 e " FV(K —y — z)dvdydz
-1 z

K-y
= n2_"/ e " EV(K — z)dx + n*2 / V(z) / / e " FV(K — y — z)dvdydz

/ W (2) / /K ’ e FV (K — y — x)dedydz)

—mcFW

. — x)dz, we have :

Integrating by parts, with &, (H) = nfo

/OK 7 (2) /0’“' ®,(K —y)dydz = F)Y (K) /OK ®, (K —y)dy — /K FY ()0, (K — 2)dz

0

and also, /: f:V(z)/o ®, (K — y)dydz = (1 — F,YV(K))/O ®, (K —y)dy

then finally,

o) =27 (Pn(K) + n/o (1—FY(2)®,(K — 2)d?) (10)

Crossing-over with complete interference

In this section, complete interference is assumed : at each generation, a unique
cross-over occurs on each chromosome arm. By definition of genetic distances, the
length of any chromosome arm is 1 and the cross-over is uniformly distributed on
it. Each process X* reduces to one point. Let [ be the position, on the chromosome
arm, of the gene to be introgressed (on locus L). The probability for the cross-over
to occur between the centromer and the locus L is [.

The point process, X, from the centromer to the end of the chromosome arm
is constituted by exactly n independent uniformly distributed points; each mark
appears once. Because of selection, the locus of interest, L, is always copied from

8
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the donor; if a cross-over occurs before (respectively, after) L, all the segment on its
left (respectively, right) is copied from the receiver. The interval which bears L, is
the only one copied from the donor. It is limited on its right by B,, the first point
of X after L, or 1, if all cross-overs occured before L. Similarly, it is limited on its
left by By, the last point of X before L, or 0, if all cross-overs occured after L.

Introgression : length of the segment bearing the selected gene on a finite
chromosome arm with complete interference

The number N of cross-overs having occured before L has a binomial distribution

with parameters n and [. Given N, cross-overs are distributed uniformly either on
[0,] or [[,1], and independent. We have :

PN = k| = (@ —0n*
P[B, =0] = (1—=10™ (then N = 0)
Pl0 < B, < z|N =k| = (/1) ¥k >0
Pll<B,<y|lN=k= 1-(1-y)/(1=0D))"kVk <n
P[B, =1] = " (then N = n)
Let p%(x,y) be the joint probability density of B; and B,. pC(x,y) =
(1= 1)"do(2) 2 (9" 4+ SoRs (11 = D)= EE= ()R (21 1763 () 3
= ndo(x)(1 = y)" " + 2001 o (L= y)" 7+ nd (y)an !
= ndo(z)(1 —y)" "t +n(n—1)(1 —y + )" +ndy (y)z"

which leads to the joint cumulative distribution function of B; and B, (with 0 <
r<I<y<l1):

P°lBi<zand B, <yl=(1—-1+2)"— (1 —y+a)" +2"1ly-n
Let Z be the length of the interval [B;, B,]. Its density of probability hil(z), on
0,1], is fl/\ (1) pn(x,:c + z)dx, which leads to :

%)n—l

ov(i—2)
iy (2) = n(l - )"_1(1{z>l} + lesiy) +n(n = (1= 2)" (1A (L= 2) =0V (I = 2))(11)
Let HS (2 = [ hS,(u)du = P[Z < z] be the cumulative distribution function of
Z:ifl <3 then
if 2 <1 (z)zl—(l—z)"_1(1+(n—1)z)
ifl<z<1-1 HC( Y=1—(1—-2)""11+nl—2)
if1—-1<z% ():1—(1—2)”(n+1)

Using a symmetry for the case [ > 5, we finally get :
Vie[0,1] Ho(z)=1—(1— z)"—1(1 —z+mn(z A (1 —2)ANA=1)AL)) (12)

Mathematical expectation of Z is E fo z))dz
1
ES 2] = 21" — (1=t 13
iz = — 1( (1-0m) (13)
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No selection : Unselected donor segment length on a finite chromosome
arm with complete interference

There is zero or one segment copied from the donor. For such a segment to
exist, receiver chromosome must be copied at each generation in such a way that
one of the n + 1 intervals defined by the process X on the chromosome remains
of the donor type. Given an interval, the probability it belongs to the donor type is
27" probability, 1 — ¢¢, that a segment of the donor chromosome remains after n
generations is (n + 1)27". Expected length of such an interval (provided it exists)
is DY = n%rl (there are always n + 1 intervals). Probability distribution of these
segments, conditional on their existence, is the one of the intervals in the process
X, with cumulative distribution function 1 — (1 — 2)", and density of probability
n(1 — z)"~1. Their unconditioned cumulative distribution function is G¢(z2) = 1 —

(1 —¢%9)(1 — 2)", and their density is g¢(2) = ¢¢o(2) + (1 — ¢ )n(1 — z)" L.

