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Summary. The Erdös-Rényi model of a network is simple and possesses
many explicit expressions for average and asymptotic properties, but it does
not fit well to real-world networks. The vertices of those networks are often
structured in unknown classes (functionally related proteins or social commu-
nities) with different connectivity properties. The stochastic block structures
model was proposed for this purpose in the context of social sciences, using a
Bayesian approach. We consider the same model in a frequentist statistical
framework. We give the degree distribution and the clustering coefficient
associated with this model, a variational method to estimate its parameters
and a model selection criterion to select the number of classes. This estima-
tion procedure allows us to deal with large networks containing thousands of
vertices. The method is used to uncover the modular structure of a network
of enzymatic reactions.
Keywords. Random graphs, Mixture models, Variational method.

1 Introduction

The Erdös-Rényi model of a network is one of the oldest and best studied
model and possesses many explicit expressions for average and asymptotic
properties such as degree distribution, connectedness and clustering coeffi-
cient. However this theoretical model does not fit well to real-world, social,
biological or internet networks. For example the empirical degree distribu-
tion may be very different from the Poisson distribution which is implied by
this model. Moreover empirical clustering coefficients of real networks are
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generally higher than the value given by this model. Some generalizations
of the Erdös-Rényi model have been made in order to correct these short-
comings (see Nowicki and Snijders (2001), Albert and Barabási (2002) or
Newman (2003)).

It appears that the available methods in the literature can be divided into
two categories: model-based versus algorithmic methods. In the context of
social sciences and using a Bayesian approach, the stochastic block structures
model (Nowicki and Snijders (2001)) assumes that vertices pertain to classes
with different connectivity characteristics. This model provides a proper
probabilistic framework but the proposed estimation method can not deal
with networks made of more than 200 vertices. However, a special attention
has been recently paid to the study of biological networks which are generally
much larger (see Alm and Arkin (2002) or Arita (2004)). Other algorithms
have been proposed: assortative mixing or mixing patterns (Newman and
Girvan (2003) and (2004)). These methods are efficient on large networks but
the absence of model makes the interpretation of the results more difficult.

The key element of those methods is the mixing matrix which specifies the
probability of connection between two classes. The inference of the mixing
parameters is quite easy if the classes can be defined using external informa-
tion such as language, race or age. However the inference is more difficult
when classes and mixing parameters have to be inferred when the network
topology is the only available information.
In this article we use the model-based framework proposed by Nowicki and
Snijders (2001) in a frequentist setting. We derive some new theoretical
properties of this model. We provide an estimation algorithm using a varia-
tional approach as well as a model selection criterion to choose the number
of classes. This framework allows us to deal with thousands of vertices. Our
method is illustrated on a biological network.
Notations. In this article, we consider an undirected graph with n vertices
and define the variable Xij which indicates that vertices i and j are connected:

Xij = Xji = I{i ↔ j},

where I{A} equals to one if A is true, and to zero otherwise. Furthermore,
we assume that no vertex is connected to itself, meaning that Xii = 0.
However, the method we present below can be generalized to directed graphs
(Xij 6= Xji) with self loops (Xii 6= 0). In the following we note Ki the degree
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of vertex i, i.e. the number of edges connecting it:

Ki =
∑

j 6=i

Xij.

Erdös-Rényi model. This model assumes that edges are independent and
occur with the same probability p:

{Xij} i.i.d., Xij ∼ B(p).

In this model, the degree of each vertex has a Binomial distribution, which
is approximately Poisson for large n and small p. Noting λ = (n − 1)p we
have:

Ki ∼ B(n − 1, p) ≈ P(λ).

2 Mixture model for the degrees

In many practical situations, the Erdös-Rényi model turns out to fit the data
poorly, mainly because the distribution of the degrees is far from the Poisson
distribution. The scale-free (or Zipf) distribution has been intensively used
as an alternative. The Zipf probability distribution function (pdf) is

Pr{Ki = k} = c(ρ)k−(ρ+1), (1)

where k is any positive integer, ρ is positive, c(ρ) =
∑

k≥1 k−(ρ+1) = 1/ζ(ρ+1)
and ζ(ρ+1) is Riemann’s zeta function. Nevertheless, we will show in Section
6 that this distribution may have a poor fit on real datasets as well.

