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Abstract

In the context of graph clustering, we consider the problem of es-
timating simultaneously both the partition of the graph nodes and the
parameters of an underlying mixture of affiliation networks. In numer-
ous applications the rapid increase of data size with time makes classical
clustering algorithms too slow because of the high computational cost. In
such situations online clustering algorithms are an efficient alternative to
classical batch algorithms. We present an original online algorithm for
graph clustering based on a Erdös Régnyi Graph Mixture. The relevance
of the algorithm is illustrated, using both simulated and real data sets.
The real data is a network extracted from the french political blogosphere
and presents an interesting community organization.

1 Introduction

In many scientific fields, systems can be modeled using networks to represent
data relationships. World-wide-web, gene interactions, social networks, authors
citations, are examples of fields where graph representation makes sense inter-
preting relations between nodes. Considering the web, nodes represent web sites
or web pages, and each edge represents an hyperlink relating two nodes.

These so-called real networks share some properties such as small-world phe-
nomenon in the sense that most nodes are close to each other (6 degree of sep-
aration in social networks), scale-free distribution of the degrees (distribution
of degrees does not depend on the graph size), degree distribution which obeys
a power law (presence of hubs), giant components (connected subgraph that
contains a majority of the entire graph’s nodes), high clustering coefficient (im-
portant aggregative trend of a graph) and finally preferential attachment (the
nodes connect with higher probability compared to those nodes that already
have a large number of edges).Random graphs are a possible model for net-
works where nodes are given and vertex considered as random variables. The
simplest and most studied random graph model is the Erdös-Rényi graph, where
each pair of nodes is connected with probability p. But Erdös-Rényi graphs do
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not exhibit most of the properties of real networks, particulary the degree dis-
tribution and the high clustering coefficient. Thus alternative models have been
developed. For example, mechanistic models [Albert and Barabasi, 2002] have
been proposed to model network growth. They are mainly based on informative
summary statistics, such as the degree distribution, but do not allow for any
statistical inference.

When the number of nodes and egdes is important, it is a difficult task
to have a global synthetic view of the network structure. Finding groups or
communities of nodes which have a higher within-group density of edges than
between-groups can have a significant importance for interpreting the network.
For instance, groups within the worldwide web might correspond to sets of web
pages on related topics [Flake et al., 2002]; groups within social networks might
correspond to social units or communities [Wasserman et al., 1994a] The mere
fact of finding a network that contains tightly-knit groups (so-called community
structure) at all can convey useful information: if for instance a metabolic net-
work were to be divided into such groups, it could provide evidence for a modular
view of the network’s dynamics, with different groups of nodes performing differ-
ent functions with some degree of independence [Guimera and Amaral, 2005].

Figure 1: Network of the blogopole www.blogopole.fr

This detection of community structure is a well studied problem, which
is closely related to classical clustering. Thus proposed approaches for com-
munities detection take their inspiration from classical clustering algorithms,
proposing criterion adapted to this particular problem.

The Erdös-Renyi Mixture Model for Graph (ERMG) has been proposed by
[Daudin et al., 2006] with an associated EM [Dempster et al., 1977] estimation
algorithm and is not to be confused with Exponential Random Graph Mod-
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els for Network Data (ERGM), which consider distributions ensuing from the
exponential familiy to model the edge distribtion [Snijders et al., ress].

There exists a strong connection between ERMG and block clustering [Snijders and Nowicki, 1997].
Block clustering searches for homogeneous blocks in a data matrix by simulta-
neous clustering of rows and columns. When partitions of rows and columns are
assumed to be identical Bernoulli Block Mixture model and associated algorithm
[Govaert and Nadif, 2005] is equivalent to ERMG.

In this context of Block-Clustering for classical binary data, an almost equiv-
alent ERMG algorithm without any underlying statistical model can be dated
back to the early work of Govaert [Govaert, 1977, Govaert, 1983].

There is also a long tradition of developing statistical graph models for social
networks [Wasserman et al., 1994b, Handcock et al., 2006], but unfortunately
these models often raise computational issues when dealing with large networks.

In recent years several algorithms have been proposed. One of the most
effective and competitive, is a hierarchical agglomeration algorithm proposed
by Newman [Newman, 2004], based on the greedy optimization of the quan-
tity known as modularity.It runs in time O((m + n)n), or O(n2) on a sparse
graph, where m and n are respectively the number of vertex and nodes. In
[Clauset et al., 2004], exploiting more sophisticated data structures and some
shortcuts in the optimization problem makes run the communities detection
problem in time O(md log(n)) where d is the depth of the ”‘dendrogram”’
describing the network’s community structure.

