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tThis paper provides a theoreti
al des
ription of the 
hromosome ar
hite
tureresulting from a given number of generations in a ba
k-
ross. It is worth 
onsidering
hromosome ar
hite
ture as depending on a marked point pro
ess, whose propertiesdepend on the 
rossing-over model used. Resulting ar
hite
ture is presented here fortwo di�erent models : no interferen
e, and 
omplete interferen
e. Exa
t distributions,with easy-to-
ompute formulae, are derived for quantities of interest, as the lengthof donor or re
eiver fragments, for any 
hromosome length and for both 
rossing-over models. Examples are presented to illustrate the use of these distributions inintrogression programs or in population geneti
s.Introdu
tionIntrogression is a te
hnique often used for a long period, for instan
e, by plantbreeders who want to introdu
e a monogeni
 
hara
ter available in a wild genotype(the donor) into a 
ultivated variety (the re
eiver), without altering other 
hara
te-risti
s.Introgression starts with the hybrid (generation 0), whi
h is 
rossed with there
eiver. Produ
t genotypes 
ontaining one 
opy of the desired gene are sele
ted,and 
rossed again with the re
eiver, and so on for several generations. At ea
hstage, genotypes bear a 
omplete set of re
eiver 
hromosomes, and the other half oftheir genome, owing to 
rossing-over, is a mosai
, whi
h, due to sele
tion, bears thedesired gene. It is well known that the expe
ted length of the donor 
hromosome1



SSB - RR No. 2 F. Rodolphe et al.fragment bearing the gene of interest, redu
es at ea
h generation, and that the donorgenome is progressively washed out from the rest of the genome (Fisher R. 1949,Hanson W. D. 1959, Stam P. and Zeven C., 1981). Naveira H. and Barbadilla A.(1992) give an extensive review of the question, and provide exa
t expressions forthe mean and standard deviation of the length, when there is no interferen
e. Hill(1993) provides expressions for the two �rst moments of donor 
ontribution (theproportion of the 
omplete genome 
opied from the donor).The aim of this note is to derive a general and 
omplete des
ription of the mo-sai
 
hromosome stru
ture. It 
an be adapted to di�erent 
rossing-over models, andmakes possible the 
omputation of the probability of any event of interest like thenumber of remaining segments of the donor 
hromosome. In an introgression pro-gram, these 
omputations provide a tool for experimental design. This des
riptionis obtained by 
onstru
ting a marked point pro
ess whi
h 
ontains all needed infor-mation.Materials and methodsGeneti
 models and point pro
ess 
onstru
tionWe assume throughout this paper, 
hromosomes to be independent, hen
e onlyone will be 
onsidered, and 
rossing-over to o

ur at ea
h generation independentlyfrom the past. Geneti
 distan
es will be 
onsidered with two di�erent 
rossing-overmodels. In the �rst one (W ), no interferen
e between 
ross-overs is assumed : theyo

ur a

ording to a homogeneous Poisson pro
ess. In the se
ond one (C), 
ompleteinterferen
e between 
ross-overs is assumed : one and only one 
ross-over o

urs atea
h generation, on ea
h 
hromosome arm.At ea
h generation i, a point pro
ess, X i, des
ribes the 
rossing-over. X i
j isthe 
oordinate of the jth 
ross-over having o

ured at generation i. Consider nowthe marked point pro
ess (X+, Y ) whi
h results from the superposition of all pointpro
esses having o

ured at ea
h generation between 1 and n ; points are renumberedand ea
h point, X+

j , bears the mark, Yj, of the generation at whi
h the 
orresponding
ross-over o

ured (�gure 1).Our 
laim is that 
hromosome ar
hite
ture is determined by the marked pointpro
ess (X+, Y ), whose properties depend on the 
rossing-over model. This providesa way to a 
omplete des
ription of the 
hromosome ar
hite
tureStru
ture of the mosai
 
hromosomeConsider �rst the 
ase of introgression illustrated in �gure 1. Due to sele
tionin the experimental design, the lo
us of interest, L, is 
opied from the donor ; thesegment, bearing this lo
us, will be interrupted by the next 
ross-over, in bothdire
tions. Consider now another fragment 
opied from the donor 
hromosome, ifany, whi
h does not bear the sele
ted gene. It starts at a given point of the pro
ess
X+ and stops at the next. 2



SSB - RR No. 2 F. Rodolphe et al.Let us now examine the relationship between the marked point pro
ess (X+, Y )and the reappearen
e of a donor genome fragment along the 
hromosome. We starton L, the lo
us to be introgressed. The �rst point, X+
1 , en
ountered stops the frag-ment and starts a new interval, 
opied from the re
eiver 
hromosome. Its mark, Y1,indi
ates at whi
h generation this interruption o

ured. All the segment limited by

X+
1 and the next point of X+ bearing the same mark, has been 
opied from there
eiver at generation Y1. From then on, in a ba
k-
ross, this entire segment will re-main a 
opy of the re
eiver. This holds at any generation. Hen
e donor 
hromosomewill reappear if and only if all marks appeared, ea
h one, an even number of times(zero is even) sin
e we left the last donor segment, see �gure 1.