First of all, it is important to notice that the Zipf distribution is used to
model the tail of the degree distribution. Therefore it is often best suited for
the tail than for the whole distribution. In particular this distribution has
a null probability for k = 0 whereas some vertices may be unconnected in
practice. Moreover the lack-of-fit of the Erdös-Rényi model may be simply
due to some heterogeneities between vertices, some being more connected
than others. A simple way to model this phenomenon is to consider that the
degree distribution is a mixture of Poisson distributions.

In the mixture framework we suppose that vertices are structured into
Q classes, and that there exists a sequence of independent hidden variables
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{Ziq}, (with
∑

q Ziq = 1) which indicate the label of vertices to classes. We
note αq the prior probability for vertex i to belong to class q, such that:

αq = Pr{Ziq = 1} = Pr{i ∈ q}, with
∑

q

αq = 1.

Remark. In the following, we will use two equivalent notations: {Ziq = 1}
or {i ∈ q} to indicate that vertex i belongs to class q.

We suppose that the conditional distribution of the degrees is a Poisson
distribution :

Ki|{i ∈ q} ∼ P(λq).

Then the distribution of the degrees is a mixture of Poisson distributions
such that:

Pr{Ki = k} =

Q∑

q=1

αq

e−λqλk
q

k!
. (2)

For a complete review and a careful statistical analysis of the modeling
of the degree distribution in networks, see Jones and Handcock (2004).
Remark. Because vertices are connected between them, degrees are not
independent from each other. However, in the standard situation where n is
large and where the λqs are small with respect to n, the dependency between
the degrees is weak.

In Section 6 we show that this model fits well to real data. Neverthe-
less, we claim that modeling the distribution of the degrees provides little
information about the topology of the graph. Indeed, this model only deals
with the degrees of vertices, but not explicitly with the probability for two
given vertices to be connected. However, the observed number of connections
between vertices from different classes may reveal some interesting underly-
ing structure, such as preferential connections between classes. The mixture
model for degrees is not precise enough to describe such a phenomenon. This
motivates the definition of an explicit mixture model for edges.

3 Erdös-Rényi mixture for graphs

3.1 General model

We now describe the stochastic block structures model (Nowicki and Snijders
(2001)), a mixture model which explicitly describes the way edges connect
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vertices, accounting for some heterogeneity among vertices. In the following
this model is called ”mixture model for graphs”.
The mixture model for graphs supposes that vertices are spread into Q classes
with prior probabilities {α1, . . . αQ}. In the following, we use the indicator
variables {Ziq} (with

∑
q Ziq = 1) defined in section 2.

αq = Pr{Ziq = 1} = Pr{i ∈ q}, with
∑

q

αq = 1.

Then we denote πqℓ the probability for a vertex from class q to be connected
with a vertex from class ℓ. Because the graph is undirected, these probabili-
ties must be symmetric such that:

πqℓ = πℓq.

We finally suppose that edges {Xij} are conditionally independent given the
classes of vertices i and j:

Xij|{i ∈ q, j ∈ ℓ} ∼ B(πqℓ).

The main difference with Model (2) is that the mixture model for graphs
directly deals with edges. More than describing the clustered structure of ver-
tices, our model describes the topology of the network using the connectivity
matrix π = (πqℓ).

3.2 Examples

In this section we aim at showing that the mixture model for graphs can
be used to generalize many particular structures of random graphs. Table
1 presents some typical network configurations. The first one is the Erdös-
Rényi model. We present here some more sophisticated ones.