In numerous applications the rapid increase of data size implies a regular
run of the classical batch algorithm in order to reduce the time latency between
the appearance of a new data and its treatment (its classification). In such
situations online clustering algorithms are an efficient alternative. We present
an original online algorithm for graph clustering based on a Erdös-Rényi Graph
Mixture.

This first section of the paper introduces the model, its online estimation
and the practical strategies for the initalization and the choice of the number of
groups. In the second section extensive simulation illustrates the efficiency of
this algorithm and a real data set dealing with the french political blogosphere
is studied.

2 Online ERMG algorithm

2.1 Affilation model

Following Frank and Harary [Frank and Harary, 1982], the ERMG model [Daudin et al., 2006]
assumes that given a set of n nodes partionned into Q classes, edges are random
variables conditionaly independent given the class of the nodes

Xij |{i ∈ q, j ∈ l} ∼ B(πql).

The class vector Zi is a random vector following a multinomial distribution:,

Zi ∼M(1, α1, ..., αq).
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Figure 2: Simulation of a 100 nodes graph with 5 classes according to an
affiliation model

Thus the model parameters are the proportion of the classes and the probability
of connectivity between classes. In this paper, we consider a simple affiliation
model where two types of egdes exist: egdes between nodes of the same class
and egdes between nodes of different classes. Each type of edge has a given
probability: πqq = λ and πql = ε. Self-loops are not taken into account (see for
example Figure 2).

This model allows to explicitly compute the distribution of the degree Ki of
node i, which is approximately a mixture of Poisson distribution P((n− 1)[(1−
αq)ε + αqλ]).

The clustering coefficient is defined as the probability of having an edge
between two nodes, which are both related to a third node. The ERMG model
allows again an explicit computation of this coefficient.

Daudin et. al [Daudin et al., 2006] tackle the problem of ERMG parameter
estimation using an Expectation-Maximisation algorithm [Dempster et al., 1977],
with an approximate E-step. The problem induced by the dependence between
the nodes of the graph, makes it difficult to compute the expectation of the
missing data conditionally to the available knowledge of the network structure,
P (Zi|x). Let us also note that the likelihood of the model is impossible to com-
pute since it implies a sum over all possible partitions of the graph’s nodes. In
this paper, we propose a fast alternative algorithm, well adapted for clustering,
based on stochastic approximation and the maximization of the complete data
log-likelihood.
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neighbours not neighbours
same class nλ =

∑
q nqq n1−λ =

∑
q

nq(nq−1)
2 − nλ

different class nε =
∑

q 6=l nql n1−ε = n(n−1)
2 − nλ − n1−λ − nε

Table 1: Statistics of the affiliation model computed from nql =
∑

i>j xijziqzjl,
the number of egdes having nodes in class q and l, and nq =

∑
i ziq, the number

of nodes of class q.

2.2 Classification log-likelihood

The Classification EM (CEM) algorithm is an iterative clustering algorithm
which yields simultaneously the parameters and the classification. In this paper
the considered classification log-likelihood is defined by

LC(x, z,Φ) = log PΦ(z) + log PΦ(x|z)
=

∑
i,q

ziq log αq +
∑

q,l,i>j

ziqzjl log (πxij

ql (1− πql)1−xij ),

where Φ = {α1, ..., αQ, (πql)} represents the parameter vector. Maximizing
LC(x, z,Φ) according to (z,Φ) is equivalent to maximizing the criterion

LC(x,Φ) = max
z

[LC(x, z;Φ)].

When considering the simple affiliation model, the term ziqzjl log (πxij

ql (1− πql)1−xij )
takes four different values according to the class of i and j, and their neighbour-
hood relationship. The classication log-likelihood can then be expressed as:

LC(x,Φ) =
∑

q

nq log αq + nλ log λ + n1−λ log(1− λ)

+nε log ε + n1−ε log(1− ε),

where nλ, n1−λ, nε and n1−ε are the number of node pairs defined by class and
neighbourhood relationship (see Table 1). Note that these four statistics can be
computed from two different type of basic statistics:

• nql =
∑

i>j xijziqzjl, the number of egdes having nodes in class q and l,

• nq =
∑

i ziq, the number of nodes of class q.