X0 ♦

X1 ♦ • •

X2 ♦ •

X3 ♦ • •

X+ ♦ • • •• •

Y ♦ •1 •1 •2•3 •3Fig. 1 � Constru
tion of the marked point pro
ess (X+, Y ), based on the 
rossing-over pro
esses X i at ea
h generation i. Bullets represent 
ross-overs, diamond thegene to be introgressed. Chromosome fragments 
opied from the re
eiver at ea
hgeneration and at the end of the experiment, are indi
ated by a double line.Crossing-over without interferen
e on an in�nite 
hromosomeWhen no interferen
e is assumed, 
rossing-over o

ur at ea
h generation, a

or-ding to a homogeneous Poisson pro
ess, with intensity one, by de�nition. In thisse
tion, the problem will be 
onsidered on the line ; in the next se
tions it will be
onsidered on a �nite 
hromosome.The resulting point pro
ess, X+, after n generations, is itself a homogeneousPoisson pro
ess of intensity n. Pro
esses X i being independent, Poisson (memo-ryless), all with the same intensity, marks are distributed independently and atrandom : Y is a series of independent variables with uniform distribution on the in-tegers {1, 2, · · ·n} (a homogeneous Bernoulli pro
ess). Moreover, pro
esses X+ and
Y are independent. 3



SSB - RR No. 2 F. Rodolphe et al.Donor 
hromosome fragmentsWaiting time for the next point in pro
ess X+ has an exponential distributionof parameter n, with density of probability gW
n (z) = nexp(−nz). Total length ofthe donor 
hromosome fragment bearing the gene to be introgressed, 
orresponds totwo independent waiting times : one on the right, one on the left. It is distributedas (gW

n )∗2(z) = n2z.exp(−nz), the 
onvolution square of gW
n (z). On the 
ontrary,unsele
ted fragments inherited from the donor, have an exponential distribution ofparameter n, with density of probability gW

n (z).Re
eiver 
hromosome fragmentsConsider two urns (�even� and �odd�) with n balls numbered from 1 to n. Startingin a donor fragment, we put all balls in the �even� urn. Ea
h time we en
ounter apoint X+
j in the X+ pro
ess, we move the ball numbered Yj. The �even� urn 
ontainsthe balls numbered as the marks whi
h appeared an even number of times, sin
ewe left the last donor fragment. Donor 
hromosome will reappear when and onlywhen �odd� urn gets empty. The number of balls moved, before returning to zero,equals one plus the number of intervals 
overed before meeting again the donor
hromosome, in the pro
ess X+.Be
ause of the nature of the pro
ess Y , the number of balls in the �odd� urn is anEhrenfest promenade with parameter n. We 
an now derive the re
eiver 
hromosomefragment length probability distribution after n generations. Su
h a fragment 
anbe 
onsidered as a 
on
atenation of intervals of lengths independent and identi
allyexponentially distributed, with parameter n. The number of fragments to be 
on
a-tenated is distributed as the zero return time, minus one, of an Ehrenfest promenadewith parameter n.Let Z be the length of a re
eiver 
hromosome fragment, we have for Z, after ngenerations, the following density of probability :

fW
n (z) =

∞
∑

i=1

π
(n)
2i (gW

n )∗(2i−1)(z) =
∞

∑

i=1

π
(n)
2i n2i−1z2(i−1)exp(−nz)/(2(i − 1))!where π

(n)
2i is the probability, zero return time equals 2i (zero return times are even).If n = 1 this formula redu
es to fW

1 (z) = gW
1 (z) = exp(−z) sin
e, if there is onlyone ball in an Ehrenfest promenade, zero return time equals 2 with probabilityone. The kth 
onvolution power of the exponential distribution of parameter n,

(gW
n )∗k(z) = nkzk−1exp(−nz)/(k − 1)!, is the density of probability of the totallength of k su

essive segments. It is known as an Erlang distribution, in fa
t, agamma distribution with integer parameter k.Let GW,k

n (z) be the 
umulative distribution fun
tion 
orresponding to (gW
n )∗k(z),

∀k :
GW,k

n (z) = 1 − exp(−nz)
k−1
∑

i=0

(nz)i/i!

4



SSB - RR No. 2 F. Rodolphe et al.The 
umulative distribution fun
tion F W
n (·) of Z, 
orresponding to fW

n , has thefollowing expression :
F W

n (z) =
∞

∑

i=1

π
(n)
2i (GW

n )(2i−1)(z) = 1 − exp(−nz)
∞

∑

i=1

π
(n)
2i

2(i−1)
∑

j=0

(nz)j/j! (1)This formula is not suitable for 
omputations. A 
omputable formula, 14, is providedin appendi
es and . A

ording to this formula, F W
n is a linear 
ombination of nexponentials, depending on 
onstants βk and dk. Therefore, all expressions whi
hwill be derived below, 
an be dire
tly 
omputed as �nite linear 
ombinations ofexponentials too, with no need of numeri
al integration.These distributions are shown on �gure 2 for a generation number between 1 and

8. As it 
an be seen on these �gures, the slope of these 
umulative distributionfun
tions is always 1 at the origin. Indeed :
dFW

n

dz
(0) = fW

n (0) =
∞

∑

i=1

π
(n)
2i g∗(2i−1)

n (0) = π
(n)
2 1 =

1

n
n = 1, ∀n (2)This means that re
eiver genome fragments, whose lengths generally in
rease veryfast with n (mean value is (2n − 1)/n, see appendix ), keep a probability of takingtiny values, very small but quite unsensitive to n.Whole 
hromosome ar
hite
tureAs an Ehrenfest promenade is a Markov 
hain, ea
h return to zero is a renewal,hen
e all fragments have independent lengths. After n generations of ba
k-
ross,resulting mosai
 
hromosome is a 
on
atenation of fragments of independent lengths,alternatively 
opied from the donor and the re
eiver 
hromosomes. Fragment lengthsare distributed a

ording to densities gW

n for the donor, and fW
n for the re
eiver. Thedonor fragment bearing the unique gene to be introgressed has a length distribution

