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Change-points detection for discrete sequences via

model selection

Émilie Lebarbier ∗ Elodie Nédélec †

Abstract

We propose a method based on a penalized contrast criterion for
estimating the change-points in a dicrete distribution of independant
variables. The number of change-points and their locations are un-
known. We consider two minimum contrast estimation: the maximum
likelihood one and the least-squares one. In the two contexts we define
the penalty function involved in our corresponding criterion such that
the resulting estimator minimizes non asymptotically the associated
risk.

Keyword : Non parametric estimation – regression – density – Model selec-
tion

1 Introduction

Our motivation comes from DNA analysis, in particular from the segmen-
tation of a discrete sequence of letters Y1, ..., Yn taking their values in the
finite DNA alphabet {A, T, C, G}. Biologists observe in DNA sequences ar-
eas with a stability of frequencies of the four letters which correspond to
areas biologically significant. The aim of this paper is to provide statistical
methods proposing an automatic segmentation of the sequence. This prob-
lem is abundantly treated in the literature (see Braun and Müller [3] for a
complete bibliography). Churchill [6], Boys et al. [8] and Muri [7] consider
a hidden Markov chain model assuming that the different areas of the DNA
sequence can be classified into a fixed set of hidden states.
The DNA segmentation can be also put into the framework of multiple
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change-points detection for a discrete distribution of variables. We define
m a partition of the set {1, ..., n} if there exist k, a1, a2, ..., ak ∈ N satisfying
1 ≤ a1 < a2 < ... < ak ≤ n such that

m = {[1, a1] , [a1 + 1, a2] , ..., [ak−1 + 1, ak] , [ak + 1, n]} . (1.1)

The problem of selecting m such that for all J ∈ m, (Yi)i∈J is a stationary
sequence, is equivalent to the problem of estimating k and the change-points
a1, a2, ..., ak ∈ N. Braun et al. [2] propose a penalized maximum likelihood
estimation procedure. But this approach is asymptotic in the sense that
they propose a penalty which leads to a consistent estimator of the number
of change-points.
In this paper we propose a non asymptotic procedure based on the work
of Birgé and Massart [1] about model selection which aims to estimate s
with a small risk for a fixed n. In this context, if we suppose that the true
function is piecewise constant, an estimator with less number of change-
points compared to the true one could be preferred. This estimator is also
obtained by a minimum penalized contrast procedure.

We consider Y1, ..., Yn independent variables taking their values in
{1, 2, ..., r} with r ∈ N and r ≥ 2. We define for t ∈ {1, ...n} and i ∈
{1, 2, ..., r}

P (Yt = i) = s (t, i) ,

and we have in mind that r = 4 in DNA analysis. Remark that in this
context, the large size of the sample n does not mean that we take place in
an asymptotic approach since the underlying function s depends on n.
We are interested in the estimation of s by ŝ such that for all i ∈ {1, 2, ..., r}

ŝ (t, i) = ŝ
(
t′, i

)

for all t, t′ ∈ J and for all J segment of a ”good” partition m̂ of {1, ..., n}.
This is a model selection problem since we can select m̂ among a collec-
tion Mn of partitions defined in (1.1) constructed on the set {1, ...n}. On
one hand we can see s as a vector of Rnr which is the mean of the vector(
1l{Yt=i}

)
1≤t≤n,1≤i≤r

where 1lI is the indicator function, therefore we have
considered first the least-squares contrast. On the other hand we can see
s as a density so we have then considered the contrast associated to the
log-likelihood.

For each partition m ∈Mn, we compute the minimum contrast estima-
tor of s, denoted by ŝm and we define a collection of estimators {ŝm}m∈Mn

.
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If we consider the least-squares contrast, the ideal partition m (s) would
minimize with respect to m ∈Mn the risk

R1 (s, ŝm) = Es

[
‖s− ŝm‖2

]

where ‖.‖ is the euclidean norm on Rnr, or the risk

R2 (s, ŝm) = nK (s, ŝm)

if we consider the contrast associated to the log-likelihood with K denot-
ing the Kullback Leibler information. Unfortunately, the partition m (s)
depends on the unknown function s. The aim of the estimation procedure
proposed in this paper is to provide a data-driven criterion that selects an
estimator s̃ whose risk is as close as possible to the risk of ŝm(s). Therefore,
we consider some function pen : Mn → R+ which is called penalty function.
We select

m̂ = argmin
m∈Mn

{γ (ŝm) + pen (m)} , (1.2)

where γ is one contrast and finally estimate s by the minimum penalized
contrast estimator

s̃ = ŝm̂.

The article is organised as follows : Section 2 is devoted to the presen-
tation of the model selection procedure. In this section, we first present our
model collection and give the minimum contrast estimators in a fix model
for each procedure. Then the risks of these estimators are given and proved
in Section 4. Finally we present our main result providing a form for the
penalty function and an upper bound for the risk of the corresponding pe-
nalized estimator for the two considered contrasts. These results are proved
in Section 5 and proofs used some results given in Section 3.

2 Model selection procedure

First we present the collection of models and the two contrasts, then we
construct the corresponding collection of the minimum contrast estimators
{ŝm}m∈Mn

. We give their risks and select a final estimator among this
collection by minimizing a penalized contrast. We propose a penalty and
give an upper bound for the risk of the corresponding penalized estimator.

