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Abstract

In this article we propose a procedure to estimate a two-components mixture

model where one component is known. The unknown part is estimated with a

weighted kernel function. The weights are defined in an adaptative way. We prove

the convergence and unicity of our estimation procedure. Using simulations, we

compared the proposed procedure with two classical approaches. We also applied

our results to multiple testing procedure to estimate the posterior population prob-

abilities and the local FDR.
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1 Introduction

We consider a mixture model with two-populations

g(x) = af(x) + (1 − a)φ(x) (1)

where the probability density function φ is known, the probability a is unknown and
the probability density function f is completely unknown.
This model appears in at least two contexts:

• in contamination problems, a distribution φ for which reasonable assumptions can be
made is contaminated by an arbitrary distribution f ([McLachlan and Peel (2000)]).

• in multiple testing problems (microarrays analysis, neuro-imaging) the p-values un-
der H0 are uniformly distributed on [0, 1] while the distribution of the p-values
associated to H1 is unknown. In this setting, φ is the uniform distribution.
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In this paper we propose to use a nonparametric estimate of f (using a weighted kernel
function and the information we have on φ) and apply it in the framework of multiple
testing. However, the proposed method is general and may be used in any context which
may be modelled by (1).

The idea to mix parametric and nonparametric estimates is not new. [Olkin and Spiegelman (1987)]
proposed to use a linear combination of a parametric estimate and a nonparametric
estimate, [Hjort and Glad (1995)] proposed to update parametric estimate by nonpara-
metric correction functions. The reverse idea using properties of the exponential fam-
ily was developed by [Efron and Tibshirani (1996)]. [Priebe and Marchette (2000)] and
[Di Marzio and Taylor (2004)] proposed to use parametric estimates for the weights of
kernel density estimation.
Using projection pursuit density estimation framework, [Hoti and Holmström (2004)] pro-
posed to estimate a mixture of normal densities with kernels functions. However, the idea
of using a nonparametric estimate for f in model (1) is new.

In the framework of multiple testing, mixture models have already been proposed.
[Efron et al. (2001)] used model (1) to estimate the local FDR defined as the posterior
probability of population f , derived from the mixture model

τ(x) = af(x) /g(x) . (2)

Parametric models have been used with Beta distribution for the p-values (see for
example [Allison et al. (2002)], [Pounds and Morris (2003)], [Liao et al. (2004)]) or gaus-
sian distribution of the probit transformation of the p-values ([McLachlan et al. (2006)]).

The general approach of our work and the main result are presented in Section 2.
Practical issues are discussed in Section 3. Application to the multiple testing procedure
and estimation of the local FDR is studied in Section 4. We compared our method to those
proposed by [Efron (2004)] and [McLachlan et al. (2006)] on simulated data in section 5.
The last section is devoted to the application of the proposed procedure to the classical
Hedenfalk dataset ([Hedenfalk et al. (2001)]).

2 Estimation of the unknown density

2.1 Kernel estimate

Since f is completely unspecified, it has to be estimated in a non-parametric way. Let k
denote an arbitrary cdf (called kernel function), the standard kernel estimate of f is

f̂(x) =

[
∑

i

Ziki(x)

]/
∑

i

Zi .

where ki(x) = k[(x− xi)/h]/h, h is the bandwidth of the kernel and Zi is one if the data
xi comes from f and 0 otherwise.

This estimate can not be directly used since the {Zi} are unknown. We propose to
replace them with their conditional expectation given the data {xi} that are equal to the
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posterior probabilities: E(Zi | xi) = τ(xi) as defined in equation 2. We get the following
estimate for f :

f̂(x) =

(
∑

i

τ(xi)ki(x)

)/
∑

i

τ(xi) . (3)

This estimate is a weighted kernel estimate where each observation is weighted according
to its posterior probability to be issued from f .

2.2 Estimation of the posterior probabilities

The conjunction of (3) and (2) implies that the vector τ̂ containing the estimated posterior
probabilities τ(xi) must satisfy

τ̂ = ψ(τ̂ ) (4)

where ψ maps Rn into Rn:

For all u = (u1 . . . un) ∈ R
n : ψj(u) =

∑
i uibij∑

i uibij +
∑

i ui

, with bij =
a

1 − a

ki(xj)

φ(xj)
.

(5)
τ̂ must therefore be a fixed point of the function ψ.