(gW
n )∗2.ResultsCrossing-over without interferen
e on a �nite 
hromosomeWe now 
onsider a 
hromosome of length K (in Morgans). A �nite 
hromosome
orresponds to a window of length K on the line. As we are no longer 
onsideringthe pro
ess on the line, but on a �nite 
hromosome, we must here take into a

ountthat any segment 
an be trun
ated by 
hromosome ends.Introgression : length of the segment bearing the sele
ted gene on a �nite
hromosome arm without interferen
eLet Bl and Br be the left and right ends of the segment 
opied from the donor andbearing, at lo
us L, the sele
ted gene. Both segment ends are independent sto
hasti
5



SSB - RR No. 2 F. Rodolphe et al.variables. Their joint probability density is, for 0 ≤ x ≤ l and l ≤ y ≤ K :
pW

n (x, y) = (ne−n(l−x) + e−nlδ0(x))(ne−n(y−l) + e−n(K−l)δK(y))

= e−n(y−x)(n2 + n(δ0(x) + δK(y)) + δ0(x)δK(y)where δa(x) represents Dira
 measure on a. Probability density of length Z of theinterval [Bl, Br] is hW
n,l(z) =

∫ l∧(K−z)

0∨(l−z)
pn(x, x + z)dx on [0, K], where a ∧ b and a ∨ bstay for the minimum and the maximum of a and b.

hW
n,l(z) = e−nz(n2(l ∧ (K − z) − 0 ∨ (l − z)) + n(1{z≥l} + 1{z≥K−l}) + δK(z)) (3)Let HW

n,l(z) = P [Z ≤ z] be the 
umulative distribution fun
tion of the intervallength. If l < K
2
, HW

n,l(z) has the following expressions :if z ≤ l
∫ z

0
e−nun2udu = 1 − e−nz(1 + nz)if l ≤ z ≤ K − l 1 − e−nl(1 + nl) +

∫ z

l
e−nu(n2l + n)du = 1 − e−nz(1 + nl)if K − l ≤ z 1 − e−n(K−l)(1 + nl) +

∫ z

K−l
e−nu(n2(K − u) + 2n)du + e−nK1{z=K}

= 1 − e−nz(1 + n(K − z)) + e−nK1{z=K}Using a symmetry for the 
ase l > K
2
, we �nally get :

∀l ∈ [0, K] HW
n,l(z) = 1 − e−nz(1 + n(z ∧ (K − z) ∧ (K − l) ∧ l)) + e−nK1{z=K} (4)Mathemati
al expe
tation of Z is :
EW

n,l[Z] =

∫ K

0

(1 − HW
n,l(z))dz =

1

n
(2 − e−nl − e−n(K−l)) (5)On an in�nite 
hromosome, length expe
tation is 2

n
, twi
e the expe
ted length of anunsele
ted donor genome segment. Here, −1

n
(e−nl + e−n(K−l)) is the 
orre
tion termdue to 
hromosome �niteness ; it 
onsists of the trun
ation probability, e−nl to theleft and e−n(K−l) to the right, times 1

n
, the expe
tation of ea
h trun
ation.No sele
tion : donor segment length on a �nite 
hromosome arm withoutinterferen
eLeft 
hromosome end, as any point of the line, is 
opied from the donor withprobability 2−n. If not, it belongs to a re
eiver 
hromosome fragment, whose length

z is distributed a

ording to the density n
2n−1

zfW
n (z), the normalized produ
t ofthe density fW

n (z) of any re
eiver 
hromosome fragment length by its length z.Conditionally on z, 
hromosome end is uniformly distributed on this interval.Probability of donor disappearan
e : Let qW
n,K be the probability, the donorgenome totally disappeared at generation n. Probability 1 − qW

n,K that the 
hromo-some of length K bears a donor genome fragment, equals the probability it starts6



SSB - RR No. 2 F. Rodolphe et al.on su
h a segment plus, otherwise, the probability su
h a segment starts before
hromosome ends. Thus :
1 − qW

n,K = 2−n + (1 − 2−n)

∫ ∞

0

n

2n − 1
zfW

n (z)
K ∧ z

z
dz

= 2−n + (1 − 2−n)(

∫ ∞

K

nK

2n − 1
fW

n (z)dz +

∫ K

0

n

2n − 1
zfW

n (z)dz)

= 2−n(1 + nK(1 − F W
n (K)) + nKF W

n (K) − n

∫ K

0

F W
n (z)dz)

1 − qW
n,K = 2−n(1 + n

∫ K

0

(1 − F W
n (z))dz) (6)Note that if K = 0 then qW

n,K = 1 − 2−n, and if K ↑ ∞ then qW
n,K → 0 as expe
tedon an in�nite 
hromosome.Donor fragment length distribution : On an unlimited 
hromosome, the lengthof unsele
ted donor fragments is distributed with probability density gW

n (z). On a�nite 
hromosome, trun
ation must be taken into a

ount. Moreover the number ofdonor fragments left on the 
hromosome is theoreti
ally unlimited, but the lengthof su
h fragments is di�erently distributed a

ording to their status. Cal
ulation isdone here for the �rst (or last) fragment. Four mutually ex
lusive situations haveto be 
onsidered, whether, or not, this fragment is limited by the 
hromosome endon its left or on its right ; donor disappearan
e is 
onsidered as the presen
e of afragment of length zero. The length probability density gW
n,K(z), z ∈ [0, K] of su
han extremal donor fragment length is :

gW
n,K(z) = qW

n,Kδ0(z) + 2−n(

∫ ∞

z

n2xe−nx 1

x
dx + δK(z)