3
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2.1 Presentation of models and collection of estimators

We observe Y1, ..., Yn independent variables taking their values in {1, 2, ..., r}
with r ∈ N and r ≥ 2, and we define for t ∈ {1, ...n} and i ∈ {1, 2, ..., r}

P (Yt = i) = s (t, i) , (2.3)

where s is unknown. Let Mn be a collection of partitions of {1, .., n} defined
by (1.1) and for m ∈Mn, we define the associated model Sm by

Sm =





u : {1, ..., n} × {1, ..., r} → [0, 1] such that
∀J ∈ m, ∀i ∈ {1, 2, ..., r} , u (t, i) = u (t′, i) = u (J, i) ∀ t, t′ ∈ J

and
∑r

i=1 u (J, i) = 1 ∀ J ∈ m



 ,

and note
S =

⋃

m∈Mn

Sm. (2.4)

For the estimation procedure we consider two different contrasts:

• First the least-square contrast γ1 defined by

γ1 (u) = −2
r∑

i=1

n∑

t=1

1l{Yt=i}u (t, i) + ||u||2,

for u ∈ S where 1l is the indicator function and ‖.‖ is the euclidean
norm on the space Rnr defined for u ∈ S by

||u||2 =
n∑

t=1

r∑

i=1

u2 (t, i) .

• Then the log-likelihood contrast γ2 defined for u ∈ S by

γ2 (u) = − log

[
n∏

t=1

r∏

i=1

u (t, i)1l{Yt=i}

]

= −
n∑

t=1

r∑

i=1

1l{Yt=i} log [u (t, i)] .

The minimum estimator, denoted ŝm, minimizes the contrast fonction
γ over the defined model. For the log-likelihood framework, the contrast
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is γ2 and the model associated to m is Sm (defined just below). For the
least-square framework, the contrast is γ1 but the model is not exactly Sm.
Indeed in this case s represents the mean of the vector

(
1l{Yt=i}

)
1≤t≤n,1≤i≤r

and the condition that s is the probability against the counting measure on
the set {1, . . . , r} is not requires. The model in this case is the same as Sm

without the last condition. But for a sake of simplicity, we use the same
notation Sm for the two models.
However, in the two frameworks, we obtain the same collection of minimum
contrast estimators (ŝm)m∈Mn

where for a given partition m ∈Mn

ŝm (t, i) =
NJ (i)
| J | , for i ∈ {1, ..., r} , t ∈ J and J ∈ m, (2.5)

with
NJ (i) =

∑

t∈J

1l{Yt=i},

and | J | is the cardinality of J .

2.2 The risk of the minimum contrast estimator on a given
partition m

To analyze the risks of the estimators defined in (2.5), we introduce a loss
function l associated to the contrast γ by the relation l(u, v) = Es [γ (v)− γ (u)]
for u, v ∈ S where s is defined in (2.3) and obtain two loss functions for our
two different contrasts. First the loss function l1 associated to γ1 satisfies

l1 (s, v) = −2
n∑

t=1

r∑

i=1

s (t, i) [v (t, i)− s (t, i)] + ||v||2 − ||s||2 (2.6)

= ||s− v||2

for v ∈ S. This leads to the following first risk R1 for the minimum contrast
estimator ŝm defined in (2.5) for m ∈Mn

R1 (s, ŝm) = Es

[
‖s− ŝm‖2

]
. (2.7)

And then for the log-likelihood contrast γ2, the loss function l2 associated
to γ2 satisfies

l2 (s, v) =
n∑

t=1

r∑

i=1

s (t, i) log
[
s (t, i)
v (t, i)

]
(2.8)
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for v ∈ S. We can remark that l2 (s, v) = nK (s, v) where K is the Kullback-
Leibler information between s and v, since s and v can be considered as
densities against 1

n times the counting measure on the set {1, 2, ..., r} ×
{1, 2, ..., n}. So the loss function is in this case, up to a constant n, the
Kullback-Leibler information classical in a maximum likelihood estimation.
This leads to the following second risk R2 for the minimum contrast estima-
tor ŝm

R2 (s, ŝm) = Es [nK (s, ŝm)] . (2.9)

Our purpose is now to evaluate the risks R1 and R2 defined respectively
in (2.7) and in (2.9). Our motivation is to provide a benchmark in order
to judge the performance of the final penalized estimator that will be de-
fined and studied in the next section. Whatever the loss function l1 or l2
defined respectively in (2.6) and (2.8), we obtain for every m ∈ Mn the
same projection s̄m of s on the model Sm defined by

s̄m (t, i) = argmin
u∈Sm

l(s, u)

=
∑

t′∈J s (t′, i)
| J | (2.10)

for i ∈ {1, ..., r}, t ∈ J and J ∈ m.