1. Random graphs with arbitrary degree distributions.
The Erdös-Rényi random graph model is a poor approximation of real-
world networks whose degree distribution is highly skewed. A random
network having the same degree distribution as the empirical one can
be built as follows: n partial edges (with only one starting vertex and
no final vertex) are randomly chosen from the empirical degree dis-
tribution. These partial edges are randomly joined by pairs to form
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Table 1: Some typical network configurations and their formulation in the
framework of the mixture model for graphs

Description Network Q π
Clustering
coef.

Random 1 p p

Product
connec-
tivity
(arbitrary
degree dis-
tribution)

2

(
a2 ab
ab b2

)
(a2 + b2)2

(a + b)2

Stars 4




0 1 0 0
1 0 1 0
0 1 0 1
0 0 1 0


 0

Clusters
(affiliation
networks)

2

(
1 ε
ε 1

)
1 + 3ε2

(1 + ε)2
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complete edges (see Molloy and Reed (1995)). A permutation algo-
rithm is also proposed in Shen-Orr et al. (2002). This model assumes
that the connectivity between two vertices is proportional to the degree
of each vertex so it coincides with the independent case of the mixture
model for graphs presented in Section 4.4.
The scale-free network proposed by Barabási and Albert (1999) is a
particular case of random graphs with arbitrary distribution. To this
extent, we can propose an analogous model in the mixture model for
graphs framework. Suppose that the incoming vertices join the network
in classes of respective size nαq (q = 1..Q, nα1 being the number of
original vertices). Assuming that the elements of a new class connect
preferentially the elements of the oldest classes:

πq,1 ≥ πq,2 ≥ · · · ≥ πq,q−1,

we get the same kind of structure as the scale-free model.

2. Affiliation network.
An affiliation network or bipartite graph, is a social network in which
actors are joined by a common participation in social events, companies
boards or scientists’ coauthorship of papers. All the vertices partici-
pating to the same class are connected. This model has been studied
by Newman et al. (2002). This type of network may be modeled by a
mixture model for graphs with ones in the diagonal of π.

3. Star pattern.
Many biological networks contain star patterns, i.e. many vertices
connected to the same vertex and only to it, see interaction networks of
S. Cerevisiae in Zhang et al. (2005) for instance. This type of pattern
may be modeled by a mixture model for graphs with extra-diagonal
ones in π.
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4 Some properties of the mixture model for

graphs

4.1 Distribution of the degrees

Proposition 1 Given the label of a vertex, the conditional distribution of
the degree of this vertex is Binomial (approximately Poisson):

Ki|{i ∈ q} ∼ B(n − 1, πq) ≈ P(λq),

where πq =
∑

αℓπqℓ and λq = (n − 1)πq.

Proof.Conditionally to the belonging of vertices to classes, edges connecting
vertex i belonging to class q are independent. The conditional connection
probability is:

Pr{Xij = 1|i ∈ q} =
∑

ℓ

Pr{Xij = 1|i ∈ q, j ∈ ℓ}Pr{j ∈ ℓ} =
∑

αℓπqℓ = πq.

The result follows. �
4.2 Between-class connectivity

Definition 2 The connectivity between class q and ℓ is the number of edges
connecting a vertex from class q to a vertex from class ℓ.

Aqℓ =
∑

i<j

ZiqZjℓXij .

Aqq is the within-connectivity of class q.

Proposition 3 The expected connectivity between class q and ℓ is:E (Aqℓ) = n(n − 1)αqαℓπqℓ/2.

Proof.According to Definition 2, Aqℓ is the sum over n(n − 1)/2 terms.
Conditionally to {ZiqZjℓ = 1}, Xij is a Bernoulli variable with parameter
πqℓ. Thus E (ZiqZjℓXij) = E (ZiqZjℓ)πqℓ. The Ziqs are independent, so we
have E (ZiqZjℓ) = αqαℓ. The result follows. �
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4.3 Clustering coefficient.