∫ ∞

K

n2xe−nx (x − K)

x
dx)

+ (1 − 2−n)(

∫ ∞

0

nufW
n (u)

2n − 1

(K − z) ∧ u

u
ne−nzdu +

∫ ∞

K−z

nufW
n (u)

2n − 1

1

u
e−nzdu)

gW
n,K(z) = qW

n,Kδ0(z) + 2−n(ne−nz + δK(z)e−nK

+ n2e−nz((K − z)F W
n (K − z) −

∫ K−z

0

F W
n (u)du + (K − z)(1 − F W

n (K − z))))

+ ne−nz(1 − F W
n (K − z)))We �nally obtain for gW

n,K(z), (z ∈ [0, K])
qW
n,Kδ0(z) + 2−ne−nKδK(z) + 2−nne−nz(2 − F W

n (K − z) + n(

∫ K−z

0

(1 − F W
n (u))du)) (7)The 
umulative distribution fun
tionGW

n,K(z) =
∫ z

0
gW

n,K(u)du, results from a straight-forward 
al
ulus :
GW

n,K(z) = 1 + 2−ne−nK1{z=K} − 2−ne−nz(1 + n

∫ K−z

0

(1 − F W
n (u))du) (8)7



SSB - RR No. 2 F. Rodolphe et al.De�ning Φn(H) = n
∫ H

0
e−nxF W

n (H −x)dx, mathemati
al expe
tation of these frag-ments, 
onditional on their existen
e, is :
DW

n,K =
1
n
Φn(K) +

∫ K

0
(1 − F W

n (u))du

1 + n
∫ K

0
(1 − F W

n (u))du
(9)Note that Φn is the length 
umulative distribution fun
tion of the 
on
atenation ofa donor and a re
eiver fragment. It tends to 1 as K tends to in�nity, and DW

n,K to 1
nas expe
ted on an in�nite 
hromosome.Probability of donor multiple o

urren
es : Let σW

n,K be the probability thereare two or more donor genome fragments left on the 
hromosome.
σW

n,K = 2−n

∫ K

0

ne−nxF W
n (K − x)dx

+(1 − 2−n)

∫ ∞

0

∫ K∧z

0

∫ K−y

0

nzfW
n (z)

2n − 1

1

z
ne−nxF W

n (K − y − x)dxdydz

= n2−n

∫ K

0

e−nxF W
n (K − x)dx + n22−n(

∫ K

0

fW
n (z)

∫ z

0

∫ K−y

0

e−nxF W
n (K − y − x)dxdydz

+

∫ ∞

K

fW
n (z)

∫ K

0

∫ K−y

0

e−nxF W
n (K − y − x)dxdydz)Integrating by parts, with Φn(H) = n
∫ H

0
e−nxF W

n (H − x)dx, we have :
∫ K

0

fW
n (z)

∫ z

0

Φn(K − y)dydz = F W
n (K)

∫ K

0

Φn(K − y)dy −
∫ K

0

F W
n (z)Φn(K − z)dzand also, ∫ ∞

K

fW
n (z)

∫ K

0

Φn(K − y)dydz = (1 − F W
n (K))

∫ K

0

Φn(K − y)dythen �nally,
σW

n,K = 2−n(Φn(K) + n

∫ K

0

(1 − F W
n (z))Φn(K − z)dz) (10)Crossing-over with 
omplete interferen
eIn this se
tion, 
omplete interferen
e is assumed : at ea
h generation, a unique
ross-over o

urs on ea
h 
hromosome arm. By de�nition of geneti
 distan
es, thelength of any 
hromosome arm is 1 and the 
ross-over is uniformly distributed onit. Ea
h pro
ess X i redu
es to one point. Let l be the position, on the 
hromosomearm, of the gene to be introgressed (on lo
us L). The probability for the 
ross-overto o

ur between the 
entromer and the lo
us L is l.The point pro
ess, X+, from the 
entromer to the end of the 
hromosome armis 
onstituted by exa
tly n independent uniformly distributed points ; ea
h markappears on
e. Be
ause of sele
tion, the lo
us of interest, L, is always 
opied from8



SSB - RR No. 2 F. Rodolphe et al.the donor ; if a 
ross-over o

urs before (respe
tively, after) L, all the segment on itsleft (respe
tively, right) is 
opied from the re
eiver. The interval whi
h bears L, isthe only one 
opied from the donor. It is limited on its right by Br, the �rst pointof X+ after L, or 1, if all 
ross-overs o

ured before L. Similarly, it is limited on itsleft by Bl, the last point of X+ before L, or 0, if all 
ross-overs o

ured after L.Introgression : length of the segment bearing the sele
ted gene on a �nite
hromosome arm with 
omplete interferen
eThe number N of 
ross-overs having o

ured before L has a binomial distributionwith parameters n and l. Given N , 
ross-overs are distributed uniformly either on
[0, l] or [l, 1], and independent. We have :

P [N = k] = (n
k)lk(1 − l)n−k

P [Bl = 0] = (1 − l)n (then N = 0)

P [0 < Bl < x|N = k] = (x/l)k, ∀k > 0

P [l < Br < y|N = k] = 1 − ((1 − y)/(1 − l))n−k, ∀k < n

P [Br = 1] = ln (then N = n)Let pC
n (x, y) be the joint probability density of Bl and Br. pC

n (x, y) =

(1 − l)nδ0(x) n
1−l

(1−y

1−l
)n−1 +

∑n−1
k=1(

n
k)lk(1 − l)n−k k(n−k)

l(1−l)
(x

l
)k−1(1−y

1−l
)n−k−1 + lnδ1(y)n

l
(x

l
)n−1

= nδ0(x)(1 − y)n−1 +
∑n−1

k=1
n!