Theorem 1 If all coefficients bij are positive, the function ψ has a unique fixed point u∗

and the sequence uℓ+1 = ψ(uℓ) converges towards it for any initial value u0.

The proof of this theorem is based on the decomposition of ψ as ψ = α ◦β ◦γ where
α, β and γ are functions mapping from Rn into Rn:

αj(u) =
uj

uj + 1
, βj(u) =

∑

i

bijui, γj(u) =
uj∑
i ui

.

γ is actually the projection onto the simplex E = {u ∈ Rn :
∑

i ui = 1}.
The proof requires the three following lemmas, the proofs are given in Appendix.

Lemma 1 u∗ is a fixed point of ψ if and only if v∗ = γ(u∗) is a fixed point of γ ◦ψ.

Lemma 2 Consider the interior F of the simplex E : F = {u ∈ E : For all i, ui > 0}.
The function d mapping F ×F into R+:

d(u,v) = ln

[
max

i

(
ui

vi

)/
min

i

(
ui

vi

)]

is a distance.

Lemma 3 For any v and w in F , we have

d(γ ◦ψ(v),γ ◦ψ(w)) < d(v,w)

if v 6= w, and d(γ ◦ψ(v),γ ◦ψ(w)) = d(v,w) = 0 otherwise.
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Proof of Theorem 1. Thanks to Lemma 1, we can restrict the proof to the study of
the convergence of the sequence vℓ+1 = γ ◦ψ(vℓ) in the simplex E . Since E is a compact
and γ ◦ ψ is continuous, Brouwer’s theorem insures that γ ◦ ψ admits at least one fixed
point in E .

Furthermore, since every bij is strictly greater than zero, the image γ ◦ ψ(v) of any
element v of E can not have any null coordinate. That is: the function γ ◦ ψ sends the
elements of the border of E into its interior F . So the fixed points of γ ◦ ψ necessarily
belong to F .

Lemma 3 proves that γ ◦ ψ admits at most one fixed point since the 2 fixed points
case would contradict the lemma for v 6= w. This implies that there exist a unique fixed
point. Finally, Lemma 3 says that the distance d (Lemma 2) strictly decreases when the
function γ ◦ψ is applied. This shows that the iteration of the function γ ◦ψ necessarily
converges to its unique fixed point and achieves the proof. �

Hypothesis on the bij . This hypothesis may be relaxed. The second argument of the
proof still holds if the function ψ sends any element of the border of E into the interior
in a finite number of iterations. In terms of kernel estimate, the convergence is therefore
guaranteed for kernel with non-compact support (such as the Gaussian kernel), or if no
observation xi is isolated within its kernel, i.e. if

For all i, it exists j 6= i : ki(xj) > 0.

Value of a and h. These results are conditional on a and h, which is a necessary
condition for theorem 1.

2.3 Estimation algorithm

The iteration of the function ψ can be decomposed in 3 sub-steps, as exposed in Algo-
rithm 1.

Algorithm 1

Initialization: Set τ̂ 0(xi) to 1 for the proportion a of the smallest

xi and to 0 for the remaining.

Step ℓ estimation of f : f̂ (ℓ)(x) =
∑

i τ̂
(ℓ−1)(xi)ki(x)

/∑
i τ̂

(ℓ−1)(xi)

estimation of g: ĝ(ℓ)(x) = af̂ (ℓ)(x) + (1 − a)φ(x)

update of {τ(xi)}: τ̂ (ℓ)(xi) = af̂ (ℓ)(xi)
/
ĝ(ℓ)(xi)

Stopping rule Stop when maxi |τ̂ (ℓ)(xi)− τ̂ (ℓ−1)(xi)|/τ̂ (ℓ−1)(xi) < ε.

where f̂ (ℓ), ĝ(ℓ) and τ̂ (ℓ)(xi) denote the estimates of f , g and τ(xi) after step ℓ.
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Connexion with the E-M algorithm. Algorithm 1 has some Expectation-Maximi-
zation (E-M) flavor. Actually the updating of the τ̂ (xi) is equivalent to the E step.