Proposition 2.1. Let m be a partition of the grid {1, ..., n}, ŝm be the
minimum contrast estimator of s defined by (2.5) and sm be the projection
of s given by (2.10). Assume that there exists some positive absolute constant
ρ such that:

s ≥ ρ. (2.11)

1. Let R1 be given by (2.7), then

R1 (s, ŝm) ≤ l1 (s, sm) + (r − 1) |m|,
and

R1 (s, ŝm) ≥ l1 (s, s̄m) + ρ (r − 1) |m|.
2. Let R2 be given by (2.9) and suppose that for all J ∈ m

| J | ≥ Γ [log (n)]2

for an absolute constant Γ > 0. We have for all real numbers ε > 0 and
a > 1

R2(s, ŝm) ≤ l2(s, s̄m) +
1 + ε

2 (1− ε)2
r |m|+ C (Γ, ρ, a, r, ε)

na−1
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and

R2(s, ŝm) ≥ l2(s, s̄m) +
1− ε

4 (1 + ε)2
ρ r |m|

−C (Γ, ρ, a, r, ε)
na−1

,

where C (Γ, ρ, a, r, ε) is a positive constant only depending on Γ, a, ρ, r and
ε.

The proof is given in Section 4.

2.3 Model Selection

We have a collection of minimum contrast estimators {ŝm}m∈Mn
and we

want to select the ”best” estimator among this collection. We consider two
different penalty functions denoted pen1 : Mn → R+ for the least-squares
procedure and pen2 : Mn → R+ for the likelihood procedure. Selecting for
c ∈ {1, 2}

(m̂)c = arg min
m∈Mn

{γc (ŝm) + penc (m)} , (2.12)

where γc is the contrast, we finally estimate s by the two minimum penalized
contrast estimators

s̃1 = ŝ(bm)1
and s̃2 = ŝ(bm)2

. (2.13)

Before giving our main result, let us see the definition of the squared Hellinger
distance

Definition 2.2. The squared Hellinger distance denoted by h2 between two
positive densities p and q with respect to µ is defined by

h2 (p, q) =
1
2

∫
(
√

p−√q)2 dµ. (2.14)

The Hellinger distance and the Kullback-Leibler information are related by
the well-known inequality

K (p, q) ≥ 2h2 (p, q) . (2.15)
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2.3.1 The main theorem

The following result provides a model selection criterion based on a minimum
penalized contrast method. It gives the penalties and some non asymptotic
risk bounds on the performances of the associated penalized estimator s̃c

for c ∈ {1, 2} defined by (2.13). Note that in the log-likelihood case, we
assume that all partitions m ∈ Mn are ”constructed on a partition” mf

which means that there exists some partition mf which is a refinement of
every m ∈Mn.

Theorem 2.3. Suppose that one observes independent variables Y1, ..., Yn

taking their values in {1, 2, ..., r} with r ∈ N and r ≥ 2. We define for
t ∈ {1, ...n} and i ∈ {1, 2, ..., r}

P (Yt = i) = s (t, i)

and consider a collection Mn of partitions constructed on the grid {1, ..., n}.
Let (Lm)m∈Mn

be some family of positive weights and define Σ as

Σ =
∑

m∈Mn

exp (−Lm|m|) < +∞. (2.16)

1. Let K > 1. If for every m ∈Mn

pen1 (m) ≥ K r |m|
(

1
4

+ 2
√

Lm + 2Lm

)
,

then

R1 (s, s̃1) ≤ 8
(

K + 1
K − 1

)3 [
inf

m∈Mn

{l1 (s, s̄m) + pen1 (m)}+ K (r − 1)2 Σ
]
.

2. Assume that

• there exists some positive absolute constant ρ such that s ≥ ρ,

• Mn is a collection of partitions constructed on a partition mf such
that

|J | ≥ Γ [log (n)]2 ∀J ∈ mf (2.17)

where Γ is a positive absolute constant.
Let λ > 1. If for every m ∈Mn

pen2 (m) ≥ λ r|m|
(

1
2

+ 4
√

Lm + 4 Lm

)
, (2.18)
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then

Es

[
nh2 (s, s̃2)

] ≤ 2λ1/3

λ1/3 − 1
inf

m∈Mn

{l2 (s, sm) + pen2 (m)}+ C (Σ, r, λ, ρ,Γ) ,

where h2 is the squared Hellinger distance given by (2.14).

Now in order to evaluate the performance of the penalized estimator,
we want to compare Rc (s, s̃c) = Es [lc (s, s̃c)] to infm∈Mn Es [lc (s, ŝm)] for
c ∈ {1, 2}. In the next Section we discuss this comparison according to the
choice of the weights {Lm,m ∈Mn}.

We remark that for the log-likelihood procedure, the risk of the penalized
estimator s̃c is treated in terms of Hellinger distance instead of the Kullback-
Leibler information. This is due to the fact that the Kullback-Leibler is
possibly infinite, so the comparison can not be obtained in the same risk.
However, we have the converse inequality of (2.15) up to constants whatever
|| log(p/q)||∞ < ∞ so with an hypothesis on s we will obtain a relation in
terms of Hellinger risk.

2.3.2 Choice of the weights {Lm,m ∈Mn}
The penalty function depends on the family Mn through the choice of the
weights Lm satisfying (2.16). We distinguish two different types of collection
Mn.

• an exhaustive collection: Mn is the collection of all possible parti-
tions constructed on a partition mf satisfying (2.17). In this context,
the number of partitions having the dimension D is bounded by

(
n
D

)
.