(k−1)!(n−k−1)!
xk−1(1 − y)n−k−1 + nδ1(y)xn−1

= nδ0(x)(1 − y)n−1 + n(n − 1)(1 − y + x)n−2 + nδ1(y)xn−1whi
h leads to the joint 
umulative distribution fun
tion of Bl and Br (with 0 ≤
x ≤ l ≤ y ≤ 1) :

P C [Bl ≤ x and Br ≤ y] = (1 − l + x)n − (1 − y + x)n + xn1{y=1}Let Z be the length of the interval [Bl, Br]. Its density of probability hC
n,l(z), on

[0, 1], is ∫ l∧(1−z)

0∨(l−z)
pn(x, x + z)dx, whi
h leads to :

hC
n,l(z) = n(1 − z)n−1(1{z>l} + 1{z>1−l}) + n(n − 1)(1 − z)n−2(l ∧ (1 − z) − 0 ∨ (l − z))(11)Let HC

n,l(z) =
∫ z

0
hC

n,l(u)du = P [Z ≤ z] be the 
umulative distribution fun
tion of
Z ; if l < 1

2
, then if z ≤ l HC

n,l(z) = 1 − (1 − z)n−1(1 + (n − 1)z)if l ≤ z ≤ 1 − l HC
n,l(z) = 1 − (1 − z)n−1(1 + nl − z)if 1 − l ≤ z HC
n,l(z) = 1 − (1 − z)n(n + 1)Using a symmetry for the 
ase l > 1
2
, we �nally get :

∀l ∈ [0, 1] HC
n,l(z) = 1 − (1 − z)n−1(1 − z + n(z ∧ (1 − z) ∧ (1 − l) ∧ l)) (12)Mathemati
al expe
tation of Z is EC

n,l[Z] =
∫ 1

0
(1 − HC

n,l(z))dz

EC
n,l[Z] =

1

n + 1
(2 − ln+1 − (1 − l)n+1) (13)9
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tion : Unsele
ted donor segment length on a �nite 
hromosomearm with 
omplete interferen
eThere is zero or one segment 
opied from the donor. For su
h a segment toexist, re
eiver 
hromosome must be 
opied at ea
h generation in su
h a way thatone of the n + 1 intervals de�ned by the pro
ess X+ on the 
hromosome remainsof the donor type. Given an interval, the probability it belongs to the donor type is
2−n ; probability, 1 − qC

n , that a segment of the donor 
hromosome remains after ngenerations is (n + 1)2−n. Expe
ted length of su
h an interval (provided it exists)is DC
n = 1

n+1
(there are always n + 1 intervals). Probability distribution of thesesegments, 
onditional on their existen
e, is the one of the intervals in the pro
ess

X+, with 
umulative distribution fun
tion 1 − (1 − z)n, and density of probability
n(1 − z)n−1. Their un
onditioned 
umulative distribution fun
tion is GC

n (z) = 1 −
(1 − qC

n )(1 − z)n, and their density is gC
n (z) = qC

n δ0(z) + (1 − qC
n )n(1 − z)n−1.Comparison of both 
rossing-over modelsIn order to 
ompare both 
rossing-over models, no interferen
e or 
omplete in-terferen
e, we must 
onsider similar situations. Model without interferen
e will the-refore be 
onsidered, in this se
tion, on a 
hromosome arm of length K = 1 Morgan,with, eventually, a sele
ted lo
us L at l.The major qualitative di�eren
e is 
ertainly that, if interferen
e is 
omplete,there is a unique donor 
hromosome segment in an introgression s
heme (at mostone, if there is no sele
tion), whereas, without interferen
e, donor genome has apositive probability to reappear, and the number of su
h fragments is theoreti
allyunlimited. We already noted (equation 2) that, even after a large generation number,re
urren
e probability of a very short re
eiver fragment remains almost 
onstant. Butsomewhat surprisingly, this seems to be of little relevan
e in pra
ti
e, as shown bynumeri
al results (�g. 3 and 4, �g. 5, �g. 6, �g. 7, �g. 9 and �g. 10 ).Otherwise, qualitative and quantitative di�eren
es between both models are ra-ther small. Sele
ted genes are beared by fragments, whi
h are, in the average andnot taking into a

