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Many application fields in Statistics provide signals that are modelled
through time series which are not stationary. Since the interpretation of

such signals is complex, one aim is often to isolate zones in which the signal
can be considered as stationary. In this context, the signal can be stud-
ied with parametric models for which the parameters are supposed to be
affected by abrupt changes at unknown instants. The purpose of the statis-
tical study is then to detect changes in these parameters. Quality control or

monitoring has been one of the earliest applications of change detection. In
this context, a production process is observed and must be controlled; the
quick identification of disorders may be crucial for safety or quality control
reasons. Dedicated statistical methods are based on the observation of se-
quential data, for which the detection of the change has to be done with the

past observations as the only available information. The reader is referred to
Basseville and Nikiforov (1993) for a complete review of on-line detection of
abrupt changes, which does not constitute the purpose of our work. We are
focused instead on the case where the analyst studies one global signal. In
this case the change detection is done off-line, and the problem shifts to the
global segmentation of the process.

The multiple change-point problem

In the global segmentation context we aim at delimiting segments for
which the characteristics of the signal are homogeneous within segments and

different from one segment to another. We note {yt}t=1,...,n the observed data
which are modelled by a random process {Yt}t=1,...,n that is supposed to be
drawn from a probability distribution f(·) that depends on a parameter θ.
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Then we assume that this parameter is affected by K − 1 abrupt changes
at unknown instants noted t1 < . . . < tK−1, with the convention t0 = 1 and
tK = n. The model is formulated as follows:

∀t ∈ Ik, Yt ∼ f(θk),

with Ik = {t ∈]tk−1, tk]} being the interval of size nk for which the parameter
θ is constant and equals θk. Many parameters can be affected by abrupt
changes, the simplest ones being the mean and the covariance of the process,
but changes can also affect the spectral distribution, or transition probabili-

ties of Markov chains for instance.

From a statistical point of view, the problem of global segmentation gives
rise to three main issues: (1) the determination of the parameter(s) affected
by the change(s), (2) the estimation of the breakpoint instants, and the es-
timation of the parameters within segments, (3) the determination of the

number of segments. The problem of determining which characteristics of
the signal are affected by the changes may require a precise knowledge of
the phenomenon under study. In the following, we will restrict the study to
the case of changes in the mean only or in the mean and the variance of an
independent Gaussian process. This model is detailed in section 1.

Estimating the breakpoint coordinates

Once the model has been specified, the problem is to estimate the location
of the breakpoints and the parameters within segments. We will focus on

two classical methods for this purpose: the maximum likelihood method and
the least-squares method. For this estimation step, the number of segments
has to be fixed. In the global segmentation setting, the estimation of the
breakpoints can be viewed as a partitioning problem, where the purpose is
to find the best partition of the data into K segments. Since the number of
possible partitions of the data into K segments is CK−1

n−1 , the exploration of

all possible partitions would be of order O(nK). This computational prob-
lem explains why many segmentation methods only consider the detection of
one change, compared to the multiple change-point problem. In section 2 we
will explain how dynamic programming provides a solution to this problem
of partitioning, and how the CART algorithm proposed by Breiman et al.

(1984) can be used for the detection of multiple changes in the mean for large
samples.
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Model selection

Once an estimation procedure is available for a fixed number of segments,
the question of choosing this number remains. In practice this number is

unknown and should be estimated. This problem can be viewed as a model
selection issue. To date the number of segments is estimated with a penalized
criterion:

crit(K) = JK − βnpen(K). (1)

The first term JK measures the quality of fit of the model to the data. It
can be the log-likelihood at its maximum noted log L̂K , or minus the sum of
squares of the model for instance. The second term is an increasing function

of the number of segments, and is used to penalize the selection of an overly
high-dimensional model. The term βn is a positive constant. This criterion
establishes a trade-off between a good quality of fit and a reasonable number
of segments. The definition of an appropriate penalty function and constant
has focused much attention. In Section 3 we detail existing methods for

model selection procedures in the multiple change-point context.

