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AbstractA new model for heterogeneous random graphs is presented with
an algorithm for obtaining the maximum likelihood estimates of the parame-
ters. This model is related to the concept of Ideal-Type in social science, but
is general and applicable to any network.

1. Introduction. Data sets giving not only information about items but also
information about the relation between them are more and more studied in differ-
ent domains such as social sciences and biology. The data size is proportional to
the square of the number of individuals, so that it is necessary to summarize the in-
formation in a simpler form. The network representation of the data is graphically
attractive, but is not readable for n > 100. There are two ways for producing a
synthetic representation of such data: multidimensional scaling where position in a
metric space is assigned to each item (Handcock et al., 2007, (2)), and clustering of
the items using a mixture model (Nowicki and Snijder ,2001 (3) and Daudin, 2008
(1)). In this paper we present a new method, which has some flavor of mixture and
some flavor of multidimensional scaling but is really different of both. We restrict
out interest to the case of pure relational information, putting aside any informa-
tion on items. The intensity of relation may be continuous or binary. We restrict our
interest on the binary case. These two restrictions are made for sake of simplicity.
The model we propose may be extended to the general case, but this is not done in
this paper.

We define the Ideal-Type Model (IDTM) in Section 2. In Section 3, we give a
maximum-likelihood estimation algorithm. Some simulations are provided in sec-
tion 4 and an example is studied in Section 5.

2. Ideal-Type Model.

2.1. Model IDT. Vertices Consider a graph with n vertices, labeled in {1, . . . , n}.
The model is based on Q hypothetical unobserved Ideal-Type vertices. Ideal-Type,
also known as pure type or Idealtyp in the original German, is a typological term
most closely associated with sociologist Max Weber. An ideal type is formed from
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characteristics and elements of the given phenomena, but it is not meant to corre-
spond to all of the characteristics of any one particular case. It is not meant to refer
to perfect things, moral ideals nor to statistical averages but rather to stress certain
elements common to most cases of the given phenomena. Weber wrote: "An ideal
type is formed by the one-sided accentuation of one or more points of view and by
the synthesis of a great many diffuse, discrete, more or less present and occasion-
ally absent concrete individual phenomena, which are arranged according to those
one-sidedly emphasized viewpoints into a unified analytical construct". Although
the term Ideal-Type has been proposed first for social science, in this paper we use
it for all types of networks.

Each vertex i is the weighted mean of Q Ideal-Types, with weights given by
Zi = (zi1, . . . , ziQ), with ziq ≥ 0 and

∑
q ziq = 1. The Q Ideal-Type vertices are put

at the end of the canonical unit vectors (1, 0...0), (0, 1, 0...0)...(0...0, 1) in RQ in an
arbitrary order. The set of vertices {1, . . . , n} is contained in the simplex S Q = {x, ∈
[0, 1]Q,

∑
q=1,Q xq = 1}, so that the Ideal-Type vertices are hypothetical extreme

vertices. Each Ideal-Type hypothetical vertex is supposed to be typical of the group
of vertices which are near from it in S Q, with more extremal properties than its
neighbor real vertices.

Edges Each edge from a vertex i to a vertex j is associated to a binary random
variable Xi j following a Bernoulli distribution with probability Pi j. The probability
that the Ideal-Type q sends an edge to the Ideal-Type l is aql. The connectivity prop-
erties of each vertex i are a mixture of the connectivity properties of the Ideal-Types
so that Pi j may be expressed using the weights ziq and z jl and the connectivity ma-
trix A between the Ideal-Types:

(2.1) Pi j =
∑

q,l=1,Q

ziqaqlz jl

which gives the matrix relation

(2.2) P = ZAZ′,

with

• P the (n, n) matrix containing the pi j,
• Z the (n,Q) matrix containing the ziq and Z′ the transpose of Z, Z ∈ S n

Q,

• and A ∈ [0, 1]Q2
, the (Q,Q) matrix containing the aql, the connectivity matrix

between Ideal-Types.