Taking Lm as a function of the dimension, Lm = L|m| leads to

Σ =
∑

m∈Mn

e−Lm|m| =
n∑

D=1

e−DLDCard{m ∈Mn, |m| = D}

≤
n∑

D=1

e−DLD

(
n

D

)

≤
n∑

D=1

e−DLD

(en

D

)D

≤
n∑

D=1

e−D(LD−1−log ( n
D

)).

9



SSB - RR No. 9 E. Lebarbier and E. Nédélec

The condition (2.16) is satisfied if we take LD = 1 + θ + log
(

n
D

)
with

θ > 0. This leads to Σ < (exp (θ)− 1)−1and a penalty function of the
form for c ∈ {1, 2},

penc(m) = r|m|
(

αc log
(

n

|m|
)

+ βc

)
,

where αc and βc are some absolute constants which need to be cal-
ibrated. Proposition 2.1 and Theorem 2.3 provide the following two
upper bounds:

- For the leasts-square procedure, there exists C1 and C ′
1some absolute

constants such that

R1 (s, s̃1) ≤ C1 log (n) inf
m∈Mn

{l1 (s, s̄m) + (r − 1) |m|}+ C ′
1 (r − 1)2

≤ C1 log (n)
ρ

inf
m∈Mn

{R1 (s, ŝm)}+ C ′
1 (r − 1)2 .

However if the selected partition m̃ defined by (1.2) is such that |m̃| >>
r then there exists an absolute constant C ′′

1 such that

R1 (s, s̃1) ≤ C ′′
1 log (n)

ρ
inf

m∈Mn

{R1 (s, ŝm)} .

- For the log-likelihood procedure, there exists C2 and C ′
2 some abso-

lute constants such that

Es

[
nh2 (s, s̃2)

] ≤ C2 log (n)
ρ

inf
m∈Mn

{ρl2(s, s̄m) + ρr|m|}+ C (r, ρ)

≤ C ′
2 log (n)

ρ
inf

m∈Mn

{R2 (s, ŝm)}+ C (r, ρ)

with C (ρ, r) only depending on ρ and r. However if the selected
partition m̃ defined by (1.2) is such that |m̃| is large then there exists
an absolute constant C ′′

2 such that

R2 (s, s̃2) ≤ C ′′
2 log (n)

ρ
inf

m∈Mn

{R2 (s, ŝm)} .

In the two cases the penalized estimators s̃c for c ∈ {1, 2} have the
best risk as possible up to a log (n) factor. This log (n) should be un-
avoidable as in the Gaussian framework studied by Birgé and Massart
in [1].
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Remark 1. Recall that R2 (s, ŝm) = Es [nK (s, ŝm)]. However K (s, sm)
is close to 4h2 (s, sm) when || log(s/sm)||∞ < ∞ and under this as-
sumption the above upper bound can be stated as follows

Es

[
nh2 (s, s̃2)

] ≤ C ′
2 log (n) inf

m∈Mn

Es

[
nh2 (s, ŝm)

]
.

• a reduced collection: we consider here the CART algorithm described
in [4]. The collection of partitions Mn is constructed by a recursive
procedure which consists at each step to split a considered segment
into two segments by minimizing the sum of the contrast calculated
on the two segments. The result of this procedure can be seen as a
binary tree. The collection Mn is random and the results are written
conditionnaly to the sample on which Mn is constructed.

On a first time we keep only the variables Yi with i even. Conditionnaly
to (Yi)i even the collection is deterministic. Taking Lm as a function of
the dimension, Lm = L|m| leads to

Σ =
∑

m∈M
e−Lm|m| =

n∑

D=1

e−DLDCard{m ∈Mn, |m| = D}

≤
n∑

D=1

e−DLD
1
D

(
2(D − 1)
D − 1

)

≤
n∑

D=1

1
D

eD(2 log 2−LD),

since for any dimension D, the number of partitions having the dimen-
sion D is bounded by the number of balanced binary trees having D
final nodes called Catalan’s number and equal to 1

D

(2(D−1)
D−1

)
. Conse-

quently, if we take LD > 2 log 2 then Σ < 1 and this leads to a penalty
function of the form for c ∈ {1, 2},

penc(m) = ηc r|m|,

where ηc is an absolute positive constant. On a second time we do the
selection with the variables (Yi)i odd and we could prove paraphras-
ing the proof of Proposition 2.1 and Theorem 2.3 the two following
inequalities of oracle type:

11
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- For the least-squares procedure, there exists C1 and C ′
1some absolute

constants such that

Es

[
‖s− s̃1‖2 | (Yi)i even

]
≤ C1 inf

m∈Mn

{||s− s̄m||2 + (r − 1) |m|}

+C ′
1 (r − 1)2

≤ C1

ρ
inf

m∈Mn

Es

[
‖s− ŝm‖2 | (Yi)i even

]

+C ′
1 (r − 1)2 .

However if the selected partition m̃ defined by (1.2) is such that |m̃| >>
r then there exists an absolute constant C ′′

1 such that

Es

[
‖s− s̃1‖2 | (Yi)i even

]
≤ C ′′

1

ρ
inf

m∈Mn

Es

[
‖s− ŝm‖2 | (Yi)i even

]
.