The multiple change-point problem in the Bayesian setting

The last section will be devoted to a different approach which has been

used to study multiple change-point problems, the Bayesian approach. In
this context, the number of breakpoints and their location are viewed as
random variables. The objective is to estimate their posterior distribution
with MCMC methods. In this section we will compare two parametrizations
which have been proposed by Green (1995) and Lavielle and Lebarbier (2001).

Our objective is to explain the main differences between the two approaches
and to draw analogies with the frequentist setting, when possible.

1. Detection of changes in the mean of a Gaussian process

In this section we consider that the data are independent and drawn from a
Gaussian distribution, such as

∀t ∈ {1, . . . , n}, Yt ∼ N (µ(t), σ(t)2).

Then we assume that the mean and the variance of the process are affected by

K−1 abrupt changes at unknown instants noted t1 < . . . < tK−1. This model
will be denoted M1, in contrast to model M2 where the only parameter
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affected by the changes is the mean, with a constant variance σ2. Then we
have:

∀t ∈ Ik Yt ∼




N (µk, σ

2
k) model M1,

N (µk, σ
2) model M2,

Since the data are independent, the log-likelihood of the model can be written

as a sum of local log-likelihoods calculated on each individual segment, that
is:

logLK =
K∑

k=1

tk∑

t=tk−1+1

log

{
1

σ
√

2π
exp−(yt − µk)2

2σ2

}
.

This additivity property will be central for the downstream estimation pro-
cedures that are based on maximum likelihood.

2. Estimation procedures when the number of segments is fixed

2.1 The maximum likelihood method

If the breakpoints are known, the estimators of the mean and the variance
are the classical maximum likelihood estimators:

µ̂k =
1

nk

tk∑

t=tk−1+1

yt,

σ̂2
k =

1

nk

tk∑

t=tk−1+1

(yt − µ̂k)2 for M1,

σ̂2 =
1

n

∑

k

tk∑

t=tk−1+1

(yt − µ̂k)2 for M2.

For a model with K segments the log-likelihood at its maximum is:

log L̂K = −n
2

log 2π − 1

2

∑

k

nk log σ̂2
k for M1,

log L̂K = −n
2

log 2π − n

2
log σ̂2 for M2.

Nevertheless, the position of the breakpoints is unknown and should be
estimated. This problem can be formulated as a partitioning problem whose
aim is to find the best partition of the grid {1, . . . , n} into K segments. If
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we note PK the set of all possible partitions of the grid {1, . . . , n} into K
segments, the breakpoints are estimated as follows:

T̂K = {t̂1, . . . , t̂K−1} = Argmax
TK∈PK

{
log L̂K(TK)

}
.

Dynamic programming is an efficient recursive approach that can be used to
reduce the computational time of the exhaustive search.

2.2 Dynamic programming and the shortest path problem to estimate the
breakpoint instants

Dynamic programming has been introduced by Bellman and Dreyfus
(1962) and Auger and Lawrence (1989) were the first to use it in the context
of global segmentation. It is a recursive approach based on the Bellman op-
timality principle (Bellman and Dreyfus (1962)). Let’s consider model M2

with a constant variance. The quantity to be optimized is then:

JK =
K∑

k=1

tk∑

t=tk−1+1

(yt − µ̂k)2.

The mean squares criterion is Broken down into a sum of minimum mean
squares criteria. This break-down allows us to draw an analogy to the short-
est path problem. Criterion JK can be seen as the total length of a path
connecting point 1 to point n. The problem is then to find the shortest path

connecting point 1 to point n with K−1 steps, the steps being the breakpoint
instants t1, . . . , tK−1.

Denoting Jk(i, j) the cost (length) of the path connecting point i and j
in k steps, the algorithm is as follows:

∀0 ≤ i ≤ j, J1(i, j) =

j∑

t=i+1

(yt − Ȳij)2,

∀1 ≤ k ≤ K − 1, Jk+1(1, j) = min
1≤h≤j

{Jk(1, h) + J1(h+ 1, j)} .