ount shortening due to trun
ation, twi
e as long as fragmentsobtained without sele
tion, provided they exist.Examples of use of these 
omputationsWhen designing a ba
k
ross, generally one has �rst to de�ne the desired maximalsize of the introgressed segment. Computations presented in this arti
le allow tomanage this step : length 
umulative distribution fun
tion of the donor segmentbearing the sele
ted gene 
an be easily 
omputed for any 
hromosome length, forany generation number and for di�erent 
rossing-over models (equations 4, 12 and�gures 3, 4) with its mathemati
al expe
tation (equations 5, 13 and �gure 5). Forexample, for a gene to be introgressed standing on the middle of a 1 Morgan long
hromosome and assuming no interferen
e, after 5 generations of ba
k
rossing, thedonor segment 
arrying the sele
ted gene has probability .80 to be smaller than10
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55 
M (one half to be less than 34 
M) (see table 1 and �gure 3). The gain pergeneration 
an be measured by the length redu
tion for a given probability (here,about 10 
M between generations 5 and 6). Similar 
omputations 
an also be madefor a model with 
omplete interferen
e (see Table 2 and �gure 4).Conversely the number of generations needed to a
hieve a given length redu
-tion 
an also be 
omputed. For example, if a length less than 50 
M is wanted, 4generations are needed to ensure this happens with a probability of at least .5 (seeTables 1 and 2).Another 
hara
teristi
 important to be de�ned in a ba
k
ross design, is the pro-portion of donor fragments tolerated in unsele
ted 
hromosomes. Whereas somepubli
ations only study the stru
ture of the sele
ted 
hromosome (Frish and Mel-
hinger 2001, Hospital 2001), we here also provide formulae for the distribution ofdonor fragment length and number on unsele
ted 
hromosomes. Hen
e, in additionto the 
ontrol of the sele
ted 
hromosome, re
eiver genome return on other 
hromo-somes 
an also be 
ontrolled. For any generation number, we 
an 
ompute (i) theprobability of donor disappearan
e (equations 6, subse
tion and �gure 7), (ii) theprobability of donor multiple o

urren
es in a model without interferen
e (multipleo

uren
es 
annot o

ur with 
omplete interferen
e) (equation 10 and �gure 8), (iii)the 
umulative distribution fun
tion of unsele
ted donor segment length (equation8, and �gures 9, 10), (iv) the mathemati
al expe
tation of unsele
ted donor segmentlength, 
onditional on their existen
e (equation 9, subse
tion and �gure 6).Dis
ussionWe presented here a general and 
omplete des
ription of the mosai
 
hromosomestru
ture, whi
h requires only simple 
omputations ; in parti
ular, no numeri
alintegration is needed. Equations provided here make possible the 
omputation ofthe probability of any event of interest. Moreover, they 
an be adapted to di�erent
rossing-over models.Computations presented in this arti
le allow to design introgression programs asthey 
an provide the probability of any feature on sele
ted and unsele
ted 
hromo-somes after any generation number. Before beginning an introgression program, theuser is able to �nd in a few se
onds an optimal 
ompromise between obje
tives and�nan
ial means.Many publi
ations presented similar results on marker assisted ba
k
rossing, i.e.probabilities to have a given size of donor segments 
onditional on the genotype atmarkers (Hill 1993, Hospital 2001, Frish and Mel
hinger 2001, Servin et al 2002,Frish and Mel
hinger 2005). Here, 
omputations are as easy as the published onesbut are un
onditionned. Hen
e, in a �rst step, 
omputation with equations presentedhere 
an be made to evaluate the expe
ted stru
ture of the genome and to help to
hoi
e marker positions for a marker assisted ba
k
rossing.Su
h a des
ription, in terms of marked point pro
esses, 
ould be extended toother 
rosses and provide a fruitfull point of view.It is also of larger 
on
ern, for instan
e in population geneti
s. In any population,11
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hromosome 
an be 
onsidered as a mosai
 of fragments inherited from the an
es-tors n generations ba
kward. Ea
h of these fragments is inherited through one of the
2n di�erent possible paths, and its length is distributed as in a ba
k-
ross after n ge-nerations. In a population, 
hromosomes bearing a point mutation remain identi
alto the original 
hromosome, where the mutation o

ured, all along a segment, whi
his one su
h fragment, or several of them, owing to the fa
t that 
ontiguous frag-ments 
an be eventually 
opied from the same an
estor. Haplotype determinationin a sample provides a dating tool : the shorter the 
onserved haplotype, the higherthe number of generations. But, owing to possible re
ombinations in the sample 
oa-les
ent, a 
orre
t des
ription requires to take into a

ount possible re
ombinationsbetween 
opies of the an
estral 
hromosome. Theoreti
al distributions as providedhere, 
an help building dating 
on�den
e intervals.For 
onservation poli
ies dire
ted toward small endangered populations, it is
ru
ial to maintain a su�
iently large geneti
 diversity. Similar 
al
ulations, provi-ded the genealogy is known, make possible to estimate whi
h proportion of a givenan
estor genome is still present in the population.
Appendix : Ehrenfest promenadeConsider two urns 
ontaining n balls in total. Ea
h time, a ball is 
hosen atrandom and moved to the other urn. The Ehrenfest promenade of parameter n isthe number of balls in a given urn. It is a Markov 
hain with period 2 (odd,even),therefore return times are even. An Ehrenfest promenade is ergodi
 and all returntimes have �nite expe
tations.Zero return time distributionThe Ehrenfest promenade has the following transition matrix :

Pn =





















0 1 0 0 0 · · · · · · · · · 0
1
n

0 n−1
n

0 0 · · · · · · · · · 0
0 2

n
0 n−2

n
0 · · · · · · · · · 0

0 0 3
n

0 n−3
n

· · · · · · · · · 0
0 · · · · · · · · · · · · · · · · · · · · · 0
0 · · · · · · · · · 0 · · · n−1

n
0 1

n

0 · · · · · · · · · 0 · · · 0 1 0



















Binomial distribution with parameter (n, 1/2), is the stationnary distribution.Zero return time expe
tation is the inverse of the stationnary probability of 0, hen
eequals 2n. Be
ause of periodi
ity, zero return time 
an be 
al
ulated from the 
hainsampled at even instants, with a state spa
e redu
ed to even values. The transitionmatrix to be 
onsidered is (in this example with an ending 
orresponding to n even) :12
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Mn =

