Moreover, considering the {ki(x)} as data, f̂(x) can be seen as an average of them, so the

updating of f̂ may look like an M step.
However, this comparison is not valid since kernel estimates do not aim at maximizing
the likelihood of the data (like E-M does), but typically to minimize the norm of (f̂ − f).
Therefore, Algorithm 1 can not be justified in the standard E-M framework for mixture
models. The algorithm does not optimize any given criterion. The relation in equation 4
insures self-consistency of τ̂

3 Estimation of the proportion and bandwidth

3.1 Simultaneous estimation of a and f

The analogy with the E-M algorithm suggests to estimate a using a modified version of
Algorithm 1, where â is updated at each step:

â(ℓ) =
1

n

∑

i

τ̂ (ℓ)(xi).

However, it can be easily seen that the solution â = 1 and τ̂(xi) = 1, for all i, is a
fixed point of this modified algorithm. This solution corresponds to the standard kernel
estimate of g (not of f). This property can be interpreted as an over-fitting trend.

3.2 Estimation of a

The estimation of a is a difficult task that can not be achieved by the algorithm proposed
in the preceding section. In the case where the support of the distribution f has an upper
bound (typically, (−∞, λ]), two unbiased estimates of a can be proposed. Both come
from the observation that, for x > λ, if F (x) = 1, the mixture cdf becomes

G(x) = a+ (1 − a)Φ(x),

where G and Φ are the respective cdfs of g and φ. In the framework of FDR control,
[Storey et al. (2004)] proposes

â =
Ĝ(λ) − Φ(λ)

1 − Φ(λ)

where Ĝ is the empirical cdf of X. If λ is underestimated, at worst â is underestimated.
The authors discuss the performances of these estimates and its sensitivity to the choice
of λ. Following the same principle, a can be estimated using a linear least square fit of
Ĝ(Xi) to Φ(Xi), that is

â = arg min
a

∑

i:Xi>λ

(Ĝ(Xi) − b− (1 − a)Φ(Xi))
2.
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where b is a constant. Provided λ exists and is known, both estimates are unbiased.
However, both rely on the existence of some additional information about the relative
positions of distributions f and φ.

3.3 Estimation of h

To estimate the bandwidth h, we propose to use the standard approach ([Silverman (1986)])
based on V -fold cross-validation. We split randomly the data set {xi}i=1..n into V non-
overlapping subsets Y1, . . . ,YV , each of size n/V : ∪vYv = {xi}i=1..n. For each v = 1 . . . V ,
we define Xv = ∪u 6=vYu as the training set, and Yv as the test set. We denote L(Yv; h)
the log-likelihood of the subset Yv:

L(Yv; h) =
∑

xj∈Yv

ln ĝv(xj ; h)

where ĝv is estimated with Algorithm 1 on the training set Xv with the given window
width h. We define the V -fold cross validation log-likelihood as

LCV (h) =
1

V

∑

v

L(Yv; h).

n−1 (
∑n

i=1 ln g(xi) − V LCV (h)) is an estimate of the Kullback-Leibler divergence between
ĝ and g. This estimated divergence between ĝ and g is minimized when the cross-validation
likelihood is maximized, that is for

ĥ = arg max
h

LCV (h).

This optimization can be performed numerically.

4 False positive and negative rates

4.1 Presentation and definitions

Multiple testing is a classical problem for many high-dimensional data sets, since uncor-
rected testing procedure may lead to many false positives. The breakthrough of technology
for image analysis or genomic data has given a new interest for this question. A central
problem in multiple testing problems is the control of type I (i.e. false positive) and type
II (i.e. false negative) errors. For a given threshold t, we denote

P (t) = #{j : Xj < t} the number of positives;
FP (t) = #{j : (Xj < t) ∩ (Zj = 0)} the number of false positives;
N(t) = #{j : Xj ≥ t} the number of negatives;

FN(t) = #{j : (Xj ≤ t) ∩ (Zj = 1)} the number of false positives.
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The most popular criterion regarding type I errors is the FDR ([Benjamini and Hochberg (1995)]):

FDR(t) = E [FP (t)/max{P (t), 1}] .

FDR is the expected proportion of rejections that are incorrect. It is worth noting
that a dual quantity of the FDR is the FNR (false non-discovery rate) as defined by
[Genovese and Wasserman (2002)]:

FNR(t) = E (FN(t)/max(N(t), 1)) .

