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Abstract

We consider the joint segmentation of multiple series. We use a
mixed linear model to account for both covariates and correlations
between signals. We propose an estimation algorithm based on EM
which involves dynamic programming for the segmentation step. We
show the computational efficiency of this procedure. An application to
microarray CGH profiles from multiple patients is presented.

Keyword : Dynamic programming; EM algorithm; Mixed linear model; Seg-
mentation.

1 Introduction

Many application fields in statistics provide signals which are in the form
of non-stationary time series. To simplify the interpretation of such signals,
segmentation models are often used to identify intervals in which the signal is
homogeneous. To do this the data are modelled by a random process whose
parameters are subject to abrupt changes at unknown coordinates. This
is the so-called off-line multiple changed-point problem. When considering
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univariate processes, the objective is to identify the number and the position
of the change-points, as well as the value of the parameter between two
changes. Many strategies exist in this framework, and intensive research
has been conducted to develop efficient segmentation algorithms.

Despite a wide range of applications, little has been done in the case
of multivariate processes, when the purpose is to detect and characterize
structure in two or more related series [4]. In the following we focus on
the joint segmentation problem, for which each series is segmented jointly
with other series, compared with the simultaneous segmentation problem for
which changes are common among series. We use the linear model approach
to model the change-points, as already used by [1, 2], and we introduce
random effects to structure the covariance matrix of the process. This model
allows us to introduce a correlation structure among series at every instant,
and to incorporate additional covariates in the model which are not subjet
to changes. Consequently we consider segmentation models with partial
structural changes.

One main issue when using segmentation methods is to define an efficient
estimation procedure for change-point positioning. This optimization prob-
lem can be viewed as a partitioning problem whose purpose is to segment
N data points into K segments, K being fixed. When using the maximum
likelihood estimation method, dynamic programming (DP) has shown excel-
lent performance [9], as it reduces the algorithmic complexity from O(NK)
to O(KN2). However the use of the traditional DP is not possible when
considering partial structural changes [1], and the problem becomes even
more intricate with the introduction of random effects.

In this article, we propose to solve this issue using the ECM (Expecta-
tion/Conditional Maximization) algorithm to maximize the likelihood [7].
ECM is an instance of the traditional EM algorithm [3], which replaces a
complicated M-step of EM with several computationally simpler CM-steps.
This algorithm can be used in this context as linear mixed models can be
put in the more general framework of models with incomplete data. Among
the CM-steps, one is dedicated to the estimation of the breakpoints, and we
show that DP can be used at this step. However, despite a drastic decrease
in the complexity, DP may not be sufficient to segment multivariate pro-
cesses whose data points may reach the hundreds of thousands points, as
mentioned by [2]. We develop a two-stage dynamic programming procedure
to solve this problem. Our method is applied to the detection of recurrent
changes among the genomes of patients with colorectal cancer.
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2 Model and notations

We consider M time series with nm observations each, and we note N =∑
m nm the total number of observations. We denote by t the position of

the signal and by nmax the maximum number of points in a series, t ∈
{1, . . . , nmax}. We observe Ymt the signal of series m at position t. We
suppose that part of the mean of the process {Ymt}t is subject to Km − 1
abrupt changes at breakpoints {tmk } for series m, (with convention tm0 =
0 and tmKm

= nmax) and is constant between two breakpoints within the
interval Im

k =]tmk−1, t
m
k ]. In the following we denote by K =

∑M
m Km the

total number of segments accross series which is fixed in this section.
We consider the following linear mixed effect model

∀t ∈ Im
k , Ymt = µmk + xmtθ + Ut + Emt,

with xmt a [1×p] vector of covariates, θ the corresponding parameter which
is not subject to changes. When p = 0 we obtain a pure structural change
model. Ut is the random effect at position t, which models the correlations
among series. Emt stands for the noise.

To use the matricial formulation of linear models, we introduce the [N ×
K]-incidence matrix of breakpoints denoted by T = Bloc [Tm] with Tm =
Bloc

[
1lnm

Km

]
of size [nm ×Km], and with nm

k = tmk − tmk−1 being the length
of segment k for series m. We also introduce notation µ = [µmk] which
corresponds to the fixed effects subject to changes (of size [K × 1]). Using
the matricial formulation of linear models, we have

Y = Tµ + Xθ + ZU + E,

where Y ([N × 1]) stands for the observed data, and where T,X,Z are
incidence matrices of breakpoints, constant parameter and random effects
with respective size [N ×K], [N × p] and [N × nmax]. Note that compared
with classical linear models, incidence matrix T is unknown and should be
estimated. As for the random part of the model, U ([nmax × 1]) stands for
the random effects and E ([N × 1]) for the noise. U is centered Gaussian
with covariance matrix G; E is centered Gaussian with diagonal covariance
matrix R; U and E are independent. Consequently, the covariance matrix
of Y is V = ZGZ′ + R.
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3 Parameter estimation using the ECM algorithm