This coefficient is supposed to measure the aggregative trend of a graph.
Since no probabilistic modeling is usually available, this coefficient is empiri-
cally defined in most cases. Albert and Barabási (2002) propose the following
definition of the empirical clustering coefficient for vertex i:

Ci = ∇i

/
Ki(Ki − 1)

2
,

where ∇i is the number of edges between the neighbors of vertex i: ∇i =∑
j,k XijXjkXik/2, whose minimum value is 0 and maximum value equals

Ki(Ki − 1)/2 for a clique. A first estimator of this empirical clustering
coefficient is usually defined as the mean of the Cis:

ĉ =
∑

i

Ci/n.

Denoting ∇ the ’triangle’ configuration (i ↔ j ↔ k ↔ i) and V the ’V’
configuration (j ↔ i ↔ k) for any (i, j, k) uniformly chosen in {1, . . . , n}, the
definition of C can be rephrased as c = Pr{∇|V}. Because ∇ is a particular
case of V, we have:

c = Pr{∇ ∩ V}/ Pr{V} = Pr{∇}/ Pr{V}. (3)

This property suggests another estimate of c proposed by Newman et al.
(2002):

ĉ′ = 3
∑

i

∇i

/
∑

i

Vi ,

where Vi is the number of Vs in i: Vi =
∑

j>k,(j,k)6=i XijXik. In the following
we propose a probabilistic definition of this coefficient.

Definition 4 The clustering coefficient is the probability for two vertices j
and k connected to a third vertex i, to be connected, with (i, j, k) uniformly
chosen in {1, . . . , n}

c = Pr{XijXjkXki = 1|XijXik = 1}.
Proposition 5 In the mixture model for graphs, the clustering coefficient is

c =
∑

q,ℓ,m

αqαℓαmπqℓπqmπℓm

/
∑

q,ℓ,m

αqαℓαmπqℓπqm
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Proof.For any triplet (i, j, k), we have

Pr{∇} =
∑

q,l,m

αqαℓαm Pr{XijXjkXki = 1|i ∈ q, j ∈ ℓ, k ∈ m},

=
∑

q,l,m

αqαℓαmπqℓπqmπℓm.

The same reasoning can be applied to Pr{V} recalling that the event V in
(i, j, k) means that the top of V is i. The result is then an application of (3).�
4.4 Independent model

The model presented in Section 2 can be rephrased as an independent ver-
sion of the mixture model for graphs. Indeed the absence of preferential
connection between classes corresponds to the case where

πqℓ = ηqηℓ. (4)

The properties of the independent model are as follows.
Distribution of degrees. The conditional distribution of the degrees is
Poisson with parameter λq such that:

λq = (n − 1)ηqη, (5)

where η =
∑

ℓ αℓηℓ, so λq is directly proportional to ηq.
Between class connectivity. We get :E (Aqℓ) = n(n − 1)(αqηq)(αℓηℓ)/2,

so the rows and columns of matrix A = (Aqℓ)q,ℓ must all have the same
profile. We will see in Section 6 that the observed number of connections
between classes may be quite far from expected values.
Clustering coefficient

c =

(∑
q αqη

2
q

)2

η2 .

For the standard Erdös-Rényi model (Q = 1, α1 = 1, η = η1 =
√

p), we get
the known result: c = η4

1/η
2
1 = p.
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Considering the independent case presented in Table 1 with α1 = α2 =
1/2 and a = 0.9, b = 0.1, we get c = (0.92+0.12)2 ≃ 0.67. The corresponding
Erdös-Rényi model with p = (α1a + α2b)

2 = 1/4 would lead to a strong
underestimation of c since c = p = 0.25.

4.5 Likelihoods

In order to define the likelihood of the model, we use the incomplete-data
framework defined by Dempster et al. (1977). Let X denote the set of all
edges: X = {Xij}i,j=1..n, and Z the set of all indicator variables for vertices:

Z = {Ziq}q=1,Q
i=1,n .

Proposition 6 The complete-data log-likelihood is

logL(X ,Z) =
∑

i

∑

q

Ziq log αq +
1

2

∑

i6=j

∑

q,ℓ

ZiqZjℓ log b(Xij ; πqℓ).