The random variables Xi j are assumed to be independent. Let X be the (n, n) matrix
containing the random variables Xi j. Finally the model is summarized by

(2.3) X ∼ B(Z′AZ)
2
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where B denotes the Bernoulli distribution, Z ∈ S n
Q and A ∈ [0, 1]Q2

.
The parameters of the model are A and Z. In a sense this model may be classified

in the set of the semi-parametric statistical models, for each individual (vertex)
has is proper set of parameters (zi1, ...ziQ). Using statistical models, it is generally
impossible to estimate as much parameters as the number of individuals. Moreover
there are Q2 + n(Q − 1) parameters, so that this number tends to infinity with n.
However, the number of observations contained in X is not proportional to n but to
n2, so that the ratio of the number of parameters with the number of observations
tends to 0 when n → ∞. In practice, for each vertex i, there are n data, (xi1, ...xin),
available to estimate the Q − 1 parameters (zi1, ...ziQ).

We can choose wether the graph is oriented or not by letting the Xi j loose or
setting Xi j = X ji for all i, j. If the graph is not oriented, A is symmetric. Note that
we assume in the following that there is no self-loop (Xii = 0, for i = 1, n).

2.2. Relation between IDTM and other models.

2.2.1. Relation between IDTM and mixture model. In a mixture model for ran-
dom graphs (Nowicki et al., 2001 (3) and Daudin, 2007 (1)), the variables Z are
random and are equal to 0 or to 1. In the IDT model the variables Z are fixed pa-
rameters, and take their values in the simplex S n

Q. In a mixture model, each item is
assumed to pertain to only one group. The mixture model is a mixture of popula-
tions of "pure" items. In the IDT model, each item is a compound of Ideal-Types,
so that the mixture is at the individual level. However there are two practical appli-
cations of the two models:

• the clustering of the items, i. e. the classification of each item in a group. The
key element is E(Z/X = x) in the mixture model and directly Z for IDTM.
Note that E(Z/X = x) in the mixture model, and Z in IDTM, take their values
in the same set S n

Q.
• The connectivity matrix A is the key element for the description and interpre-

tation of groups in the two models (see Daudin (1)). However in the mixture
model, A is the mean connectivity matrix in the sense that the probability
of connection is the weighted mean of the connections between the vertices.
On the opposite A represents an extreme connectivity matrix in the IDTM,
so that A is more contrasted in IDTM than the one obtained with a mixture
model.

Therefore, although the mixture model and IDTM are definitively different, their
practical use is very similar.

2.2.2. Relation between IDTM and multidimensional scaling . The multidi-
mensionnal scaling (MS) method, applied to the similarity matrix P, consists in

3



positioning each item in a metric space so that the similarity between items is
approximatively kept. The underlying model is P = TT ′, where T contains the
coordinates of the items in a k-dimensional metric space. This model is similar to
(2.2), with k = Q − 1. There are two major differences:

• T lies in Rkn and Z ∈ S n
Q.

• No Ideal-Type is modeled in the MS method and there is no connectivity
matrix A, so that the clustering objective is not reached by MS. A further
step of clustering the points in the metric space is necessary if one wants to
obtain groups of vertices.

Note that (2.2) implies that P ∈ [O, 1]n2
, but this is not true for P = TT ′ so that the

elements of P are not probabilities (i.e. contained in [0, 1]). The logit transforma-
tion has been used by Handcock et al. (2007) in order to handle this point, but their
model is then definitively different from IDTM.

2.3. Model identifiability. As defined till now the model is not identifiable.
Let P be a known matrix and assume that A and Z exist so that P = ZAZ′. It is
generally possible to find other sets of parameters Ã and Z̃ so that P = Z̃ÃZ̃′. Let
H be a (Q,Q) matrix with the following properties:

1. H−1 exist
2. H1Q = 1Q, with 1Q = (1...1)′, with Q ones
3. Z̃ = ZH ≥ 0
4. Ã = H−1AH′−1 ∈ [0, 1]Q2

Then we have:

• Z̃ÃZ̃′ = ZHH−1AH′−1H′Z′ = P
• Z̃1Q = ZH1Q = Z1Q = 1Q so that Z̃ ∈ S n

Q

• Ã ∈ [0, 1]Q2
by condition 4.

so that Z̃ and Ã and Z and A are equivalent admissible sets of parameters.
Such matrix H do exist:
Assume that two columns l, q, of Z are strictly positive. Let