- For the log-likelihood procedure, there exists C2 and C ′
2 some abso-

lute constants such that

Es

[
nh2 (s, s̃2) | (Yi)i even

] ≤ C2 inf
m∈Mn

{nK(s, s̄m) + r|m|}
+C (ρ, r)

≤ C ′
2

ρ
inf

m∈Mn

Es [nK (s, ŝm) | (Yi)i even ]

+C (ρ, r) .

where C (ρ, r) only depends on ρ and r. However if the selected par-
tition m̃ defined by (1.2) is such that |m̃| is large then there exists an
absolute constant C ′′

2 such that

Es

[
nh2 (s, s̃2) | (Yi)i even

] ≤ C ′′
2

ρ
inf

m∈Mn

Es [nK (s, ŝm) | (Yi)i even ] .

As we have seen, the difference between these two algorithms is the
considered collection of partitions Mn. When the sample size n is small,
the exhaustive search is preferable since it visits all possible partitions even if
some partitions in this collection are not relevant. The algorithm complexity
of the exhaustive search for a model of size D is O(Dn2) by using a dynamic
programmation allowed here since the contrast is additive. However, when
the size of sample n is too large, like in a genomic framework, this algorithm
can not be runned and the CART algorithm is preferable.

12
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3 Glossary

3.1 Bernstein concentration inequality

We recall here the classical Bernstein concentration inequality.

Theorem 3.1. Let X1, ..., Xn be independent real valued random variables.
Assume that there exist some positive numbers v and c such that for all
integers k ≥ 2

n∑

i=1

E
[
|Xi|k

]
≤ k!

2
v ck−2. (3.19)

Let Sn =
∑n

i=1 (Xi − E (Xi)), then for any positive x we have

P
(
Sn ≥

√
2vx + cx

)
≤ exp (−x) . (3.20)

Also we have for any positive x

P (Sn ≥ x) ≤ exp
(
− x2

2(v + cx)

)
. (3.21)

Note that if the variables Xt are bounded, |Xt| ≤ b′, then assumption
(3.19) is satisfied with

v =
n∑

t=1

E
[
X2

t

]
and c = b′/3.

3.2 Bounds for Kullback-Leibler information

The following lemma is useful since the loss function in the log-likelihood
estimation context is up to a constant n the Kullback-Leibler information.

Lemma 3.2. For all positive densities p and q with respect to µ, one has

1
2

∫
f2

(
1 ∧ ef

)
p dµ ≤ K (p, q) ≤ 1

2

∫
f2

(
1 ∨ ef

)
p dµ

if one notes f = log
(

q
p

)
.

See the proof of this lemma in [5].
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4 Proofs of the evaluations of R1 and R2 on one
model

This section gives the proof of Proposition 2.1 which evaluate respectively
the risks R1 and R2. For c ∈ {1, 2} we have the following Pythagore type
identity with ŝm defined in (2.5)

lc(s, ŝm) = lc(s, s̄m) + lc(s̄m, ŝm), (4.22)

where lc(s, s̄m) represents some approximation error and lc(s̄m, ŝm) repre-
sents some estimation error within the model Sm and where s̄m is given by
(2.10). For all c ∈ {1, 2}, according to the decomposition of lc(s, ŝm) in
(4.22), the proof is reduced to the evaluation of Es [lc(s̄m, ŝm)].

4.1 Evaluation of R1

According to the definitions of ŝm in (2.5) and s̄m in (2.10), we have

‖s̄m − ŝm‖2 =
∑

J∈m

r∑

i=1

1
|J |

[∑

t∈J

s (t, i)−NJ (i)

]2

.

And

Es

[∑

t∈J

s (t, i)−NJ (i)

]2

= V ars

[∑

t∈J

1l{Yt=i}

]

=
∑

t∈J

s (t, i) [1− s (t, i)] .

Since ρ ≤ s (t, i) ≤ 1 ∀t, i by definition and assumption (2.11), we have the
following bounds

ρ(r − 1)|m| ≤ Es

[
‖sm − ŝm‖2

]
≤ (r − 1)|m|

which achieves the proof of the first part of Proposition 2.1.

4.2 Evaluation of R2

Let us see the following definitions.

14
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Definition 4.1. Given some partition m ∈ Mn and i ∈ {1, ..., r}, one
defines the statistics χ2

m (i) by

χ2
m (i) =

∑

J∈m

NJ (i)
2

∑
t∈J s (t, i)

,

where

NJ (i) =
∑

t∈J

[
1l{Yt=i} − s(t, i)

]
(4.23)

for all i ∈ {1, ..., r} and J ∈ m.

Definition 4.2. For (u, v) ∈ S2 where S is given by (2.4), one defines

V 2
s (u, v) =

n∑

t=1

r∑

i=1

s (t, i) log2

[
u (t, i)
v (t, i)

]
.

The following proposition gives a control of the loss function l2 in term
of V 2

s .