In the mixture model framework FDR and FNR play symmetric roles.
More recently, it has been pointed out that, in many multiple testing framework, we

need information at the individual level about the probability for a given observation to be
a false positive ([Aubert et al. (2004)]). This motivated the work of [Storey and Tibshirani (2003)]
regarding the q-value. One may notice that the q-value is actually not specific to a given
observation since it is computed on all the p-values below a given threshold. In a mixture
framework, a natural way to define a ’local FDR’ (ℓFDR: [Efron et al. (2001)]) is to
consider the posterior probability

ℓFDR(x) = Pr{Zi = 0 | Xi = x} = 1 − τ(x).

4.2 Estimation

Local FDR. According to the definition given above, a natural estimator of the local
FDR for observation i is

ℓ̂FDR(xi) = 1 − τ̂ (xi)

False positive and negative rates. Following the same approach, we also get:

F̂DR(xi) =
1

i

i∑

j=1

(1 − τ̂(xj)), F̂NR(xi) =
1

n− i

n∑

j=i+1

τ̂ (xj)

which are unbiased if the posterior probability estimates are unbiased. Since the estimate
of τ(xj) is proportional to the estimate of a, underestimating a leads to overestimate
FDR and underestimate FNR.

We remark that the estimates ℓ̂FDR and F̂DR are consistent with the definition of
ℓFDR in terms of derivative of FDR proposed by [Aubert et al. (2004)].

5 Simulation study

We compared our method to those proposed by [Efron (2004)] and [McLachlan et al. (2006)]
on simulated data. In the following, these methods will be refeered to as ’LocalFDR’ and
’2Gmixt’ (for 2 Gaussian component mixture), respectively. The methods we propose will
be denoted by ’SPmixt’ (for semi-parametric mixture).
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5.1 Simulation design.

We simulated sets of p-values according to the mixture model g(·) = af(·) + (1 − a)φ(·),
where φ is the uniform distribution over [0; 1]. This framework is common to the three ap-
proaches to be compared. We considered 4 different proportions (a = 0.01, 0.05, 0.1, 0.3),
2 different means for the p-values coming from the alternative distribution f (µ = 0.01
and 0.001) and 2 shapes for f (exponential and uniform over [0; 2µ]). For each of the
4 × 2 × 2 = 16 configurations, S = 500 samples of size n = 1000 were generated.

For each proportion a and distribution f , the posterior probability τ can be computed
theoretically for any p-value. To evaluate the performance of each method m in simulation
s, we calculated the estimates τ̂m and computed the square root of the mean squared
difference between the estimates and the true values

RMSEs
m(a, f) =

√
1

n

∑

i

(
τ̂ s
m,i − τi

)2
, RMSEm(a, f) =

1

S

∑

s

RMSEs
m(a, f)

denoting s the simulation number s (s = 1..S) and τi the posterior probability for the ith
p-value. The quality of the estimates provided by method m in the configuration (a, f)
is measured by the mean RMSEm(a, f).

5.2 Pratical implementation.

For the localFDR method, we used the locfdr package of R version 1.3. The complete
default options results in many warnings and failures, so we had to fix the sig0 parameter
to 1. In the following, this setting will be refereed to as ’default localFDR’. We also used
this method with the nulltype=0 option, which sets the null distribution to an N (0, 1).
In the following, this method will be denoted ’localFDR-N (0, 1)’.

For our method, we either fixed the window width h to a given value (0.1 or 0.2)
or fitted it using 2-fold cross-validation. We used 2-fold in place of 5-fold (as suggested
above) for computation time reasons.

5.3 Results.

Figure 1 displays the RMSE obtained with the different methods under various simulation
conditions. We first observe that the result of SPmixt are not very sensitive to the way h
is chosen. RMSEs are always very similar, whatever the value of h (0.1, 0.2 or 2-fold).

The second comment is that SPmixt provides the most stable and reliable estimates
among the considered methods. The default localFDR method provides bad estimates in
many situations. It even failed for three values of a in the bottom right plot of Figure
1. No of the three other methods (localFDR-N (0, 1), 2Gmixt, SPmixt) is uniformly the
best. 2Gmixt outperforms SPmixt when µ is small (0.001), which corresponds to an easy
case where the alternative distribution f is very far from the null one φ. 2Gmixt does
not perform well when µ is large. LocalFDR-N (0, 1) provides good results when f has
an exponential shape, especially when µ = 0.01.
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Figure 2 displays the standard deviation of RMSEs across the simulations. We see
that the 2-fold strategy for h induces some variability, that may be reduced using 5-fold
cross-validation. We also see that, in terms of stability, SPmixt generally outperforms
2Gmixt. The results provided by localFDR-N (0, 1) strongly depend on the proportion a.