In this context, the Bellman optimality principle is formulated as follows:
”subpaths of optimal paths are themselves optimal”. This global minimiza-

tion property is crucial since it ensures the optimized criterion to be at its
global maximum (compared with other estimation algorithms such as the EM
algorithm that only ensures a local maximum). Moreover, this algorithm re-
duces the computational burden of the exhaustive search from O(nK) to
O(n2) for a given K. This approach has been used by many authors and the

reader is referred to Auger and Lawrence (1989), Braun et al. (2000) and
Hawkins (2001) for instance.
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2.3 A CART-based approach for the multiple change-point problem

Even if dynamic programming considerably reduces the computational
time of the exhaustive search, it cannot be used for overly large samples. If

the data to be partitioned are DNA sequences for instance, the storage of a
cost matrix that is n× n with n ∼ 109 is difficult. For this reason, Gey and
Lebarbier (2002) recently proposed combining dynamic programming with a
CART-based approach for the estimation of the breakpoints, when the size
of the data is large. The role of the CART-based method for segmentation is

to restrict the collection of visited partitions PK to the relevant ones. This
leads to a fast algorithm of order O(n log n).

The CART algorithm is computed in two steps (Breiman et al. (1984)).
The first one is called the growing procedure and consists in the recursive con-
struction of a collection of partitions using data-dependent dyadic splitting.

The computational schema of the first step is as follows:

- Compute the change-point t̂c such as t̂c = Argmin
j
{J1(1, j) + J1(j + 1, n)}.

The objective of this step is to find the first best partition of {1, . . . , n}
into 2 segments.

- Apply the same procedure on the new defined segments, and so on until
the number of points within each resulting segment is smaller than a
given threshold.

Other sequential methods have been proposed for the change-point esti-
mation problem, see Ghorbanzdeh (1995), Picard (1985) and Chong (2001)
for instance. Nevertheless, those methods aim at finding the relevant break-

points directly, leading to sequential tests that require the definition of many
tuning parameters. The use of a CART-based method is different. The first
step (growing procedure) provides a collection of segmentations and the only
parameter to be tuned is the minimum size for a segment to be split. In
a second step (the pruning step), a relevant segmentation is chosen with a
model selection procedure.

Once this segmentation has been chosen, it appears that some break-
points can be irrelevant. This is due to the sequential nature of the CART
algorithm that does not guarantee the finding of the global optimum. In
order to circumvent this difficulty, Gey and Lebarbier (2002) propose com-

bining the CART algorithm with a partial exhaustive search. The general
idea is to consider that the breakpoints that have been proposed by CART
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(at the end of the growing and pruning procedures) constitute candidates
that can be removed if they correspond to false alarms. This is done by
dynamic programming, which performs a partial exhaustive search on the
proposed breakpoints to free the results from the hierarchic nature of the
CART candidates. This leads to a hybrid algorithm that has been shown to

be efficient (see Gey and Lebarbier (2002)).

2.4 Statistical properties of the breakpoint estimators

Once the position of the breakpoints has been estimated, a classical ques-
tion is the statistical properties of the resulting estimators. Nevertheless,
since the breakpoint parameters are discrete, the likelihood is not continuous
with respect to those parameters. This particularity hampers the use of clas-

sical techniques to show their consistency for instance. Many articles have
considered this problem, see Yao and Au (1989), Siegmund (1988), Lavielle
(1999), Braun et al. (2000) for instance. Yao and Au (1989) have shown that
in the case of a jump in the mean of an independent Gaussian process, the
breakpoint estimators were consistent, and Braun et al. (2000) later show

the consistency in the case of processes whose variance depends on the mean.
Lavielle and Moulines (2000), Lavielle (1999) further extended those results
to the case of time series and dependent processes, showing that the rate of
convergence of t̂k does not depend on the covariance structure of the process.
In the case of a jump in the mean Yao and Au (1989) provide a theorem

concerning the limiting distribution of the breakpoint estimators.