The parameters Φ̂ maximizing this criterion for a given partition are as
follows:

• α̂ = nq

n ,

• λ̂ = nλ

nλ+n1−λ
,

• ε̂ = nε

nε+n1−ε
.
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2.3 Online Estimation

In numerous applications the rapid increase of data size with time makes clas-
sical clustering algorithms too slow. In such situations online clustering algo-
rithms are an efficient alternative to classical batch algorithms. Online parame-
ter estimation using mixture models has already been studied by many authors
(Titterington 1984 [Titterington, 1984], Wang and Zhao 2002 [Y., 2002]). More
recently Liu et al. [Liu et al., 2006] have considered, for the modeling of in-
ternet traffic, a recursive EM algorithm for the estimation of Poisson mixture
models. Typical clustering algorithms include the online k-means (MacQueen
1967 [MacQueen, 1967]) algorithm.

This section describes an original incremental Classification version of the
EM algorithm. Incremental algorithms recursively update parameters, using
current parameters and new observations.

Let us note xm−1 the adjacency matrix of a graph with m − 1 nodes and
zm−1(Φ), the classification matrix verifying:

zm−1(Φ) = Argmax
z

LC(xm−1, zm−1,Φ).

Let Φm−1 be the parameter vector maximizing Lm−1
C (xm−1, zm−1(Φm−2),Φ)

the complete log-likelihood expressed in function of m− 1 nodes. When a new
node xm becomes available, the new complete log-likelihood of Φ is expressed
as the sum of the previous complete log-likelihood and a new term function of
the egdes between the new node and the existing network:

Lm
C (xm, zm(Φm−1),Φ) = Lm−1

C (xm−1, zm−1,Φ) + max
q

LC(xm, q,Φ). (1)

The principle of the recursive algorithm consists in computing the parameter
Φ(m) maximizing Lm

C (xm, zm(Φm−1),Φ) and exploiting the fact that the new
estimates are function of the old ones.

The recursive algorithm is described by the two following steps each time a
new (m)th node (and corresponding vertices) is considered:

• Step 1 assign each new node xm to the class q∗ which maximizes

LC(xm, q;Φ) = log αq +
∑

l

∑
j 6=m

zjl log (πxmj

ql (1− πql)1−xmj ).

Thus set zmq equal to 1 if q = q∗, 0 otherwise.

• Step 2 update the parameters for all classes:

n(m)
q = n(m−1)

q + zmq, (2)

n
(m)
ql = n

(m−1)
ql +

∑
j 6=m

zmqzjlxmj , (3)

α(m)
q =

n
(m)
q

m
, (4)
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π
(m)
ql =

n
(m)
ql

n
(m)
q n

(m)
l

, (5)

π(m)
qq =

2n
(m)
qq

n
(m)
q (n(m)

q − 1)
. (6)

This algorithm increases the complete-log likelihood at each step, and re-
quires at most as many iteration as the number of nodes. Still the parameters
can be further improved and the complete log-likelihood further increased by re-
visiting each node a few times. When m the number of iteration is greater than
n the size of the network, it is possible to apply the above described recursive
principle, and the algorithm can be continued as follows

• Step 1 find a node xi, whose class change improves the classification
log-likelihood.

• Step 2 update the parameters for all classes:

n(m)
q = n(m−1)

q − zm−1
iq + zm

iq , (7)

n
(m)
ql = n

(m−1)
ql + (zm

iq − zm−1
iq )

∑
j 6=i

zjlxij , (8)

α(m)
q =

n
(m)
q

n
, (9)

π
(m)
ql =

n
(m)
ql

n
(m)
q n

(m)
l

, (10)

π(m)
qq =

2n
(m)
qq

n
(m)
q (n(m)

q − 1)
. (11)

When step 1 is not possible, the algorithm can be stopped.
The adaptation to the affiliation model is straightforward and requires only

the computation of the four statistics of the affiliation model (see Table 1) from
the n

(n)
ql .

2.4 Initialization and online supervised classification

If one is mainly interested in finding clusters of nodes which have strong inter-
connection and weak between-connection, the above described algorithm can be
simplified and accelerated by working with fixed parameter values. A possible
interesting choice for clustering consists in choosing a high value for λ proba-
bilities on within-connection and a small one for ε the probability of between-
group connection (i.e. λ = 0.8 and ε = 0.05). This choice implicitly assumes
the existence of clique-like cluster. Concerning the proportions, without any
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additonnal knowledge, it seems reasonable to consider cluster of the same size
α1 = ... = αQ = 1

Q .
Repeating step 2, with a given value of the parameter vector, produces a

partition in a finite number of iterations. Starting from a random partition
z0, each iteration considers a randomly chosen node and assigns this node to
the cluster which results in a greater increase of the classification log-likelihood.
It is obvious this relaxation procedure increases the classification log-likelihood
at each iteration and converges toward a local maximum since the criterion is
upper-bounded.