Comparison of both crossing-over models

In order to compare both crossing-over models, no interference or complete in-
terference, we must consider similar situations. Model without interference will the-
refore be considered, in this section, on a chromosome arm of length K = 1 Morgan,
with, eventually, a selected locus L at [.

The major qualitative difference is certainly that, if interference is complete,
there is a unique donor chromosome segment in an introgression scheme (at most
one, if there is no selection), whereas, without interference, donor genome has a
positive probability to reappear, and the number of such fragments is theoretically
unlimited. We already noted (equation 2) that, even after a large generation number,
recurrence probability of a very short receiver fragment remains almost constant. But
somewhat surprisingly, this seems to be of little relevance in practice, as shown by
numerical results (fig. 3 and 4, fig. 5, fig. 6, fig. 7, fig. 9 and fig. 10 ).

Otherwise, qualitative and quantitative differences between both models are ra-
ther small. Selected genes are beared by fragments, which are, in the average and
not taking into account shortening due to truncation, twice as long as fragments
obtained without selection, provided they exist.

Examples of use of these computations

When designing a backcross, generally one has first to define the desired maximal
size of the introgressed segment. Computations presented in this article allow to
manage this step : length cumulative distribution function of the donor segment
bearing the selected gene can be easily computed for any chromosome length, for
any generation number and for different crossing-over models (equations 4, 12 and
figures 3, 4) with its mathematical expectation (equations 5, 13 and figure 5). For
example, for a gene to be introgressed standing on the middle of a 1 Morgan long
chromosome and assuming no interference, after 5 generations of backcrossing, the
donor segment carrying the selected gene has probability .80 to be smaller than

10
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55 ¢M (one half to be less than 34 ¢cM) (see table 1 and figure 3). The gain per
generation can be measured by the length reduction for a given probability (here,
about 10 ¢cM between generations 5 and 6). Similar computations can also be made
for a model with complete interference (see Table 2 and figure 4).

Conversely the number of generations needed to achieve a given length reduc-
tion can also be computed. For example, if a length less than 50 ¢M is wanted, 4
generations are needed to ensure this happens with a probability of at least .5 (see
Tables 1 and 2).

Another characteristic important to be defined in a backcross design, is the pro-
portion of donor fragments tolerated in unselected chromosomes. Whereas some
publications only study the structure of the selected chromosome (Frish and Mel-
chinger 2001, Hospital 2001), we here also provide formulae for the distribution of
donor fragment length and number on unselected chromosomes. Hence, in addition
to the control of the selected chromosome, receiver genome return on other chromo-
somes can also be controlled. For any generation number, we can compute (i) the
probability of donor disappearance (equations 6, subsection and figure 7), (ii) the
probability of donor multiple occurrences in a model without interference (multiple
occurences cannot occur with complete interference) (equation 10 and figure 8), (iii)
the cumulative distribution function of unselected donor segment length (equation
8, and figures 9, 10), (iv) the mathematical expectation of unselected donor segment
length, conditional on their existence (equation 9, subsection and figure 6).

Discussion

We presented here a general and complete description of the mosaic chromosome
structure, which requires only simple computations; in particular, no numerical
integration is needed. Equations provided here make possible the computation of
the probability of any event of interest. Moreover, they can be adapted to different
crossing-over models.

Computations presented in this article allow to design introgression programs as
they can provide the probability of any feature on selected and unselected chromo-
somes after any generation number. Before beginning an introgression program, the
user is able to find in a few seconds an optimal compromise between objectives and
financial means.

Many publications presented similar results on marker assisted backcrossing, i.e.
probabilities to have a given size of donor segments conditional on the genotype at
markers (Hill 1993, Hospital 2001, Frish and Melchinger 2001, Servin et al 2002,
Frish and Melchinger 2005). Here, computations are as easy as the published ones
but are unconditionned. Hence, in a first step, computation with equations presented
here can be made to evaluate the expected structure of the genome and to help to
choice marker positions for a marker assisted backcrossing.

Such a description, in terms of marked point processes, could be extended to
other crosses and provide a fruitfull point of view.

It is also of larger concern, for instance in population genetics. In any population,

11
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a chromosome can be considered as a mosaic of fragments inherited from the ances-
tors n generations backward. Each of these fragments is inherited through one of the
2™ different possible paths, and its length is distributed as in a back-cross after n ge-
nerations. In a population, chromosomes bearing a point mutation remain identical
to the original chromosome, where the mutation occured, all along a segment, which
is one such fragment, or several of them, owing to the fact that contiguous frag-
ments can be eventually copied from the same ancestor. Haplotype determination
in a sample provides a dating tool : the shorter the conserved haplotype, the higher
the number of generations. But, owing to possible recombinations in the sample coa-
lescent, a correct description requires to take into account possible recombinations
between copies of the ancestral chromosome. Theoretical distributions as provided
here, can help building dating confidence intervals.