As for the confidence set of the change-point estimators, many strategies
have been formulated for the single change-point problem. Siegmund (1988)
and Worsley (1986) propose methods based on the likelihood ratio statistic,

and Cobb (1978) provides an approximation of the conditional distribution
of the maximum likelihood estimator of the change-point given the adjacent
observations. In the multiple change-point context, current approaches use
tests based on a change in the parameter of the distribution (see Avery
and Henderson (1999) for a nonparametric approach in the case of Bernoulli
sequence, Venter and Steel (1996) for maximum likelihood approaches in the

Gaussian case). Those approaches focus on the change in the parameter with
which the data are modelled, and not on the existence of a change-point tk.

An interesting question would be to assess a simultaneous confidence
region of the breakpoint estimators t̂1, . . . , t̂K−1. To our knowledge no con-
fidence set has yet been proposed for the sequence of the change-point esti-

mators in the case of multiple breakpoints.
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3. Model selection procedures to estimate the number of seg-
ments

Once the model has been specified and the location of the breakpoints can
be estimated with an appropriate method, the problem is to determine the
number of segments into which the data should be partitioned. In practice
this number is unknown and can be estimated with a penalized criterion de-

fined in Equation .

To date, two approaches have been considered to define the penalty term.
The first one considers that there exists a true number of breakpoints K ?

that should be estimated, and a true underlying model from which the data

have been generated. In this context, Yao and Au (1989) showed that the
Bayesian Information Criterion (BIC) provides a consistent estimator of the
number of breakpoints. This criterion uses JK = log L̂K and pen(K) = 2K
for the number of parameters to be estimated (K means, 1 variance and
K − 1 breakpoints), and βn = 0.5 × log(n) for the penalty constant. This

result is extended to the case of a dependent process, and Lavielle (1999)
shows that if constant βn goes to 0 at an appropriate rate depending on the
covariance structure of the process, the estimated number of change points
converges to the true number.

Since practical use of penalized criteria is done in a non asymptotic con-
text, another approach for model selection has been provided by Birg and
Massart (2001). This model selection procedure has been applied to pro-
cess segmentation by Lebarbier (2005) and Lavielle (2005), who propose two
strategies that lead to different penalty functions and constants.

3.1 Motivation of model selection

In the context of model selection, we have n independent random variables
{Yt}t=1,...,n whose distribution s is unknown and has to be recovered. In the
case of process segmentation, this function s is recovered using a collection
of piecewise constant functions. For this purpose, Lebarbier (2005) defines
model Sm that is the subset of piecewise constant functions on partition

m = {Ik}k=1,...,Km of dimension Km:

Sm =

{
u =

Km∑

k=1

uk1lIk , (uk)k=1,...,Km ∈ RKm
}
.

Classical estimation procedures consider that distribution s belongs to
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Sm. Nevertheless, since s is unknown, it is unlikely that it belongs to any
model. The approach developed by Birg and Massart (2001) considers that
model Sm only constitutes an approximation of s. Since s is unknown, it
is approximated by s̄m that belongs to model Sm. Nevertheless, s̄m itself is
unknown and is estimated by ŝm. Then the quality of an estimator ŝm is

assessed with a quadratic risk, E‖s− ŝm‖2, and the chosen estimator should
minimize this risk. The quadratic risk of ŝm can be broken down such that:

E‖s− ŝm‖2 = E‖s− s̄m‖2 + E‖s̄m − ŝm‖2.