We propose to estimate the parameters of the model by maximum likelihood.
In the following, we denote by φ = (µ, θ,G,R,T) the set of parameters to
be estimated. The use of the EM algorithm [3] is now well established in the
context of parameter estimation for mixed linear models [11], as these mod-
els can be put in the general framework of models with incomplete data. In
this case, random effects U constitute the unobserved data, and the use of
EM lies in the decomposition of the complete-data log-likelihood such that:
logL(Y,U; φ) = logL(Y|U; θ,T,µ,R)+ logL(U;G). We denote by Eφ{·}
the expectation operator using φ as the parameter value and Vφ{·} the corre-
sponding variance. The conditional expectation Q(φ; φ(h)) of logL(Y,U; φ)
given Y is also a sum of two terms Q0(φ; φ(h)) and Q1(φ; φ(h)):

−2Q0(φ;φ(h)) = −2Eφ(h) {logL(Y|U;θ,T, µ,R)|Y}
= N log(2π) + log |R|−1 + ‖Y −Xθ −Tµ− ZÛ‖2

R−1

+ Tr
(
R−1ZWZ′

)
,

−2Q1(φ;φ(h)) = −2Eφ(h) {logL(U;G)|Y}
= M log(2π) + log |G|−1 + Û′G−1Û + Tr

(
G−1W

)
,

where Û = Eφ(h) {U|Y} stands for the best linear unbiased predictor (BLUP)
of the random effects U, Tr(A) for the trace of matrix A, |A| for its deter-
minant and where W = Vφ(h) {U|Y}.

3.1 E-step

This step consists in the calculation of Q(φ; φ(h)) which only requires the cal-
culation of Û and W. The BLUP is such that Û = GZ′V−1 (Y −Xθ −Tµ),
and we use Henderson’s trick which avoids the inversion of V. So we get at
iteration (h + 1)

Û(h+1) = W(h)Z′R(h)−1
(
Y −Xθ(h) −T(h)µ(h)

)
,

W(h+1) =
(
Z′R(h)−1Z + G(h)−1

)−1
.

3.2 CM-steps

The principle of the ECM algorithm is to breakdown the maximization of
Q(φ; φ(h)) with respect to φ (global M-step) into simpler CM-steps which
focus on one parameter, the others being fixed. The convergence properties
of ECM are provided in [7].
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Estimation of θ. The update of θ is done with the classical least-squares
estimator

X′R(h)−1Xθ(h+1) = X′R(h)−1(Y −T(h)µ(h) − ZÛ(h+1)).

Estimation of Variance components. We get the estimates G(h+1)

and R(h+1) as arg maxG Q1(φ; θ(h+1),T(h),µ(h),G(h),R(h)) and arg maxR

Q0(φ;θ(h+1), T(h), µ(h),G(h+1),R(h)), respectively. Note that when G is
diagonal, analytic formulas can be derived for the estimates.

Estimation of segmentation parameters. This step is done such that
{
T(h+1),µ(h+1)

}
= arg max

T,µ
Q0

(
φ; (θ(h+1),G(h+1),R(h+1))

)
, (1)

and the computation of this particular CM-step is done in the next Section.

3.3 Estimating breakpoints

The optimization problem (1) is equivalent to the minimization of the resid-
ual sum of squares:

SSRK(µ,T) = ‖Y −Xθ(h+1) −Tµ− ZÛ(h+1)‖2
R(h+1)−1

=
M∑

m=1

Km∑

k=1

SSRm
k (µm,Tm)

under the constraint
∑

m Km = K. This sum is additive according to the
number of segments, which allows us to use the dynamic programming al-
gorithm in this step. The purpose is to partition the interval [1, N ] into
K intervals structured according to series such that [1, N ] =

⋃M
m=1 Jm =⋃M

m=1

⋃Km
k=1 Im

k , with Jm =]tm1 , tmKm
]. To account for this structure, and to

get an efficient algorithm when N is large, we propose a two-stage dynamic
programming.

Stage-1. We denote by SSRm
k (Jm) the residual sum of squares when par-

titionning interval Jm of series m into k segments. This segmentation step
is based on the calculus of SSRm

1 (]i, j]) and on the recursive minimization

∀k ∈ [1 : Km],
SSRm

k (]tm1 , j]) = minh

{
SSRm

k−1(]t
m
1 , h]) + SSRm

1 (]h, j])
}

.
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Stage-2. We denote by SSRK(J1, . . . , Jm) the total sum of square for a
model with K segments spread over m series. The second step consists in
the repartition of segments among time series. This step is based on the
calculus of SSRm

k (Jm) which has been done in Step-1, and on the recursive
minimization:

∀m ∈ [1 : M ],
SSRK(J1, . . . , Jm) = mink′+k′′=K

{
SSRk′(J1, . . . , Jm−1) + SSRm

k′′(J
m)

}
.