6 Application: Hedenfalk data

[Hedenfalk et al. (2001)] compare the gene expression levels measured on patients with
two different breast cancer. The dataset consists of 7 BRCA1 patients and 8 BRCA2
patients corresponding to two different gene mutation predisposing to the disease. The
total number of genes is n = 3226.

Differential analysis. We used a t-test to detect differentially expressed genes. Because
of the small number of replicates, the estimate of within group variability appears to very
quite poor. This bad estimation is known to have strong consequences on the conclusion.
To avoid this problem, we used test statistics and p values Pi computed under the two
following hypotheses regarding the variance.

(i) Homogenous variance. The variance of all the genes are all equal to a same variance σ2.

(ii) Mixture model. Genes are spread into K groups of variance, the variance and pro-
portion of which can estimated using a mixture model ([Delmar et al. (2005)]).

Other variance modeling have been proposed: see [Efron et al. (2001), Smyth (2004),
Rudemo et al. (2002)].

Semi-parametric modeling. In this situation, the p-values are expected to have a
mixture distribution

pi ∼ aF + (1 − a)U[0;1]

This mixture is hard to identify because of many p-values very close to 0. Therefore, we
used the probit transform suggested by [Efron (2004)], and considered the mixture model
on the transformed p-values:

Xi = Φ−1(pi) ∼ aF + (1 − a)Φ

were Φ is the cdf of the standard Gaussian distribution.

Results. Figure 3 presents the fit of the semi-parametric mixture model to the histogram
of the transformed p-values. We see that in both cases, the distribution f and φ strongly
overlap. In both case, we used the least-square estimate of a presented in Section 3.2. It
resulted in â = 20.6% in the homogenous variances case, and in â = 30.5% in the mixture
variance case. We set λ = 1

2
and verify, as noted by [Storey et al. (2004)], that â is not

very sensitive to this choice.
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Figure 1: Root Mean Square Error (RMSE) between the true posterior probabilities τ
and the estimates as a function of the proportion a (log-log scale). Methods: ‘▽’= default
localFDR, ‘△’= localFDR-N (0, 1), ‘◦’= 2Gmixt, ‘+’= SPmixt with h = 0.1, ‘×’= SPmixt
with h = 0.2, ‘∗’= SPmixt with h fitted using 2-fold cross-validation. Top: exponential
shape for f . Bottom: uniform shape. Left: µ = 0.001. Right: µ = 0.01.
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Figure 2: Standard deviation of the RMSE (log-log scale). Methods: ‘▽’= default
localFDR, ‘△’= localFDR-N (0, 1), ‘◦’= 2Gmixt, ‘+’= SPmixt with h = 0.1, ‘×’= SPmixt
with h = 0.2, ‘∗’= SPmixt with h fitted using 2-fold cross-validation. Top: exponential
shape for f . Bottom: uniform shape. Left: µ = 0.001. Right: µ = 0.01.
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Figure 3: Fit of the semi-parametric mixture model to the transformed p-values for ho-
mogenous (left) and mixture (right) gene variances. –: histogram, –: mixture density,

- -: âf̂ , - -: (1 − â)φ.
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Figure 4: Posterior probabilities τ̂ (–) and false discovery rate F̂DR(xi) (- -) as a function
of the transformed p-values Xi. Left: homogenous gene variances, right: mixture gene
variances.
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Figure 5: Posterior probabilities τ̂ (–) and false discovery rate F̂DR(xi) (- -) as a function
of the p-values Pi. Left: homogenous gene variances, right: mixture gene variances.

Figures 4 and 5 present the estimated posterior probabilities τ̂(xi) and F̂DR(xi) as
a function of Xi and Pi respectively. In the homogeneous variance case, we see that the
posterior probabilities first decreases (as expected), and then re-increases on the right
part of the plot, which is unexpected. The explanation is that the non-parametric part
of the mixture model actually capture a lack of fit of the true distribution of the test
statistic to the theoretical distribution under the null hypothesis. This phenomena is
strongly reduced by the mixture model for the variances.