The first term E‖s − s̄m‖2 measures the distance of the unknown s to the
approximator s̄m in Sm. This is a bias term that is small if the approxi-
mation is good. The second term E‖s̄m − ŝm‖2 measures the quality of the
estimation of s̄m by ŝm. This quantity should be small to prevent estimation
errors. The purpose of model selection is then to establish a trade-off be-

tween a model that is close to the unknown distribution and which provides
a good approximation of the unknown distribution, but that is not too big
to prevent from estimation errors. This is called the bias/variance trade-off.

An ideal estimator of s, noted ŝm could be defined as the estimator that

achieves the best bias/variance trade-off. The objective of model selection is
then to construct a criterion that will be used to select a partition m̂ which
behaves as well as the best estimator, up to some constant. This criterion is
composed of two terms, a first term that quantifies the closeness of model Sm
to the data, that increases with the dimension of the model, and a penalty

term to control the estimation errors.

In the context of process segmentation, a model is selected through its
dimension, ie we aim at selecting m̂ the partition of dimension Km. This is
achieved with a penalty function defined by Lebarbier (2005), such that:

βn × pen(K) =
Km

n
σ2 ×

{
c1 log

(
n

Km

)
+ c2

}
, (2)

with c1, c2 two positive constants to be calibrated and σ2 to be estimated.
This function increases with the dimension of the modelKm, and the log(n/Km)
term reflects the richness of collection of partitions, since there exists CKm−1

n−1

possible partitions of the grid {1, . . . , n} into Km segments.
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The performance of this penalty function has been assessed by simula-
tion studies, and compared to other penalized criteria, such as the Mallows
Cp criterion, and the Bayesian Information Criterion (BIC) in a non asymp-
totic context. The main difference between those criteria is that criteria
constructed on asymptotic considerations do not consider the complexity of

the different models. Let us recall that the construction of BIC in the con-
text of process segmentation considers that the number of parameters to be
estimated is Km means, Km − 1 breakpoints and 1 variance, whereas this
new penalty considers that there exists CKm−1

n−1 possible partitions when Km

is fixed. This leads to a penalization that is more stringent, and to the selec-

tion of a lower number of segments. Note that the construction of a penalty
function is based on different objectives that will explain its behavior. For
instance, the use of BIC to select the number of segment is motivated by
the finding of the true number and of the true breakpoint coordinates. On
the other hand, the penalty given by Lebarbier (2005) aims at minimizing
a quadratic risk, and will tend to ignore some irrelevant breakpoints corre-

sponding to small jumps in the mean.

To complete the introduction of model selection for segmentation process,
the reader is referred to Lebarbier (2005) for further information concerning
penalty 3.1, the calibration of constant c1, c2 and the estimation of σ2. Model

selection theory has been applied to a wide range of statistical problems. See
Birg and Massart (2001) for a general presentation of model selection theory,
Castellan (2000) for the application of model selection to the estimation
of histograms, and Gey and Nedelec (2002) for model selection for CART
Regression Trees.

3.2 An adaptive method to estimate the number of segments

In contrast to Lebarbier (2005) who aims at finding a universal penalty for
selecting the number of segments, Lavielle (2005) has developed an adaptive
method that is heuristically based. The motivation of such method is that
the penalties defined for the BIC criterion or by Lebarbier (2005) are adapted
to a very particular context. In the first one, the objective is to recover the

true configuration, and the second one aims at minimizing a very specific cri-
terion (the quadratic risk of the estimator), but none of these methods holds
in the non-Gaussian case or for dependent variables for instance. The aim
of Lavielle (2005) is to propose a method that can be used in many different
situations, with very few hypotheses.

9
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First of all let us notice that when the number of segments is small re-
garding the size of the data, penalty 3.1 is linear in the number of segments,
and Lavielle (2005) suggests using a penalty in the form:

pen(K) = 2K.

The new objective is to estimate β adaptively to the data. This estimation
is done considering the behavior of the quality of fit criterion that is used.
If this criterion is the least-squares criterion noted JK , it will decrease as

the number of segments increases, and the method consists in the determi-
nation of the number of segments for which the criterion ceases to decrease
significantly. The proposition considers the slope between points (Ki, JKi)
and (Ki+1, JKi+1

). Looking where JK ceases to decrease significantly means
looking for a break in the slope of this curve. An illustration is provided in
Figure 1.