Proposition 4.3. Let m ∈Mn, we recall that

l2 (s̄m, ŝm) =
∑

J∈m

r∑

i=1

|J | sm (J, i) log
[
s̄m (J, i)
ŝm (J, i)

]
,

and

V 2
s (s̄m, ŝm) =

∑

J∈m

r∑

i=1

|J | sm (J, i) log2

[
s̄m (J, i)
ŝm (J, i)

]
, (4.24)

where s̄m is defined by (2.10) and ŝm by (2.5). Moreover, for every
ε > 0, we set

Ωm (ε) =
n⋂

t=1

r⋂

i=1

{∣∣∣∣
ŝm (t, i)
sm (t, i)

− 1
∣∣∣∣ ≤ ε

}
(4.25)

=
⋂

J∈m

r⋂

i=1

{∣∣∣∣∣NJ (i)−
∑

t∈J

s (t, i)

∣∣∣∣∣ ≤ ε
∑

t∈J

s (t, i)

}
,

and we have on Ωm (ε) the following inequality

1− ε

2
V 2

s (s̄m, ŝm) ≤ l2 (s̄m, ŝm) ≤ 1 + ε

2
V 2

s (s̄m, ŝm) .

15
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Proof. We use the result about densities given in Lemma 3.2. The loss
function is written in term of Kullback-Leibler information as follows

l2 (s̄m, ŝm) =
∑

J∈m

| J | K (s̄m (J, .) , ŝm (J, .)) ,

where K (s (J, .) , u (J, .)) denotes the Kullback-Leibler information between
the two probabilities s (J, .) and u (J, .) on the set {1, 2, ..., r}. Applying
Lemma 3.2, we have on Ωm (ε)

l2 (s̄m, ŝm) ≥ 1
2

∑

J∈m

r∑

i=1

|J | sm (J, i)
[
1 ∧ ŝm (J, i)

s̄m (J, i)

]
log2

[
s̄m (J, i)
ŝm (J, i)

]

≥ 1− ε

2
V 2

s (s̄m, ŝm) ,

and

l2 (s̄m, ŝm) ≤ 1
2

∑

J∈m

r∑

i=1

|J | sm (J, i)
[
1 ∨ ŝm (J, i)

s̄m (J, i)

]
log2

[
s̄m (J, i)
ŝm (J, i)

]

≤ 1 + ε

2
V 2

s (s̄m, ŝm) .

We now begin the proof of Proposition 2.1. The term V 2
s (s̄m, ŝm) defined

in (4.24) can be written as follows

V 2
s (s̄m, ŝm) =

∑

J∈m

r∑

i=1

|J | [ŝm(J, i)− s̄m(J, i)]2

s̄m(J, i)

[
log [ŝm(J, i)/s̄m(J, i)]
ŝm(J, i)/s̄m(J, i)− 1

]2

.

Since
1

1 ∨ x
≤ log x

x− 1
≤ 1

1 ∧ x
for all x > 0,

we get on the set Ωm (ε) that

1
(1 + ε)2

r∑

i=1

χ2
m (i) ≤ V 2

s (s̄m, ŝm) ≤ 1
(1− ε)2

r∑

i=1

χ2
m (i) , (4.26)

where χ2
m (i) is given in Definition 4.1 for i ∈ {1, ..., r}. We derive from

Proposition 4.3 and the inequality (4.26) the following control of the term
l2 (s̄m, ŝm) on the set Ωm (ε)

1− ε

2 (1 + ε)2

r∑

i=1

χ2
m (i) ≤ l2 (s̄m, ŝm) ≤ 1 + ε

2 (1− ε)2

r∑

i=1

χ2
m (i) . (4.27)

16
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Furthermore, the expectation of χ2
m (i) is equal to

Es

[
χ2

m (i)
]

=
∑

J∈m

V ars

[∑
t∈J 1l{Yt=i}

]
∑

t∈J s (t, i)

=
∑

J∈m

∑
t∈J s (t, i) [1− s (t, i)]∑

t∈J s (t, i)
.

Since s (t, i) ≤ 1 ∀t, i and according to the hypothesis (2.11), we have
∑

t∈J ρ [1− s (t, i)]
|J | ≤

∑
t∈J s (t, i) [1− s (t, i)]∑

t∈J s (t, i)
≤ 1,

and since r − 1 ≥ r/2 for r ≥ 2, we have the following bounds

ρ
r

2
|m| ≤

r∑

i=1

Es

[
χ2

m (i)
] ≤ r|m|. (4.28)

Moreover, we have

∣∣Es

[
l2(s̄m, ŝm)1lΩc

m(ε)

]∣∣ ≤ n log
(

1
ρ

)
P (Ωc

m (ε)) . (4.29)

On the one hand, according to inequalities (4.27), (4.28) and (4.29), we get
the following upper bound of the risk R2

Es [l2(s, ŝm)] = l2 (s, s̄m) + Es

[
l2(s̄m, ŝm)1lΩm(ε)

]
+ Es

[
l2(s̄m, ŝm)1lΩc

m(ε)

]

≤ l2 (s, s̄m) +
1 + ε

2 (1− ε)2
r|m|+ n log

(
1
ρ

)
P (Ωc

m (ε)) .

On the other hand we get by the same way the following lower bound of the
risk R2

Es [l2(s, ŝm)] ≥ l2 (s, s̄m) +
1− ε

4 (1 + ε)2

[
ρr|m| − 16rn

ρ
P (Ωc

m (ε))
]

−n log
(

1
ρ

)
P (Ωc

m (ε)) .

We conclude by the control of P (Ωm (ε)c) given by the following Lemma.