This minimal clustering algorithm can be used as an effective initialization
strategy for the previously described online ERMG algorithm.

2.5 Choosing the number of clusters

As the algorithm relies on a statistical model, it is possible to use the Inte-
grated Classification Likelihood (ICL) to choose the optimal number of classes
[Biernacki et al., 2000]. This choice is done by running our online algorithm
concurrently for models from 2 to Q classes and selecting the solution which
maximizes the ICL criterion. In our situation, the ICL criterion can be written
as :

ICL(Q) = −2LC(x,Φ)︸ ︷︷ ︸
A

+(Q− 1)log(n) + 2log(
n(n− 1)

2
)︸ ︷︷ ︸

B

where A is related to the classification log-likelihood, B to the free number of
parameters and n the number of nodes treated. The ICL criterion is essentially
the ordinary BIC considering the complete log-likelihood instead of the log-
likelihood.

An ANSI C++ implementation of the CEM algorithm is available in the ermg
package. Compilation and installation are compliant with the GNU standard
procedure.

The package is free and available at http://stat.genopole.cnrs.fr/software/ermg.
On-line documentation is also available. ermg is licensed under the GNU Gen-
eral Public License (http://www.gnu.org/licences.html).

3 Applications

We carried out experiment to assess how well the proposed online clustering
algorithm discovers node clusters. We consider simulation experiment using
synthetic data generated according to the assumed random graph model, as
well as real data coming from the internet sphere.
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Figure 3: Integrated Classification Likelihood Criterion in function of the num-
ber of clusters computed for the simulated graph of Figure 2.

3.1 Synthetic Data

Four affiliation models have been considered (see Table 2). The difference among
the four models is related to their modular structure, which varies from no
structure (almost the Edrös-Renyi model) to strong modular structure (low
inter-module connectivity and strong intra-module connectivity).

Model λ ε Q
1 0.8 0.02 3
2 0.5 0.05 8
3 0.6 0.25 5
4 0.55 0.35 5

Table 2: Parameters of the four affililation models of the experiment. The
Q modules are mixed in the same proportion. Each model consider n = 1000
nodes.

Given the number of nodes n and the class proportions (αq), the color of
each node is simulated via a multinomial distribution M(1, α1, ..., αQ). Con-
ditionally to the node colors, edges between two nodes of the same class are
drawn according to a probability λ and edges between nodes of different colors
are drawn according a probability ε.

Comparing the estimated partition with the true partition is not as straitght-
forward as comparing the parameter estimates. In order to evaluate agreement
between these two partitions, we use the adjusted Rand index [Hubert and Arabie, 1985]
which lies bewteen 0 and 1. The computation of this index is based on a ratio
between the number of node pairs belonging to the same and to different classes
when considering the true partition and the estimated partition. Two identical
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partitions have an adjusted Rand index equal to 1.
We have simulated 30 networks for each model and run the online ERMG

algorithm for estimating the model parameters. Figure 3.1 shows two boxplots
for each experiment: one boxplot for ε and one for λ. Notice that for the
first model, the highly structured one, the estimation is very close to the true
parameters and exhibits no variance. The estimation of the second model shows
a small upward bias and small variance. But the third and fourth models are
more difficult and the algorithm overestimates λ the probability of within-cluster
connection. In summary the less obvious the structure of the network is, the
highest bias we observe in the resulting estimation. Let us also note that even
for the easiest model (model 1), the algorithm has a slight tendency to produce
biased estimates. This is a phenomenon generally observed on Classification
version of the EM algorithm. When considering Table 4, we can observe that
the poor estimation of λ, the probability of within-cluster connection reveals
also a small Rand index. This means that the poor estimation of λ makes it
impossible to retrieve the modular structure of the network.

Model ε̄ σε λ̄ σλ

1 0.022 0.000 0.802 0.002
2 0.053 0.001 0.506 0.008
3 0.238 0.004 0.524 0.015
4 0.348 0.002 0.394 0.006

Table 3: Table means and standart deviation of the parameter estimate of the
four model computer over 30 different runs

We also compared the results of the online ERMG algorithm with an alter-
native clustering method. We consider a computationally heavy method which
builds a dissimilarity matrix based on the shortest paths beetween all pairs of
nodes. Floyd’s algorithm is specifically designed to resolve this problem. Note
that these shortest paths are computed in O(n3) runtime, thus it does not allow
us to use it with huge and dynamic networks. After building the dissimilarity
matrix, we partitionate the data set into Q classes with the PAM (Partitioning
Around Medoids) algorithm which operates on the dissimilarity matrix. PAM
is a robust version of the Kmeans, which minimizes a sum of dissimilarities
instead of a sum of squared Euclidean distance and considers medoid instead
of barycenter to represent cluster. We have also tested this algorithm on the
previous networks and have computed the Rand index on each of them. When
considering Table 4, we observe that the ERMG online algorithm is very close
to the PAM algorithm with a very reduced computational cost O(n2).