H = IQ + B

where IQ is the (Q,Q) identity matrix and B has all its coefficients equal to zero
excepted bqq = bll = ε ∈]0, 1[ and bql = blq = −ε. We have

1. H−1 has the same structure as H with b′qq = b′ll = − ε
1+2ε and b′ql = b′lq = ε

1+2ε
2. H1Q = 1Q

3. Z̃ = ZH ≥ 0 because ε may be taken sufficiently small so that no term in Z̃
becomes negative

4
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4. Ã = H−1AH′−1 ∈ [0, 1]Q2
because some terms of Ã are equal to the corre-

sponding terms of A and the other ones are weighted means of terms of A
with positive weights summing up to one.

Proposition 1. The H-matrix operation increases Tr(Z′Z) and decreases V(A) =∑
(alq − ā)2, so that it amplifies the differences between the coefficients of the same

row of Z and decreases the differences between the coefficients of A.

Proof. Assume that the H-matrix is such that l = 1 and q = 2 (this trick is made
only for simplicity of notations and does not imply any loss of generality).
Tr(Z′Z) =

∑
i
∑

q z2
iq, and Tr(Z̃′Z̃) =

∑
i
∑

q z̃2
iq. For any fixed i we have

∑

q

z̃2
iq = ((1 + ε)zi1 − εzi2)2 + ((1 + ε)zi2 − εzi1)2 +

∑

q≥3

z2
iq

= (1 + 2ε + 2ε2)z2
i1 + (1 + 2ε + 2ε2)z2

i1 +
∑

q≥3

z2
iq

= z2
i1 + z2

i1 + 2ε(1 + ε)(zi1 − zi2)2 +
∑

q≥3

z2
iq

=
∑

q≥1

z2
iq + 2ε(1 + ε)(zi1 − zi2)2

≥
∑

q≥1

z2
iq.

The property V(A) ≥ V(Ã) comes from the argument given in point 4.
�

If no more than one column of Z is strictly positive, and at least two columns of
A are strictly positive and strictly less than one, the same argument applies, using
the matrix H−1 in place of H. Such H−1-matrix operation decreases the differences
between the coefficients of the same row of Z and increases the differences between
the coefficients of A.

For illustration purpose, let us see the example with n = 9 vertices clustered in
Q = 3 groups given in Table 1. This example works with any matrix A and two
cases of matrices A are presented in Table 1. This example shows two equivalent
sets of parameters, giving the same value for P. The first set is the version with
the most contrasted possible values for A and medium coordinates Z for the ver-
tices. On the opposite, the second parametrization has extremal values for Z and
medium values for A. These are the two extremal possible parameterizations, with
a continuous range of intermediate ones. The two extremal parameterizations have
their own advantages and drawbacks: the first allows a very clear interpretation of
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the connectivity matrix between clusters, A, but the possibility that most of the ob-
served vertices are near the barycentre and no vertex near from the Ideal-Types. In
the second one, the Ideal-Types are near (and in some cases such as in Table1 ex-
actly equal to) real vertices, but the connectivity matrix between the clusters is less
clear-cut. We propose to choose Z which maximizes Tr(ZZ′) among the equivalent
versions of model (2.4). The choice is motivated by two reasons:

• this constraint implies unicity of (Z, A) provided that n � Q and the n ver-
tices are different.

• the Ideal-Type should not be too far from real vertices in order to assess to
them some reality. This closeness between Ideal-Type and some vertices is
naturally provided by the maximization of Tr(ZZ′).

Finally the model is now:

(2.4) X ∼ B(Z′AZ)

where B denotes the Bernoulli distribution, Z ∈ S n
Q, A ∈ [0, 1]Q2

and Tr(Z′Z) is
maximum.

3. Parameter Estimation. The log-likelihood is

(3.1) L =
∑

i, j

xi j log(
∑

q,l=1,Q

ziqAqlz jl) + (1 − xi j) log(1 −
∑

q,l=1,Q

ziqAqlz jl)

which may be written

(3.2) L(A,Z) = Tr(X′ log(ZAZ′)) + Tr((J − X)′ log((J − ZAZ′)))

with J the (n, n) matrix composed of 1, log(ZAZ′) is the matrix composed of the
log of each element of ZAZ′, and the constraints on the parameters are

A ∈ [O, 1]n2
(3.3)

Z ∈ S n
Q(3.4)

Note that the the set of admissible solutions, [O, 1]n2 × S , is convex.