Lemma 4.4. For every ε > 0, let Ωm (ε) be given by (4.25). For every
ε > 0 and a > 0, there exists some constant C (Γ, ρ, a, r, ε) such that

P (Ωm (ε)c) ≤ C (Γ, ρ, a, r, ε)
na

.

17
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Proof. We remark that

P (Ωm (ε)c) ≤
r∑

i=1

∑

J∈m

P

(
|NJ (i)−

∑

t∈J

s (t, i) | > ε
∑

t∈J

s (t, i)

)
.

By applying Theorem 3.1, we obtain

P

(
|NJ (i)−

∑

t∈J

s (t, i) | > ε
∑

t∈J

s (t, i)

)

≤ 2 exp

(
− ε2

(∑
t∈J s (t, i)

)2

2
(∑

t∈J s (t, i) + ε
3

∑
t∈J s (t, i)

)
)

≤ 2 exp

(
− ε2

2
(
1 + ε

3

)
∑

t∈J

s (t, i)

)
.

Set ε′ = ε2

2(1+ ε
3)

, we have | J | ≥ Γ [log (n)]2 and s ≥ ρ, then

P (Ωm (ε)c) ≤ 2r|m| exp
(
−ε′ρΓ [log (n)]2

)
.

The result follows now from the fact that |m| ≤ n.

5 Proofs of Theorems about risk bounds for the

penalized estimators

By the definitions of (m̂)c given by (2.12) and the minimum contrast esti-
mator ŝm given by (2.5), we obtain for c ∈ {1, 2} that

γc (s̃c) + penc ((m̂)c) ≤ γc (ŝm) + penc (m) ≤ γc (s̄m) + penc (m) ∀m ∈Mn.

Therefore,

lc (s, s̃c) ≤ lc (s, s̄m) + γc (s̄m)− γc (s̃c)− penc((m̂)c) + penc(m), (5.30)

where γc is defined for u ∈ S by

γc(u) = γc(u)− Es [γc(u)] .

In the general procedure, the next principal step consists in controlling
γc (s̄m)− γc (ŝm′) uniformly over m′ ∈Mn.

18
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5.1 Risk bound for the least-squares penalized estimator

For the sake of simplicity in this whole section, we note γ for γ1, l for l1 , pen
for pen1, m̂ for (m̂)1 and s̃ for s̃1. Let m,m′ ∈ Mn and (u, v) ∈ Sm × Sm′ .
We have

γ̄ (u)− γ̄ (v) = 2
n∑

t=1

r∑

i=1

[
1l{Yt=i} − s (t, i)

]
[v (t, i)− u (t, i)]

= 2
∑

J∈m;K∈m′

r∑

i=1

NJ∩K (i) [v (K, i)− u (J, i)] ,

where NJ (i) is given by (4.23). By Cauchy-Schwarz inequality, we obtain
for m′ ∈Mn

γ̄ (s̄m)− γ̄ (ŝm′) ≤ 2

√√√√ ∑

J∈m;K∈m′

r∑

i=1

NJ∩K (i)
2

|J ∩K| × ||s̄m − ŝm′ ||.

Definition 5.1. Given some partition m ∈Mn and some i ∈ {1, ..., r}, one
defines the statistics χ̃2

m (i) by

χ̃2
m (i) =

∑

L∈m

NL (i)
2

| L |

where NL (i) is given by (4.23).

Then,

γ̄ (s̄m)− γ̄ (ŝm′) ≤ 2

√√√√
r∑

i=1

χ̃2
m∩m′ (i)× ||s̄m − ŝm′ ||, (5.31)

where m∩m′ is a partition constructed on the grid {1, ..., n} and defined by
m ∩m′ = (I ∩ J)I∈m,J∈m′ . To bound the contrast, we need some technical
results about the concentration of the random variable

∑r
i=1 χ̃2

m (i) for a
given partition m. The following proposition provides such a result.

Proposition 5.2. Let m be a partition of {1, ..., n}. For any positive x, we
have

P

(
r∑

i=1

χ̃2
m (i) ≥ |m|

4
r + 2

√
r2|m| x + rx

)
≤ r exp (−x) .
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Proof. We would like to apply Bernstein Theorem 3.1, so we need to control
the expectation of the variables χ̃2

m (i), and their moments of order p ≥ 2,
for i ∈ {1, 2, ..., r}. Fix i ∈ {1, 2, ..., r}, we have

Es

[
χ̃2

m (i)
]

=
∑

J∈m

1
| J |V ars [NJ (i)]

=
∑

J∈m

1
| J |

∑

t∈J

s (t, i) [1− s (t, i)]

≤ |m|
4

.

For every J ∈ m and every integer p ≥ 2, we have

Es

[∣∣∣∣∣
NJ (i)

2

| J |

∣∣∣∣∣

p]
=

1
| J |pEs

[
| NJ (i)

2 |p
]

=
1

| J |p
∫ +∞

0
(2p) x2p−1P

(
| NJ (i) | ≥ x

)
dx.

Hoeffding’s inequality provides a subgaussian type inequality for NJ (i): for
any positive x we have

P
(
| NJ (i)| ≥ x

)
≤ 2 exp

(
− 2x2

| J |
)

.