Complexity. The first stage corresponds to the segmentation of individual
series into a given number of segments whose complexity is O(

∑
m n2

mKm).
The complexity of the second stage is O(K2 ×M) which makes the overall
complexity of order O(

∑
m n2

mKm + K2M). Using dynamic programming
on the whole dataset would result in a complexity of O(N2K).

If all series had the same length nm = n (so N = Mn) and were seg-
mented into Km = k segments each (so K = Mk) and assuming that k = λn
(with λ ¿ 1), the two-stage dynamic programming algorithm has a complex-
ity ofO(λMn2[n+λM2]) whereas the overall one has complexityO(λM3n3).

3.4 Strategy for the complete estimation algorithm

The regular ECM algorithm described above consists in the calculation of
Q(φ; φ(h)) (E-step) and in the maximization of this quantity (CM-steps).
This last step could be achieved via the circular estimation of all the elements
of φ until convergence. However, this should require numerous dynamic
programming steps, which are the most computationally demanding. To
reduce the numbers of segmentation steps, we iterate the E-step and the
CM-steps for every element of φ except T and µ until convergence, then
we update T and µ. We applied these two algorithms on the same data
to verify that they provide the same estimates in a reduced computational
time.

4 Application to the analysis of multiple CGH pro-
files

CGH data. In this section we present an application of this method to the
analysis of CGH (Comparative Genomic Hybridization) microarray data.
This technology aims at detecting and mapping chromosomal aberrations
along the genome. A continuous fluorescence signal is obtained by hybridiz-
ing the genomic DNA of a patient (target DNA) on a glass slides where
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mapped DNA fragments (probes) are spotted (see [10] for more details).
Once measured this signal is ordered according to the position of the probes,
and shows some discontinuities when the number of target DNAs is differ-
ent from a reference number. Segmentation methods are currently used to
analyse these data but they treat each CGH profile separately (see [5] for
a review on these methods). As this technology becomes a comprehensive
screening tool, its used has recently been generalized to the study of shared
chromosomal aberrations among patients with homogeneous clinical diag-
nosis.

We consider CGH profiles of chromosome 20 from a cohort of 121 col-
orectal cancer patients described in [8]. The cohort is divided into 4 clinical
groups with respective size 11, 37, 35 and 38. The aim is to characterize the
clinical status of the patients according to hotspots of genomic instability.

Model. We denote by Yg`t the observed signal at position t for patient `
in group g (g = 1, . . . , 4). We use the following model:

∀t ∈ Ig`
k Yg`t = µg`k + Ugt + Eg`t (2)

No covariate is considered here. We consider homoskedastic errors with
variance σ2

0 and independent random effects with heteroskedastic variances
σ2

g . This variance heterogeneity means that correlation among profiles may
be different from one clinical group to another.

Results. The number of segments is estimated using a penalized log-
likelihood criterion from [6]. We obtain a total number of K̂ = 240 segments
spread in patients of groups 2, 3 and 4 (only 3 patients from group 1 present
breakpoints). Figure 1 presents the results for groups 1 and 3, group 2 and 4
being very similar to group 3. Most patients from group 3 present genomic
instabilities between positions 35 and 40. Only few patients from group 1
present instabilities on this interval.

If we do not account for correlations among series, i.e. if we remove the
random effect, we obtain K̂0 = 230 segments. Some breakpoints detected
without the random effect at positions 36 and 85-86 vanish with the mixed
model (Figure 1, top panel). This is illustrated by the two profiles displayed
in Figure 2. The predictions of the random effect at these particular position
are large (bottom panel). The predicted random effects in the different
groups are present the same trend. Furthermore, the estimated variances
are also very similar: σ̂g = (0.056, 0.052, 0.060, 0.058). This suggest that
the random effect reveal some intrinsic characteristic of the position or of
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Figure 1: Segmentation results for groups 1 (left) and 3 (right). Top: number
of patients having a breakpoint at each position with (+) or without (◦)
random effect. Bottom: predicted random effect at each position.

the spot. Typically, the high value of Û at positions 36 and 86 is probably
due to either a bad spot quality or a some annotation error regarding its
position. Such spots do not reveal any biological information. They are not
considered by the segmentation part of the model Tµ, but by the random
part ZU, which seems biologically relevant.
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