3.1. Log-likelihood derivatives. After some algebric manipulations we obtain

(3.5)
∂L
∂Z

= RZA′ + R′ZA

with R a (n, n) matrix with ri j =
xi j−pi j

pi j(1−pi j)
, and

(3.6)
∂L
∂A

= Z′RZ
6
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Table 1
Example of two different sets of parameters (A, Z) giving the same connectivity matrix, P. The H

matrix is the inverse of the first three lines of Z. Two cases of matrices A are presented.

A and Z Ã = H−1AH′−1 and Z̃ = ZH

A


1 0 0
0 1 0
0 0 1




1 1 1
0 1 0
0 0 0.5




0.66 0.24 0.17
0.24 0.54 0.17
0.17 0.17 0.66




0.815 0.875 0.85
0.275 0.695 0.31
0.15 0.21 0.43



V(A) 0.25 0.25 0.0475 0.0872

Z



0.80 0.10 0.10
0.20 0.70 0.10
0.10 0.10 0.80
0.70 0.20 0.10
0.75 0.10 0.15
0.20 0.65 0.15
0.25 0.65 0.10
0.20 0.10 0.70
0.15 0.20 0.65





1.0 0.0 0.0
0.0 1.0 0.0
0 0 1.0

0.833 0.167 0.0
0.929 0.0 0.071
0.012 0.917 0.071
0.083 0.917 0.0
0.143 0.0 0.857
0.048 0.167 0.786



Tr(Z′Z) = 5 Tr(Z′Z) = 7.68

Triangular
representation
of Z and Z̃ in
the simplex
S 3
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The second order derivatives are more cumbersome:

(3.7)
∂L

∂aql∂auv
= −

∑

i j

r2
i jziqziuz jlz jv

(3.8)
∂L

∂aql∂ziu
= δqu

∑

j

ri jz jl + δlu

∑

j

r jiz jq −
∑

jv

(r2
i jz jlz jvauvziq + r2

jiz jqz jvavuz jq)

(3.9)
∂L

∂ziq∂z jl
= ri jaql+r jialq−δi j

∑

kuv

[
r2

ikzkualuzkvaqv + r2
kizkuaulzkvavq

]
−
∑

uv

(
r2

i jziuaulz jvaqv + r2
jiziualuz jvavq

)

with δi j = 1 if i = j, and δi j = 0 if i , j.

3.2. Estimation Algorithm.

3.2.1. Algorithm . The constraints on the parameters are linear, but the log-
likelihood is not linear. A linearization of (3.1) leads to a simple linear program-
ming problem.

Let A(k) and Z(k) be the parameter estimates at step k, P(k) = Z(k)A(k)Z(k′) and

R(k) a (n, n) matrix with r(k)
i j =

xi j−p(k)
i j

p(k)
i j (1−p(k)

i j )
.

The linear approximation of the log-likelihood at point (A(k), Z(k)) is

L(A,Z) ≈ L(A(k),Z(k)) + Tr
[
(A − A(k))′

∂L
∂A

(A(k),Z(k))
]

+ Tr
[
(Z − Z(k))′

∂L
∂Z

(A(k),Z(k))
]

≈ L(A(k),Z(k)) + Tr
[
(A − A(k))′Z(k)′R(k)Z(k)

]
+ Tr

[
(Z − Z(k))′(R(k)Z(k)A(k)′ + R(k)′Z(k)A(k))

]

The algorithm is the following:

• Find initializing values (A(0),Z(0))
• At step (k) use a linear programming algorithm to maximize the function in

(A,Z):

(3.10) fk(A,Z) = Tr
[
A′Z(k)′R(k)Z(k)

]
+ Tr

[
Z′(R(k)Z(k)A(k)′ + R(k)′Z(k)A(k))

]

under the constraints:

A ∈ [O, 1]n2
(3.11)

Z ∈ S n
Q(3.12)
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• We can use two alternative stopping rules:

‖A(k) − A(k−1)‖ + ‖Z(k) − Z(k−1)‖ <(3.13)

|L(A(k),Z(k)) − L(A(k−1),Z(k−1))| < α(3.14)

In practice it is valuable to limit the difference between two successive steps of
the algorithm by adding the constraints |Z(k) − Z(k−1)| < ε and |A(k) − A(k−1)| < ε.
This is easy to do, because coordinates of Z and A are in [0, 1], so that it is rea-
sonable (and easy using linear programming) to bound the absolute values of these
differences. This trick prevents a possible oscillating behavior of the algorithm. An
alternative algorithm of non-linear optimization using the second order derivatives
of the log-likelihood given in 3.7, 3.8 and 3.9 would be possible, but we have found
that the above algorithm is easy to implement, robust and very efficient.

3.2.2. Initialization . A good starting value for the algorithm is given by the
following process:

1. Use Principal Coordinate on the similarity matrix X to obtain a Q − 1 di-
mensional representation space. This is obtained by taking the Q − 1 first
eigenvectors of W = X′X + XX′.

2. Find an approximately minimal convex hull of the n points in RQ−1 with Q
vertices.

3. Build A using the values of X for the nearest point of each vertex, so that
A = X(1 : Q, 1 : Q) where the matrix X is sorted so that the first vertex of
X is the nearest from one of the Q vertices of the convex hull, the second
vertex of X is the nearest from another vertex of the convex hull, and so on
till vertex Q.

3.2.3. Assessment of the identification of the model. The model is not identifi-
able as it stands (see 2.3). In practice we have not seen any problem coming from
the lack of identifiability when using the above algorithm. However, we advise to
use the stopping rule (3.14) in order to avoid to the algorithm to fluctuate between
equivalent solutions (A, Z) . After convergence, we obtain a unique instance of the
equivalent class of parameters (A, Z) by maximizing Tr(Z′Z) under the constraint
that ZAZ′ = Z(k)A(k)Z(k), with k the iteration number at convergence.

3.3. Choice of the Number of Groups. We use the AIC or BIC criteria:

(3.15) AIC(Q) = −2L(ÂQ, ẐQ) + 2(Q2 + n(Q − 1))

(3.16) BIC(Q) = −2L(ÂQ, ẐQ) + Q2 log(n(n − 1)) + n(Q − 1) log(2n)

(ÂQ, ẐQ) are the maximum likelihood estimates of (A,Z) for Q groups. There are
n(n − 1) observations for the edges and Q2 + n(Q − 1) parameters.

9



Table 2
Results of three simulations. Parameter estimate (Asymptotic standard error estimate)

case 1 2 3
â11 (σ̂(â11)) 0.612 (0.028) 0.594 (0.0013) 0.78 (0.02)

â12 0.100 (0.019) 0.094 (0.001) 0.049 (0.016)
â21 0.203 (0.023) 0.194 (0.001) 0.61 (0.02)
â22 0.000 (0.020) 0.000 (0.0003) 0.889 (0.02)

iterations 34 4 32
time 0.6s 1.6s 3.3s

4. Simulation Study. We have tested our algorithm on some simulated exam-
ples. Here we consider three cases:

1. n = 50, Q = 2 A =

(
0.6 0.1
0.2 0

)

2. n = 1000, Q = 2 A =

(
0.6 0.1
0.2 0

)

3. n = 200, Q = 4 A =



0.7 0.1 0.2 0.3
0.6 0.8 0.0 0.1
0.1 0.1 0.1 0.8
0.5 0.2 0.4 0.1


The results are given in the Table2 and Figure1.

5. Example. We analyze the well known data set about the relations between
members of a karate-club from Zachary (1977) (4). The network is presented in
Figure 2.
Using AIC, the best choice is Q = 4. The estimates for A and Z are given in

Tables 3 and 4. The 4 groups are the circles’s hubs (vertices 33 and 34), the circles,
the squares’s hubs (vertices 1 and 2) and the squares. The four Ideal-Types are
characterized by the connectivity matrix Â: they are

• a circle’s hub connected with himself and with the circles
• a circle connected only to its hub
• a square’s hub connected with himself and with the squares
• a square connected only to its hub