Proof.We have logL(X ,Z) = logL(Z) + logL(X |Z) where

logL(Z) =
∑

i

∑

q

Ziq log αq,

logL(X |Z) =
1

2

∑

i6=j

∑

q,ℓ

ZiqZjℓ log b(Xij ; πqℓ),

and b(x; π) = πx(1 − π)1−x. �
The likelihood of the observed data L(X ) is obtained by summing the

complete-data likelihood over all the possible values of the unobserved vari-
ables Z. Unfortunately, this sum is not tractable and it seems that no simpler
form can be derived.

5 Estimation

In this section we propose a variational approach to perform an approximate
maximum likelihood inference on the parameters. We follow the general
strategy described in Jordan et al. (1999) or in the tutorial by Jaakkola
(2000).
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5.1 Dependency graph.

The Xijs are independent conditionally to the Ziqs, but are marginally de-
pendent. For estimation purpose, it is important to know if Pr{Ziq = 1|X } is
equal to Pr{Ziq = 1|Xi}, where Xi is the set of all possible edges connecting
i. Xi is often called the set of neighbors of vertex i. In the following, we give
a counter example to show that the notion of neighborhood can not be used
in the mixture model for graphs framework.

Assume that the vertices are divided in two classes, whose connectivity
matrix is diagonal with π11 = 1 and π22 = a and 0 < a < 1. Let us consider
3 vertices i, j, k with Xij = Xik = 1. The vertices i and j are in the same
class because no connection is possible between vertices pertaining to two
different classes. The same is true for vertices i and k. Therefore the three
vertices are in the same class and we have Pr{Zi1 = 1|Xi, Xjk} > 0 if Xjk = 1
and Pr{Zi1 = 1|Xi, Xjk} = 0 if Xjk = 0. Therefore Pr{Ziq = 1|X } depends
on all the network and not only on edges connecting to the vertex i.

This counter example clearly shows that no neighborhood can be consid-
ered in the mixture model for graphs framework since unconnected vertices
provide as much information as connected vertices. This is why the likelihood
can not be simplified for computation.

5.2 Variational approach

As often for incomplete data models, the likelihood of the observed data L(X )
is not tractable. E-M (Dempster et al. (1977)) is the most popular algorithm
for this kind of problem. Unfortunately, E-M requires the computation of the
conditional distribution Pr(Z|X ) which is itself not tractable, as explained
above. Therefore, we choose a variational approach that aims at optimizing
a lower bound of logL(X ), denoted by

J (RX ) = logL(X ) − KL[RX (·), Pr(·|X )],

where KL denotes the Küllback-Leibler divergence, Pr(Z|X ) is the true con-
ditional distribution of the indicator variables Z given the data X , and RX

an approximation of this conditional distribution. J (RX ) equals logL(X ) iff
RX (·) = Pr(·|X ). We emphasize that RX depends on the data X .

As shown above, we are not able to calculate Pr(·|X ), so we will look for
the ’best’ (in terms of Küllback-Leibler divergence) RX in a certain class of
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distributions. The estimation algorithm we propose will alternate the maxi-
mization of J (RX ) (i) with respect to RX and (ii) with respect to parameters
α and π. Propositions 7 and 8 give the solutions of the optimization prob-
lems (i) and (ii) respectively.
Approximate conditional distribution RX . Denoting Zi = {Zi1, . . . ZiQ},
we constraint RX to have the following form:

RX (Z) =
∏

i

h(Zi; τ i)

where τ i = (τi1, . . . , τiQ) and h(·; τ ) denotes the multinomial distribution
with parameter τ . τiq can be interpreted as an approximation of Pr{Ziq =
1|X }. This corresponds to the mean field approximation, as presented in
Jaakkola (2000).

Proposition 7 Given parameters α and π, the optimal variational param-
eters {τ̂ i} = arg max{τ i} J (RX ) satisfy the following fix point relation:

τ̂iq ∝ αq

∏

j 6=i

∏

ℓ

b(Xij ; πqℓ)
bτjℓ.