1
n

n−1
n

0 · 0 · · · · · · · · · · · · 0
2
n2

5n−8
n2

n2−5n+6
n2 · 0 · · · · · · · · · · · · 0

0 · · · · · · · · · · · · ·
0 0 · · · · i(i−1)

n2

n+2i(n−i)
n2

(n−i)(n−i−1)
n2 · 0 0

· · · 0 · · · · · · · · · ·
0 · · · 0 · 0 · · · · · · 0 n−1

n
1
n















Index i is used here for the row 
orresponding to row i of P 2
n , whose rows and
olumns are numbered as the states of the pro
ess, from 0 to n. Row named i ishen
e the ( i

2
+ 1)− th row of Mn. The number of rows or 
olumns of Mn, m + 1, isthe number of even states for the Ehrenfest promenade ; m = n−1

2
if n is odd, m = n

2if n is even. Mn is tridiagonal and 
an be written as :
Mn =

[

α v
u A

]with α = 1/n, u = (2/n2, 0, · · ·0)
′ , v = ((n − 1)/n, 0, · · ·0).Zero return time probabilities are given by : π

(n)
2 = 1/n, π

(n)
2i = vAi−2u, i ≥ 2.

Appendix : Deriving a 
omputable formula for FW
nA general method to 
ompute π

(n)
2i = vAi−2u starts with a diagonalization ofmatrix A. A is real, nonnegative and tridiagonal, hen
e has real eigenvalues ; Ais stri
tly submarkovian, hen
e has eigenvalues of modulus stri
tly less than one(Perron-Frobenius theorem). A very e�e
tive algorithm exists for the numeri
al dia-gonalization of tridiagonal matri
es (Horn R. A. 1990).Let ωk, k = 1, . . .m be a 
omplete set of linearly independent left-eigenve
torsof A, with 
orresponding eigenvalues dk. Let c

′

1 = (1, 0, . . . 0), then, sin
e ω1, . . . ωkare linearly independent, there is a unique set of values γ1, . . . γk su
h that c
′

1 =
∑m

k=1 γkωk. Then vAiu = n−1
n

∑m

k=1 γkωkA
ic1

2
n2 . Let βk = 2(n−1)

n3 γk < ωk, c1 >, then
vAiu =

∑m

k=1 βkd
i
k, i ≥ 0.Using these 
onsiderations and equation 1, F W

n (z) 
an now be written as a �nitelinear 
ombination of exponentials, with known 
oe�
ients and parameters.
13
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F W

n (z) = 1 − e−nz

∞
∑

i=1

π
(n)
2i

2(i−1)
∑

j=0

(nz)j

j!

= 1 − e−nz(π
(n)
2 +

∞
∑

i=2

π
(n)
2i (1 +

2(i−1)
∑

j=1

(nz)j

j!
))

= 1 − e−nz(1 +
∞

∑

i=2

π
(n)
2i

2(i−1)
∑

j=1

(nz)j

j!
)

= 1 − e−nz(1 +

∞
∑

i=0

vAiu

2(i+1)
∑

j=1

(nz)j

j!
)

= 1 − e−nz(1 +
∞

∑

i=0

m
∑

k=1

βkd
i
k

2(i+1)
∑

j=1

(nz)j

j!
)

= 1 − e−nz(1 +

m
∑

k=1

βk

∞
∑

i=0

di
k

2(i+1)
∑

j=1

(nz)j

j!
)

= 1 − e−nz(1 +
m

∑

k=1

βk

∞
∑

i=0

di
k

(i+1)
∑

j=1

(
(nz)2j

(2j)!
+

(nz)2j−1

(2j − 1)!
))

= 1 − e−nz(1 +

m
∑

k=1

βk

∞
∑

j=1

(
(nz)2j

(2j)!
+

(nz)2j−1

(2j − 1)!
)

∞
∑

i=j−1

di
k)

= 1 − e−nz(1 +
m

∑

k=1

βk

∞
∑

j=1

dj−1
k (

(nz)2j

(2j)!
+

(nz)2j−1

(2j − 1)!
)

1

1 − dk

)

= 1 − e−nz(1 +

m
∑

k=1

βk

dk(1 − dk)

∞
∑

j=1

(
(
√

dknz)2j

(2j)!
+

√

dk

(
√

dknz)2j−1

(2j − 1)!
))

= 1 − e−nz(1 +
m

∑

k=1

βk

−2 + e
√

dknz + e−
√

dknz −
√

dk(e
−
√

dknz − e
√

dknz)

2dk(1 − dk)
)

= 1 − e−nz(1 −
m

∑

k=1

βk

dk(1 − dk)
) − e−nz

m
∑

k=1

βk

2
(

1 +
√

dk

dk(1 − dk)
e
√

dknz +
1 −

√
dk

dk(1 − dk)
e−

√
dknz)We �nally get : F W

n (z) =

1−(1−
m

∑

k=1

βk

dk(1 − dk)
)e−nz−

m
∑

k=1

βk

dk(1 − dk)
(
1 +

√
dk

2
e−nz(1−

√
dk)+

1 −
√

dk

2
e−nz(1+

√
dk))(14)Moments of F W

n 
an be derived from (14). For instan
e E[Z] = 1
n
(1 +

∑m

k=1
2βk

(1−dk)2
)(yet known to equal (2n − 1)/n), and E[Z2] = 2

n2 (1 +
∑m

k=1
βk(5−dk)
(1−dk)3

)14
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al examplesFor n = 1, π
(1)
2 = 1. Hen
e : F W