[Figure 1 about here.]

This method is heuristically based and requires the tuning of a parameter

to assess the ”significance” of the slope break. Nevertheless, it appears to
be very flexible and has been shown to be efficient in many situations. Sim-
ulation results comparing this adaptive method to the penalty defined by
Lebarbier (2005) show that it is more robust to the addition of noise (Picard
et al. (2005)).

4. Bayesian formulation of the multiple change-point problem

In order to complete this review on segmentation methods, we present an-

other modelling strategy that has been considered for this problem, in the
Bayesian framework. See Green (1995), Carlin (1992), Barry and Hartigan
(1993), Avery and Henderson (1999), Lavielle and Lebarbier (2001) for in-
stance. Previous sections were dedicated to strategies whose objective is to
provide the best segmentation on the data, based on a specific criterion. The
objective is different in the Bayesian setting, where the number of segments

as well as their position is random. As a consequence, their posterior distri-
bution will be used to choose the most appropriate number of segments, and
will provide local information regarding the position of the breakpoints.

The model can be specified as follows. Let {Yt} be a real process such

that
∀t ∈ {1, . . . , n}, Yt = s(t) + εt,

10
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where εt is a sequence of zero-mean random variables. The function s to be
recovered is supposed piecewise constant. With the conventional notations:

∀t ∈ Ik, s(t) = µk.

4.1 The multiple change-point problem and the reversible jump algorithm

Two approaches have been considered to model the sequence of change-
points. Green (1995) specifies the prior model as follows. Suppose that the
number of segments K is drawn from a Poisson distribution P(λ). Given K,

the breakpoint positions t1, . . . , tK−1 are distributed as the even-numbered
order statistics from 2K − 1 points uniformly distributed on [1, n], and the
means µk are independently drawn from the gamma density Γ(α, β).

A Monte Carlo Markov Chain algorithm is required to calculate the poste-

rior probabilities of both breakpoint instants and means. Nevertheless, those
probabilities depend on the number of segments which may vary. Many au-
thors have solved this problem by fixing K at 1. The development of the re-
versible jump MCMC sampler has allowed this limitation to be circumvented,
and the multiple change-point problem was one of its first applications. The
reader is referred to Green (1995) for further details on the application of the

Reversible Jump algorithm to the multiple change-point problem.

4.2 A reparametrization of the multiple change-point problem

Instead of a parametrization that considers the breakpoint instants {tk}k,
Lavielle (1998) and Lavielle and Lebarbier (2001) propose introducing a se-
quence of constant size {Rt}, such that:

Rt =

{
1 if there exists k such that t = tk.
0 otherwise.

The variables are supposed to be independent with prior Bernoulli distribu-
tion B(λ). Let us concentrate on the differences between the model specified
by Green (1995) compared to this formulation.

In the formulation proposed by Lavielle and Lebarbier (2001) the variable
of interest is the presence of a breakpoint, which is supposed independent
from the presence of a breakpoint at close instants. In the framework defined
by Green (1995) however the sequence of breakpoint instants {tk} indicates
the position of the breakpoints, and positions are not independent from each

other. As a consequence the posterior distribution of the {tk} in the re-
versible jump context will directly quantify the uncertainty regarding the

11
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breakpoints location. With the reparametrization of the model, this infor-
mation will be provided by the quantity Pr{∑tb

t=ta
Rt = k|y; θ}, which is the

probability of having exactly k change-points between instants ta and tb.

Another difference lies in the distribution of the number of segments.