Proof.Based on the definition of the Küllback-Leibler divergence, we first
rewrite J (RX ) as

J (RX ) =
∑

Z

RX (Z) log Pr{Z|X} −
∑

Z

RX (Z) log RX (Z)

=
∑

i

∑

q

τiq log αq +
1

2

∑

i6=j

∑

q,ℓ

τiqτjℓ log b(Xij ; πqℓ) −
∑

i

∑

q

τiq log τiq.

We now have to maximize J (RX ) with respect to the τiq’s, subject to
∑

q τiq =
1, for all i, i.e. to maximize J (RX ) +

∑
i[λi(

∑
q τiq − 1)] where λi is the La-

grange multiplier. The derivative with respect to τiq is

log αq +
∑

j 6=i

∑

ℓ

τjℓ log b(Xij ; πqℓ) − log τiq + 1 + λi.

This derivative is null iff τ̂iq’s satisfy the relation given in the proposition,
exp(1 + λi) being the normalizing constant. �
Parameter estimates. To complete the estimation procedure, we need
to maximize J (RX ) with respect to parameters α and π.
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Proposition 8 Given the variational parameters {τ i}, the values of param-
eters α and π that maximize J (RX ) are

α̂q =
1

n

∑

i

τ̂iq, π̂qℓ =
∑

i6=j

τ̂iq τ̂jℓXij

/
∑

i6=j

τ̂iq τ̂jℓ .

Proof.Due to the constraint on α, we have to maximize J (RX )+λ(
∑

q αq−
1). The calculation of the derivatives is straightforward and the result follows.�
Estimation algorithm. The algorithm we propose is the following. Start-
ing with some initial values {τ (0)

i } for the variational parameters, we itera-
tively update parameters τ i, α and π as follows:

(
α

(h+1), π(h+1)
)

= arg max
(�,π)

J
(
RX ; {τ (h)

i }, α, π
)

,

{τ (h+1)
i } = arg max

{τ i}

J
(
RX ; {τ i}, α(h+1), π(h+1)

)
.

These updates are performed according to Propositions 7 and 8.

Proposition 9 For a given number of classes Q, this algorithm generates a

sequence
{
{τ (h)

i }, α(h), π(h)
}

h≥0
which increases J (RX ) such that

J
(
RX ; {τ (h+1)

i }, α(h+1), π(h+1)
)
≥ J

(
RX ; {τ (h)

i }, α(h), π(h)
)

.

Proof.This is a direct consequence of Propositions 7 and 8, which both
guaranty that J (RX ) increases. �
5.3 Choice of the number of classes

In practice the number of classes is unknown and should be estimated. We
derive a Bayesian model selection criterion for this purpose which is based in
the Integrated Classification Likelihood (ICL) criterion developed by Bier-
nacki et al. (2000). We denote by θ = (α, π) the entire set of the mixture
parameters which lies in Θ = A×Π, with A the Q-dimensional simplex and
Π =]0, 1[Q(Q+1)/2. Then we denote by g1(α|mQ) and g2(π|mQ) the prior

14
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distributions of the parameters for a model mQ with Q classes. The ICL cri-
terion is an approximation of the complete-data integrated likelihood defined
such that:

L(X ,Z|mQ) =

∫

Θ

L(X ,Z|θ, mQ)g(θ|mQ)dθ,

where L(X ,Z|θ, mQ) is the complete-data likelihood of model mQ with Q
classes.

Proposition 10 For a model mQ with Q classes, the ICL criterion is :

ICL(mQ) = max
θ

logL(X , Z̃|θ, mQ)

−1

2
× Q(Q + 1)

2
log

n(n − 1)

2
− Q − 1

2
log(n).