1 (z) = 1 − e−z, with mean 1 and varian
e 1.For n = 2,
M2 =

[

1/2 1/2
1/2 1/2

]

π
(2)
2j = 2−j , j > 0 (remember π

(2)
0 = 0). Straightforward 
al
ulation leads to :

F W
2 (z) = 1 − 2+

√
2

4
e−(2−

√
2)z − 2−

√
2

4
e−(2+

√
2)z, with mean 3/2 and varian
e 11/4.For n = 3,

M3 =

[

1/3 2/3
2/9 7/9

]

π
(3)
2 = 1/3, π

(3)
2j = (4/27) × (7/9)j−2, j > 0.

F W
3 (z) = 1 − 1

7
e−3z − 3+

√
7

7
e−(3−

√
7)z − 3−

√
7

7
e−(3+

√
7)z, with mean 7/3 and varian
e

67/9.For n = 4,
M4 =





1/4 3/4 0
1/8 3/4 1/8
0 3/4 1/4



eigenvalues d1, d2 and left-eigenve
tors ω1, ω2 of A are :
d1 = 4+

√
10

8
, ω1 = (2 +

√
10, 1), and d2 = 4−

√
10

8
, ω2 = (2 −

√
10, 1),

v = 3
4×2

√
10

(ω1 − ω2), < ω1, u >= 2+
√

10
8

, < ω2, u >= 2−
√

10
8

.
β1 = 15+3

√
10

320
, β2 = 15−3

√
10

320
, and ∑2

k=1
βk

dk(1−dk)
= 1 ,

F W
4 (z) = 1− 5+

√
10

20
(1 +

√
4+

√
10

2
√

2
)e−(4−

√
8+2

√
10)z − 5+

√
10

20
(1−

√
4+

√
10

2
√

2
)e−(4+

√
8+2

√
10)z

− 5−
√

10
20

(1 +

√
4−

√
10

2
√

2
)e−(4−

√
8−2

√
10)z − 5−

√
10

20
(1 −

√
4−

√
10

2
√

2
)e−(4+

√
8−2

√
10)z,with mean 15/4 and varian
e 973/48.Referen
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n x su
h as P (Z < x) = 80% x su
h as P (Z < x) = 50% P (Z < 0.5) P (Z < 0.3)1 ≃ 1 0.84 0.09 0.042 0.89 0.63 0.26 0.123 0.73 0.53 0.44 0.234 0.63 0.42 0.59 0.345 0.55 0.34 0.71 0.44Tab. 1 � Probability of the length Z of the donor segment 
arrying the introgres-sed gene on a 
hromosome of length K = 1 M, without interferen
e, at di�erentba
k
rossing generation numbers (n). Introgressed gene lies at l = 0.5 M.n x su
h as P (Z < x) = 80% x su
h as P (Z < x) = 50% P (Z < 0.5) P (Z < 0.3)1 0.90 0.75 0 02 0.74 0.59 0.25 0.093 0.63 0.49 0.50 0.224 0.55 0.39 0.69 0.355 0.49 0.31 0.81 0.47Tab. 2 � Probability of the length Z of the donor segment 
arrying the introgressedgene on a 
hromosome of length K = 1 M, with 
omplete interferen
e, at di�erentba
k
rossing generation numbers (n). Introgressed gene lies at l = 0.5 M.
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Fig. 2 � Re
eiver 
hromosome segment length 
umulative distribution fun
tion, fordi�erent ba
k-
ross generation numbers, n, on an unlimited 
hromosome, withoutinterferen
e. Abs
issa is in Morgan units. Lower �gure is a zoom near the origin.17
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Fig. 3 � Donor 
hromosome segment length 
umulative distribution fun
tions, fordi�erent positions of the sele
ted gene, and di�erent ba
k-
ross generation numbers,
n, on a 
hromosome of length 1, without interferen
e. Abs
issa is in Morgan units.
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Fig. 4 � Ibidem, with 
omplete interferen
e.18
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Fig. 5 � Donor 
hromosome segment length expe
tation, for di�erent positions ofthe sele
ted gene, and di�erent ba
k-
ross generation numbers, n, on a 
hromosomeof length 1, without interferen
e. Abs
issa is in Morgan units. Continuous line :without interferen
e ; interruted line : 
omplete interferen
e.
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Fig. 6 � Donor 
hromosome segment length expe
tation, 
onditional on its presen
e,after n ba
k-
ross generations without sele
tion.19
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Fig. 7 � Probability of donor disappearen
e on a 
hromosome of length 1, in aba
k-
ross without sele
tion, a

ording to generation number, n.

0 2 4 6 8 10

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

n

σW
n

Fig. 8 � Probability of donor multiple o

uren
es on a 
hromosome of length 1 wi-thout interferen
e, in a ba
k-
ross without sele
tion, a

ording to generation number,
n. 20
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Fig. 9 � Length 
umulative distribution fun
tions of the �rst (or last) donor 
hromo-some segment, without sele
tion, on a 
hromosome of length 1, without interferen
e.
n is the number of generations
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Fig. 10 � Ibidem, with 
omplete interferen
e.21