In the first case, this number is assumed to follow a Poisson distribution,
and the distribution of the breakpoint instants only depends on its current
value. In the formulation proposed by Lavielle and Lebarbier (2001), the
prior distribution of the sequence {Rt} defines the prior distribution of the
number of segments. Since KR =

∑n−1
t=1 Rt+1, and Rt ∼ B(λ), it follows that

KR ∼ B(n− 1, λ). The choice of the number of segments will depend on the
choice of λ. More than a strict impact of parameter λ on the distribution on
the number of segments, the Bernoulli prior on Rt specifies the distribution
of the distance between two breakpoint instants since

Pr{Rt+1 = 0, . . . , Rt+`−1 = 0, Rt+` = 1|Rt = 1} = λ(1− λ)`−1.

In this formulation, the prior distribution has a double impact: it specifies
the distribution of the number of segments, as well as the distribution of the
length of the segments, which implicitly becomes geometric.

4.3 Recovering the Maximum A Posteriori estimator of the breakpoints se-
quence

The main advantage of the formulation proposed by Lavielle and Lebar-

bier (2001) lies in the computational approach that can be used to recover
the posterior distribution of the sequence {Rt}. The authors emphasize the
hierarchy of the model, that is:

p(R, µ|y; θ) = p(R|y; θ)× p(µ|y,R; θ),

with θ the set of hyperparameters. The first term p(R|y; θ) is used to recover
the sequence of the breakpoint instants, and once this distribution is known,
the signal is reconstructed with a Gibbs sampler to calculate p(µ|y,R; θ),
the hyperparameters of the model being estimated with a stochastic approx-

imation of the EM algorithm, SAEM (Delyon et al. (1999)). Since the size
of sequence {Rt} is fixed, a Hastings-Metropolis algorithm can be used to
sample sequences of 0 and 1 of size n. This parametrization prevents the use
of a reversible jump algorithm, which is known to converge slowly.

12
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Moreover Lavielle and Lebarbier (2001) show that the posterior distribu-
tion of R is in the form

p(R|y; θ) = C(y; θ) exp{−Uθ(y,R)},
where

Uθ(y,R) = φ

KR∑

k=1

tk∑

tk−1+1

(yt − ȳk)2 + γKR,

and where (φ, γ) depend on the hyperparameters of the model. The Maxi-
mum A Posteriori (MAP) estimator of R that minimizes Uθ(y,R) is then a
penalized least-squares estimator. An analogy can be drawn with the break-
point estimators defined in the frequentist context:

{t̂1, . . . , t̂K−1} = Argmin
t1,...,tK−1





1

n

K∑

k=1

tk∑

t=tk−1+1

(yt − µ̂k)2 − 2βK



 .

The recovery of the MAP estimator of the breakpoint sequence can face
local maxima that should be avoided. To do so, Lavielle and Lebarbier
(2001) propose a modification of the Hastings-Metropolis algorithm, with
the introduction of a temperature parameter T such that:

pT (R|y; θ) = CT (y; θ) exp{−Uθ(y,R)

T
}.

The interest in this temperature parameter is that when T tends to 0,

pT (·|y; θ) converges to the uniform distribution on the set of global max-
ima of p(·|y; θ). Simulated annealing algorithms consist in using a sequence
of temperatures T (i) that decrease at each iteration. Nevertheless, the use of
this sequence would require a very large number of iterations. In practice,
Lavielle and Lebarbier (2001) suggest running the Hastings-Metropolis algo-

rithm at a fixed low temperature. The problem is to choose this temperature
parameter.

5. Conclusion

In this work, we presented a brief review of existing statistical methods con-
cerning the multiple change-point problem. Of course this review is not ex-
haustive, since the bibliography related to this subject is ample. Our scope
was to present and explain the main tools that will be used in the following,
such as dynamic programming and model selection, but also to present other

existing methods, such as Bayesian methods that constitute an alternative
modelling strategy.
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Figure 1. Illustration of the model selection procedure proposed by Lavielle
(2005). Circles represent the convex hull of contrast JK . The vertical line
indicates the number of segments for which the contrast ceases to decrease
significantly.
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