Proof.The derivation of ICL is based on the following lemma by Biernacki
et al. (2000) which can be applied to our case: if g(θ|mQ) = g1(α|mQ) ×
g2(π|mQ) then logL(X ,Z|mQ) = logL(Z|mQ)+logL(X |Z, mQ). The deriva-
tion of the first term can be done directly, using a Dirichlet prior, D(δ) on
proportions, which gives:

logL(Z|mQ) = log

∫
αn1

1 . . . α
nQ

Q

Γ(Qδ)

Γ(δ)Q
I(∑

q

αq = 1

)
dα,

= log Γ(Qδ) +
∑

q

log Γ(nq + δ) − Q log Γ(δ) − log Γ(n + Qδ),

where nq is the number of nodes in class q. Since nqs are unknown, we

replace the missing data Z by their prediction Z̃. Then we consider a non
informative Jeffreys prior distribution which corresponds to δ = 1/2. This
gives:

logL(Z̃|mQ) = log Γ(Q/2)+
∑

q

log Γ(ñq+1/2)−Q log Γ(1/2)−log Γ(n+Q/2),

with n the total number of nodes. Then we take the limit of this quantity for
large n, and using the Stirling formula to approximate the Gamma function
we obtain:

logL(Z̃|mQ) =
∑

q

ñq log(ñq) − n log(n) − Q − 1

2
log(n)

= max
α

logL(Z̃|α, mQ) − Q − 1

2
log(n).
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As for the second term, we have n(n−1)/2 Bernouilli random variables with
fixed labels and logL(X |Z, mQ) can be calculated using a BIC approxima-
tion:

logL(X |Z, mQ) ≃ max
π

logL(X |Z, π, mQ) − 1

2
× Q(Q + 1)

2
log

n(n − 1)

2
.

Finally, the sum of these two separate terms completes the proof. �
6 Application to biological networks

We apply the methodology developed in this paper to an metabolic network of
bacteria Escherichia coli: the small molecule interaction metabolism network.
In this network, vertices are chemical reactions. Two reactions are connected
if a compound produced by the first one is a part of the second one (or vice-
versa). The original data are issued from http://biocyc.org/. They have
been curated to remove some of the secondary compounds. The network we
analyzed is available at http://pbil.univ-lyon1.fr/software/motus/; it
is made up of n = 605 vertices and the total number of edges is 1782. We
emphasize that the algorithm we propose is currently the only inferential
method which can handle such a large network.
We first show that the Poisson mixture defined in Section 2 better fits the
observed degree distribution than the scale free distribution. Then we apply
the mixture model for graphs to uncover the structure of this metabolic
network.

6.1 Fit of the empirical distribution of the degrees

Many papers claim that the Zipf pdf (defined in (1)) fits well the empirical
degree distribution of real networks, but these claims are rarely based on
statistical criteria. In order to assess the quality of fit of the Zipf pdf to the
tail of the empirical distribution, we compute the usual chi-square statistics
for different thresholds. The minimum chi-square estimate of ρ are computed
for each threshold. Table 2 shows that the fit is not good even for the tail
distribution with a high value of the threshold. Consequently, the Zipf pdf
is only a rough approximation of the true one. It is often better suited for
the tail than for the whole distribution.
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Table 2: Fit of the power law and Poisson mixture to the degree distribu-
tion: Chi-square (χ2) statistics, degree of freedom and ratio χ2/df for several
thresholds. The same values of the parameters of the Poisson mixture have
been used for all thresholds.

Power law Poisson mixture
Threshold n ρ + 1 χ2 stat. df χ2/df χ2 stat. df χ2/df

0 593 - - - - 67.25 29 2.32
1 549 1.79 96.22 32 3.01 58.5 28 2.09
2 399 1.93 75.83 31 2.45 32.3 27 1.20
3 315 2.08 59.7 30 1.99 30.6 26 1.18
4 252 2.19 53.07 29 1.83 27 25 1.08
5 200 2.24 52.37 28 1.87 27 24 1.13
6 172 2.37 45.44 27 1.68 25 23 1.09

Table 3: Parameter estimates for the Poisson mixture model on degrees with
3 classes.