Some vertices are very near to an Ideal-Type (see vertices 1, 8, 10, 12, ...34), but
others have intermediate values, such as vertex 2 which is a mixture between a
squares’s hub and a simple square. Vertex 1 is the most important vertex for the
squares. The same comment may be applied to vertices 33 and 34. Some vertices
hesitate between the two sides such as vertices 9, 17 and 25. However there is
no classification error coming from the unsupervised clustering made by the IDT
model: the Karate-club has been divided in two known groups, the circles and the

10
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Figure 1. Plot of the estimated values of Z1 (y-axis) versus the true ones (x-axis) for Ideal-Type 1, in
the third simulated case

Table 3
Connectivity matrix estimate Â for the Karate-club network,(asymptotic estimate of the

standard-deviation of Â)

group circles’s hubs circles squares’s hubs squares
circles’s hubs 1 (0.87) 1 (0.16) 0.002 (1.1) 0 (0.20)

circles 1 (0.16) 0 (0.05) 0.002 (0.24) 0 (0.13)
squares’s hubs 0.002 (1.1) 0.002 (0.24) 1 (1.68) 1 (0.06)

squares 0 (0.20) 0 (0.13) 1 (0.06) 0 (0.24)

squares. This division is exactly recovered by the IDTM if we bring together groups
1 and 2 on one side, and groups 3 and 4 on the other side. The particular position
of vertex 3 is interesting: it is mostly a simple square but also in part a squares’s
hub and a circles’hub, having a strategic position between the two sides.

The asymptotic estimates of the standard errors for the parameters have been
computed using the inverse of the information matrix. Some of them are high, for
example the probability of connection between two circles’s hubs is not precise: its
estimated value is equal to 1 but the standard error is estimated to 0.87. This high
value may be explained by the fact that there is few information to estimate this
parameter, because there are only two vertices which are concerned by this Ideal-
Type. The same is true for the probability of connection between the squares’s
hubs. On the opposite the relation between the squares’s hubs and the squares is
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Figure 2. Karate-club network from Zachary. The club has split in two subsets: squares and circles.
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Table 4
Z’values for the karate-club network

vertex circles’s hubs circles squares’s hubs squares
i zi1 zi2 zi3 zi1

1 0 0 1 0
2 0 0 0.503 0.497
3 0.267 0 0.246 0.486
4 0 0 0.279 0.719
5 0 0 0.109 0.890
6 0 0 0.150 0.848
7 0 0 0.079 0.921
8 0 0 0 1
9 0.072 0.559 0 0.369

10 0 1 0 0
11 0 0 0.016 0.984
12 0 0 0 1
13 0 0 0 1
14 0 0.2096 0 0.7884
15 0 1 0 0
16 0 1 0 0
17 0 0.426 0.090 0.483
18 0 0 0 10
19 0 1 0 0
20 0 0.286 0 0.713
21 0 1 0 0
22 0 0 0 10
23 0 1 0 0
24 0.196 0.802 0 0
25 0.155 0.534 0 0.311
26 0 0.832 0 0.167
27 0 1 0 0
28 0 1 0 0
29 0 1 0 0
30 0.097 0.902 0 0
31 0 0.773 0 0.226
32 0.181 0.547 0 0.272
33 0.638 0.361 0 0
34 1 0 0 0
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better known (standard error = 0.06) because there are about 15 vertices which
bear information on this probability of connection.

6. Conclusion. The mixture models is a method of choice for modelling het-
erogeneous random graphs, because it contains most of the known structures of
heterogeneity: hubs, hierarchical structures or community structure. One of the
weakness of mixture models on random graphs is that there is no theoretically
completely satisfying estimation method. The variational EM estimate used in (1)
is not consistent (although it works pretty well in many examples) and it does not
allow to get the variances of the estimates. The bayesian method used in (2) is
computationally highly intensive and works only for small networks. The discrete
nature of Z implies that one has to explore a space of dimension Qn, a task which
is clearly impossible. In the IDT model the discrete Z are replaced by continu-
ous ones, which leads to an easier optimization problem and allows to obtain the
maximum-likelihood estimates with an efficient algorithm. However some addi-
tional work is necessary to understand the behavior of the maximum-likelihood
estimates of n parameters and n2 observations when n→ ∞.
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