For conservation policies directed toward small endangered populations, it is
crucial to maintain a sufficiently large genetic diversity. Similar calculations, provi-
ded the genealogy is known, make possible to estimate which proportion of a given
ancestor genome is still present in the population.

Appendix : Ehrenfest promenade

Consider two urns containing n balls in total. Each time, a ball is chosen at
random and moved to the other urn. The Ehrenfest promenade of parameter n is
the number of balls in a given urn. It is a Markov chain with period 2 (odd,even),
therefore return times are even. An Ehrenfest promenade is ergodic and all return
times have finite expectations.

Zero return time distribution

The Ehrenfest promenade has the following transition matrix :

0 1 0 0 0 0]
L0 = 0 0 0
0 2 0 =2 90 0
p,=10 0 2 0o =22 0
0 ce e 0
0 o ... n=l 1
0 0 - 0 1 0

Binomial distribution with parameter (n,1/2), is the stationnary distribution.
Zero return time expectation is the inverse of the stationnary probability of 0, hence
equals 2". Because of periodicity, zero return time can be calculated from the chain
sampled at even instants, with a state space reduced to even values. The transition
matrix to be considered is (in this example with an ending corresponding to n even) :

12
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ER - R U

n— n2—5n
% 5n28 % . 0 cee e 0
oo _ . o
" 0 0 . Z(ln—Ql) n+2;(2n—1) (n_l)s’:’é—l_l) _ 0 0

Index 4 is used here for the row corresponding to row i of P2 whose rows and
columns are numbered as the states of the process, from 0 to n. Row named 7 is
hence the (4 + 1) — th row of M,,. The number of rows or columns of M,, m +1, is
the number of even states for the Ehrenfest promenade ; m = "T_l ifnisodd,m=2
if n is even. M, is tridiagonal and can be written as :

2
a v
= 2

with a = 1/n, u = (2/n2,0,---0)", v = ((n — 1)/n,0, - - -0).

Zero return time probabilities are given by : Wé") =1/n, Wé?) =vAT 2, i > 2.

Appendix : Deriving a computable formula for I
A general method to compute 70" = vAi~2y starts with a diagonalization of
matrix A. A is real, nonnegative and tridiagonal, hence has real eigenvalues; A
is strictly submarkovian, hence has eigenvalues of modulus strictly less than one
(Perron-Frobenius theorem). A very effective algorithm exists for the numerical dia-
gonalization of tridiagonal matrices (Horn R. A. 1990).

Let wy, £ = 1,...m be a complete set of linearly independent left-eigenvectors
of A, with corresponding eigenvalues dj,. Let cll = (1,0,...0), then, since wy,...wy
are linearly independent, there is a unique set of values 7y,...7; such that ¢; =
S e Yewk. Then vA'u = ”T_l 2?217kkaicl%- Let B, = %% < wy, 1 >, then
vAu =" Bdi, i > 0.

Using these considerations and equation 1, £V (2) can now be written as a finite
linear combination of exponentials, with known coefficients and parameters.

13
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2(i—1)

Fy‘;V - _nzzﬂéz Z

J=0
2(i—

—1—e(xd" + Zwé?)(l +
i=2 =

00 ( )2(1’—1) (nz)”
=11+ ) my Z )
1=2 j

2(z+1)( )j
_ 1 _ —nz 1+Z,UAZ Z j' )
7j=1
z—l—l)( )j
=1—e " 1+22ﬁkdl Z )
1=0 k=
1 2(z+1 )
SRS SO STS o
= 7j=1
Z H—l 2) (nz)zj—l
2 1 OO
=1- 6_nz(1 + Zﬁk Z( Z;jy 2] _]1 Z d’
k=1 j=1 i=j—1

m > (n2)¥ (nx)¥t 1
:1—6_"2(1%—2@@2% 1((7;j)! + ((Qj)—l)!)l_dk)

szk 1= dy) Z<(\/_M) +\/dT“Wdiwf@l)j!_))

(25)! (2
—nz - _2 ‘l’ 6\/_112 + 6_\/@”2 - d 6_\/@”2 - e\/ﬁnz
=1-e (14> B Vi )
— 2dk(1 — dy)
k:1d<1—dk 2 dkl—dk) d(l_dk)
We finally get : WV (2) =

. — 5k VA Ve _aaoyay L= Vak _peiva)

— dy,) 2 2
(14)
Moments of FV' can be derived from (14). For instance E[Z] = % (1 +> 0, 7(13@2)2)
(vet known to equal (2" —1)/n), and E[Z?] = (14 >,", 6k1 S )

14
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Numerical examples

For n =1, wél) = 1. Hence : F/V(2) =1 — e7*, with mean 1 and variance 1.