class 1 2 3
α (%) 8.9 19.7 71.3

λ 21.5 9.1 3.0

The fit of the mixture of Poisson distributions is presented in Figure 1.
The BIC criterion selects three classes. Parameter estimates are given in
Table 3, and Table 2 shows that the fit of the Poisson mixture is better than
the fit of the Zipf distribution. The lack of fit for the two first lines is due to
an unexpectedly high number of vertices with two connections: 12 vertices
have no connection, 44 have one connection and 150 have two connections.
This particular structure is due to a large number of chain reactions which
constitute intermediates between two others.

6.2 Mixture modeling of the network

The ICL criterion selects a model with Q = 21 classes whose parameter
estimates are given in Table 4. Figure 2 presents the graph as a dot-plot
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Figure 1: Fit of the Zipf (top) and Poisson mixture (bottom) pdf on the E.
Coli data. Left: histogram of degrees with adjusted distributions (Zipf:
threshold 1 − ◦ − and 6 −O−, Poisson mixture: 3 classes −O− and 6
classes− ◦ −). Right: PP plots.
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Table 4: Parameter estimates of the mixture model for graphs with Q = 21
classes: α, π and λqs. Values smaller than .5 % are hidden for readability.

α(%) 0.7 1.0 1.2 1.3 1.3 1.5 1.5 1.6 1.8 1.8 2.0 2.1 2.3 2.6 2.7 2.8 3.0 3.0 3.3 5.8 56.8
100 64 11 43 2 100

100
100 4 7 1 1

71
100 28 1 18 16
28 100 6

64 58 10 4 7 5 5
63 5 3

11 10 65 1 2 2
43 1 4 67 1

π 62 7 4
(%) 4 7 5 28 5 5

2 7 5 1 5 100 1
6 7 25

1 40
100 18 5 1 5 1 100

2 4 100 6
1 3 2 21

16 19
6 11

1
λq 33 7 9 6 17 13 12 7 10 10 10 8 17 6 7 25 21 5 6 5 3

where a dot at row i and column j indicates that the edge i ↔ j is present.
To emphasize the connections between the different classes, vertices are re-
ordered within classes. Limits between classes are obtained using a maximum
a posteriori classification rule: vertex i is classified into the class for which
τ̂iq is maximal. The bottom plot in Figure 2 gives the estimated posterior
probabilities τ̂iq which show that classes are well separated.

Among the first 20 classes, 8 are cliques (πqq = 1) and 6 have within
probability connectivity greater than 0.5. It turns out that all those cliques
or pseudo-cliques gather reactions involving a same compound. Examples of
compounds responsible for cliques include chorismate, pyruvate, L-aspartate,
L-glutamate, D-glyceraldehyde-3-phosphate and ATP. That set of metabo-
lites can be viewed as the backbone of the network.
Since the connection probability between classes 1 and 16 is 1, they constitute
a clique which is associated with a single compound: Pyruvate. However,
that clique is split in two sub-cliques because of their different connectivities
with reactions of classes 7 and 10. This distinction is due to the use of CO2 in
class 7 and acetylCoA in class 10, which are secondary compounds involved
in reactions of class 1 but not in those of class 16.
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Figure 2: Top: Dot plot representation of the graph after classification of the
vertices into the 6 classes. Bottom: Posterior probabilities τiq.
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Remarks

• Table 4 also shows that the clique structure strongly increases the mean
degree λq of its elements.

• In this example, it turns out that the within connection probabilities
πqq are always maximal. A simulation study (not shown) prove that
it is not an artifact of the method, which can detect classes without
intra-connection (πqq = 0).

To end, we also compare the expected clustering coefficient c given in
Proposition 5 with the empirical one. The expected value for Q = 21 classes
is 0.544, while the observed one is 0.626. The mixture model for graphs
therefore slightly underestimates this coefficient. On the same dataset, the
Erdös-Rényi model would give ĉ = π̂ = 0.0098.
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