Table 1 gives the number of positive genes for some pre-specified values of the FDR.
We see that, for small FDR, the minimal posterior probability is still high, which means
that all the positive genes can be trusted. We also see that FNR slowly decreases. The
estimated FDR and FNR are equal (19.7%) for i = 633 positive genes: the corresponding
p-value is P[i] = 5.4%, the posterior probability is τ̂(x(i)) = 43.5%. This means that, at
this point, some of the positive genes are really questionable.

The results in Table 1 are in fair agreement with the results reported in Table 1 of
[McLachlan et al. (2006)].
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F̂DR(x(i)) i P(i) τ̂ (x(i)) F̂NR(x(i))
1% 4 2.5 10−5 0.988 31.5%
5% 142 3.1 10−3 0.914 28.7%
10% 296 1.3 10−2 0.798 25.7%

Table 1: Number of positive genes for some pre-specified values of the FDR
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Appendix

Proof of Lemma 1. We have ψ = α◦β◦γ. Since γ is a projection, we have ψ◦γ = ψ.
So, for v∗ = γ(u∗), we have ψ(u∗) = ψ(v∗) and

u∗ = ψ(u∗) ⇒ v∗ = γ ◦ψ(u∗) = γ ◦ψ ◦ γ(u∗) = γ ◦ψ(v∗).

Conversely, let v∗ denote a fixed point of γ ◦ψ and u∗ = α ◦ β(v∗). Since v∗ belongs to
E , we have v∗ = γ(v∗) so u∗ = ψ(v∗) and ψ(u∗) = ψ ◦ψ(v∗). Remarking that

ψ ◦ψ(v∗) = ψ ◦ γ ◦ψ(v∗) = ψ(v∗)

we get ψ(u∗) = ψ(v∗) = u∗. �

Proof of Lemma 2. d is a distance iff, for all u, v and w in F , (i) d(u,v) ≥ 0; (ii)
d(u,v) = d(v,u); (iii) {d(u,v) = 0} ⇔ {u = v}; (iv) d(u,w) ≤ d(u,v) + d(v,w). (i),
(ii) and (iii) are straightforward. (iv) is due to

max
i

(
ui

wi

)
= max

i

(
ui

vi

vi

wi

)
≤ max

i

(
ui

vi

)
max

i

(
vi

wi

)

and conversely for the min. �

Proof of Lemma 3. The second case is obvious since d is a distance. So we concentrate
on the proof of the first one. The main idea is to prove that β can not increase the distance
d and that α ◦ β necessarily reduces it.

β: For v 6= w we define c1 = mini(wi/vi) and c2 = maxi(wi/vi). Remark that c1 < 1 < c2,
d(v,w) = ln(c2/c1) and

For all i : c1vi ≤ wi ≤ c2vi. (6)

Denote v′j = βj(v) and w′
j = βj(w). Since all the bij are positive, (6) implies that

c1v
′
j ≤ w′

j ≤ c2v
′
j for all j, which means that β does not increase d.

α ◦ β: Denote now v′′j = αj[β(v)] = v′j/(1 + v′j) and w′′
j = αj[β(w)] = w′

j/(1 + w′
j).

Remarking that the transformation t → t/(1 + t) is increasing, we derive that if
w′

i ≥ v′i then w′′
i ≥ v′′i > c1v

′′
i , and if w′

i < v′i then

w′′
i =

w′
i

1 + w′
i

>
w′

i

1 + v′i
≥ c1

v′i
1 + v′i

= c1v
′′
i .

So, in both cases, we have w′′
i > c1v

′′
i for every i.

Conversely, if w′
i ≤ v′i then w′′

i ≤ v′′i < c2v
′′
i , and if w′

i > v′i then

w′′
i =

w′
i

1 + w′
i

<
w′

i

1 + v′i
≤ c2

v′i
1 + v′i

= c2v
′′
i .

So, in both cases, we have w′′
i < c2v

′′
i for every i.
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This shows that, for every i, c1v
′′
i < w′′

i < c2v
′′
i . So, denoting c′′1 = mini(w

′′
i /v

′′
i ) and

c′′2 = maxi(w
′′
i /v

′′
i ) we have c1 < c′′1 and c2 > c′′2, which implies that

d(γ ◦ψ(w),γ ◦ψ(v)) = ln(c′′2/c
′′
1) < ln(c2/c1) = d(w,v).

We conclude that α ◦ β strictly reduces d. �
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