For n = 2,

[

wéi) =279 | j >0 (remember 7r(()2) = 0). Straightforward calculation leads to :

FV(z)=1- 2‘2—*/56_(2_\/5)2 — #e_(ﬂﬂ)z, with mean 3/2 and variance 11/4.

For n = 3,

[t 2

my) = 1/3. 7)) = (4/27) X (7/9) 7%, > 0.

FV(z) =1—1e% — #e_(?’_ﬁ)z — #e_(‘%ﬁ)z, with mean 7/3 and variance
67/9.

For n =4,
1/4 3/4 0
M,=[1/8 3/4 1/8
0 3/4 1/4

eigenvalues dl, do and left-eigenvectors wy, wy of A are :
dy = Y10y = (24 V/10,1), and dy = Y0, wy = (2 - V10, 1),

'U:4><2\/—(w1_u)2) <(U1,U>:M < Wo, U >= 2_—g/m
__ 154310 15— 3\/_ B
pr = —;,20 , B2 = =55, and Zk e 1 dk) 1,
FV(z)=1- 5+\/_(1 + \/7> —(4—+/8+2v10)z _ 5+2\6E(1 _ @)e—mmp
2v/2
_ 5= \/7(1 + \/—\/_)e_(4— 8—2v10)z __ 5—@(1 . 4_\/ﬁ)6_(4+m)2
2v2 20 NG ,

with mean 15/4 and variance 973/48.
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n |z such as P(Z < x) =80% | x such as P(Z < z) =50% || P(Z <0.5) | P(Z < 0.3)
1 ~ 1 0.84 0.09 0.04
2 0.89 0.63 0.26 0.12
3 0.73 0.53 0.44 0.23
4 0.63 0.42 0.59 0.34
) 0.55 0.34 0.71 0.44

TaB. 1 Probability of the length Z of the donor segment carrying the introgres-
sed gene on a chromosome of length K = 1 M, without interference, at different
backcrossing generation numbers (n). Introgressed gene lies at [ = 0.5 M.

n |z such as P(Z < ) =80% | x such as P(Z < z) =50% || P(Z <0.5) | P(Z < 0.3)
1 0.90 0.75 0 0

2 0.74 0.59 0.25 0.09

3 0.63 0.49 0.50 0.22

4 0.55 0.39 0.69 0.35

Y 0.49 0.31 0.81 0.47

TaB. 2 Probability of the length Z of the donor segment carrying the introgressed
gene on a chromosome of length K =1 M, with complete interference, at different
backcrossing generation numbers (n). Introgressed gene lies at [ = 0.5 M.
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F1G. 2 — Receiver chromosome segment length cumulative distribution function, for
different back-cross generation numbers, n, on an unlimited chromosome, without
interference. Abscissa is in Morgan unitsyf.ower figure is a zoom near the origin.
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Fi1Gg. 3 Donor chromosome segment length cumulative distribution functions, for
different positions of the selected gene, and different back-cross generation numbers,
n, on a chromosome of length 1, without interference. Abscissa is in Morgan units.
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FiG. 4 Ibidem, with complete interference.
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FiG. 5 Donor chromosome segment length expectation, for different positions of
the selected gene, and different back-cross generation numbers, n, on a chromosome
of length 1, without interference. Abscissa is in Morgan units. Continuous line :
without interference ; interruted line : complete interference.
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F1G. 6 — Donor chromosome segment lengt% expectation, conditional on its presence,
after n back-cross generations without selection.
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FiGc. 7 Probability of donor disappearence on a chromosome of length 1, in a
back-cross without selection, according to generation number, n.
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Fi1G. 8 Probability of donor multiple occurences on a chromosome of length 1 wi-

thout interference, in a back-cross without selection, according to generation number,
20
n.



SSB - RR No. 2 F. Rodolphe et al.

o
S
0
&
©
~ O
)
;c ] n=1
o < | n=2
o n=3
n=4
« n=5
o ® n=6
" pn=7
E n=8
o
d | T T T T T I
0.0 0.2 0.4 0.6 0.8 1.0

F1G. 9 - Length cumulative distribution functions of the first (or last) donor chromo-
some segment, without selection, on a chromosome of length 1, without interference.
n is the number of generations
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FiG. 10 Ibidem, Witglcomplete interference.