3.2 French Political Blogosphere network

We also studied our algorithm on a real data set. The data consits of a single day
snapshot of over 1,1000 political blogs automatically extracted the 14 october
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Figure 4: Boxplot of the parameter estimates for 30 estimations of the 4 models.
Each model is described by two boxplots, one for the estimations of ε and the
other for the estimation of λ. The circles show the true value of the parameters.
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PAM online ERMG
Model randPAM σrandP AM

randERMG σrandERMG

1 1.000 0.000 1.000 0.000
2 0.997 0.003 0.978 0.020
3 0.901 0.035 0.883 0.057
4 0.129 0.040 0.071 0.037

Table 4: Table means and standart deviation of the Rand index of the four
model computer over 30 different runs for PAM and online Classification ERMG
algorithms

2006 and manually classified by the ”Observatoire Présidentielle” project. This
project is the fruit of a collaboration bewteen RTGI SAS and Exalead and aims
at analyzing the presidential campaign on the web.

In this data set, nodes represent hostnames (a hostname contains a set of
pages) and edges represent hyperlinks beetwen different hostnames. If several
links exist between two different hostnames, we collapse them into a single one.
Note that intra domain links can be considered if hostnames are not identical.
Finally, in this experimentation we consider that edges are not oriented witch
is not realistic but witch does not affect the interpretation of the groups. This
network presents an interesting communities organization due to the existence
of severals political parties and commentators. We assume that authors of these
blogs tend to link, by political affinities, blogs with similar political positions.
A sample of 250 nodes of this political blogoshere can be seen on Figure 1.
Six known communities compose this newtork : Gauche (”french democrat”),
Divers Centre (Moderate party), Droite (french republican), Ecologiste (green),
Liberal (supporters of economic-liberalism) and finally Analysts. Proportions
of blogs in these communities are respectively 0.36, 0.23,0.21, 0.08, 0.08 and
0.04.

In this experimentation we are interested in finding six groups of blogs using
the online clustering algorithm for a given couple of ε and λ. The number of
groups is fixed to six in order to compare the true partition of blogs with the
estimated partition running our algorithm. Finding similar partitions validates
the assumption that political affinities can be detected using the structure of
the political blogosphere. The couple (λ = 0.55 , ε = 0.04) gives the maximal
agreement bewteen the real and estimated partitions with an acceptable Rand
index value (0.34).

Table 3.2 shows a contingency table of the counts of given and estimated
blogs classes. Except for the A class, we can observe a relative coherence be-
tween these two partitions. In fact, the A class is a hub class constitued of
blogs which links the other classes in order to analyze and comment the french
political news. Our algorithm overestimates the number of blogs contained in
this class and generates important classification differences. We can also observe
that there are mistakes produced by the political proximity of parties. For ex-
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Estimated
DC A D E G L

DC 172 32 4 18 3 25
A 2 22 2 5 5 5

True D 3 27 165 11 1 26
E 1 2 0 80 1 0
G 5 97 12 66 181 45
L 1 1 3 1 0 82

Table 5: Contingency table comparing true and estimated partitions

ample, the estimated E class has many blogs belonging to the real G class.
Finally, we illustrate on figure 5 the density of links using the adjacency matrix
projection of the network after reordering by class estimation. We can observe
that there is a higher density of intra-group links than inter-groups which vali-
dates our ERMG model. Note that mistakes of the A can be observed creating
horizontal and vertical bands by linking blogs of other classes.

Figure 5: Adjacency matrix of the blogopole network after reordering according
the estimated partition

4 Conclusion

The proposed online classification EM algorithm classifies the nodes of a net-
work as they are discovered. The algorithm is based on Erdös Régnyi Graph
Mixture, which is a well known model [Frank and Harary, 1982], for which we

13
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provide a fast estimation procedure. The algorithm runs in O(n2) and is thus
able to tackle networks with thousand nodes. When starting with a reasonable
initialization, this strategy allows to both find communities in a network and
a reliable estimation of the model parameters. When the cluster structure is
weak the estimates are biased. In the near future, we plan to investigate pure
EM online strategies for finding a better estimation for difficult situations.
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