Therefore

Es

[∣∣∣∣∣
NJ (i)

2

| J |

∣∣∣∣∣

p]
≤ 4p

| J |p
∫ +∞

0
x2p−1 exp

(
− 2x2

| J |
)

dx

≤ 4p

4p

∫ +∞

0
u2p−1 exp

(
−u2

2

)
du.

Moreover
∫ +∞

0
u2p−1 exp

(
−u2

2

)
du = 2p−1

∫ +∞

0
up−1 exp (−u) du

= 2p−1p!,

then

Es

[∣∣∣∣∣
NJ (i)

2

| J |

∣∣∣∣∣

p]
≤ 4p

4p
2p−1p!

≤ p!.
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It follows that for every p ≥ 2

∑

J∈m

Es

[ ∣∣∣∣∣
NJ (i)

2

| J |

∣∣∣∣∣

p ]
≤ p!

2
2|m| .

By applying Bernstein inequality recalled in (3.20), for any positive x one
has

P

(∑

J∈m

NJ (i)
2

| J | ≥ |m|
4

+ 2
√
|m| x + x

)
≤ exp (−x) ,

and by summing in i ∈ {1, 2, ..., r} we obtain the result of the proposition.

We prove now the first part of Theorem 2.3. Fix m ∈Mn, let ξ > 0 and
for every m′ ∈Mn consider xm′ = L

m′ |m′|+ ξ. We introduce the event

Ωξ =

{
∀m′ ∈Mn,

r∑

i=1

χ̃2
m∩m′ (i) ≤ r

4
(|m|+ |m′|) + 2

√
r (|m|+ |m′|) xm′ + rxm′

}
.

We sum up the resulting inequality of Proposition 5.2 over all m′ ∈ Mn to
provide

P
(
Ωc

ξ

) ≤ r
∑

m′∈Mn

exp (−xm′) = rΣexp (−ξ) ,

since |m ∩m′| ≤ |m|+ |m′|. Now, we will use the following inequality which
holds for any positive number θ and any numbers a and b :

2 a b ≤ θ a2 + θ−1 b2. (5.32)

Fix η ∈ (0, 1). Using twice the preceeding inequality, we derive from (5.30)
and (5.31) since ||u− s̄m|| ≤ ||s− u||+ ||s− s̄m||, that on Ωξ

η2||s− s̃||2 (5.33)
≤ (

1− η + η−1
) ||s− s̄m||2 + pen(m)− pen(m̂)

+
(

r

1− η

)
|m̂|

[
1
4

+
η

4
+ 2

√
Lbm + 2Lbm]

+
(

r

1− η

)
|m|

[
1
4

+ 1 +
η

4

]
+

(
r

1− η

)[
1 +

8
η

]
ξ.

Using again repeatedly inequality (5.32) one derives that

2
√

(|m|+ |m′|) xm′ ≤ 2
∣∣m′∣∣√

Lm′ +
∣∣m′∣∣Lm′ + |m′|η

4
+ |m|

[
1 +

η

4

]
+

8
η
ξ.
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Combining inequality (5.30) with (5.33) and the previous one applied to
m′ = m̂, we deduce on Ωξ that

η2||s− s̃||2 ≤ (
1− η + η−1

) ||s− s̄m||2 + pen(m)− pen(m̂)

+
(

r

1− η

)
|m̂|

[
1
4

+
η

4
+ 2

√
Lbm + 2Lbm]

+
(

r

1− η

)
|m|

[
1
4

+ 1 +
η

4

]
+

(
r

1− η

)[
1 +

8
η

]
ξ.

Since

pen (m) ≥ K r |m|
(

1
4

+ 2
√

Lm + 2Lm

)
,

then choosing η such that K = (1 + η) / (1− η), i.e. η = (K − 1) / (K + 1)
one has the following inequality on the set Ωξ

(
K − 1
K + 1

)2

||s− s̃||2 ≤
(

K2 + 4K − 1
K2 − 1

)
||s− s̄m||2 + pen(m)

+
(

6K + 4
8

)
r|m|+

(
K + 1

2(K − 1)

)
(9K + 7) rξ.

Since

6K + 4
8

≤ 5
4
K,

(
K + 1

2(K − 1)

)
(9K + 7) ≤ 8K

(
K + 1
K − 1

)
,

and
Kr|m| ≤ 4pen(m),

then we get on Ωξ

||s− s̃||2 ≤
(

K + 1
K − 1

)2 (
K2 + 4K − 1

K2 − 1

)
||s− s̄m||2

+
(

K + 1
K − 1

)2 [
6pen(m) + 8K

(
K + 1
K − 1

)
rξ

]

≤ 8 (K + 1)3

(K − 1)3
[||s− s̄m||2 + pen (m) + Krξ

]
.

Integrating this inequality with respect to ξ and minimizing the bound over
m ∈Mn we achieve the proof paraphrasing the method of Birgé and Massart
in [1].
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5.2 Risk bound for the log-likelihood penalized estimator

As in the preceeding Section, we note γ for γ2, l for l2 , pen for pen2, m̂
for (m̂)2 and s̃ for s̃2. Contrary to the least-square procedure estimation,
following the work of Castellan [5], we control the term γ̄ (s̄m)− γ̄ (ŝm′) by
decomposing it as follows

γ̄ (s̄m)− γ̄ (ŝm′) = γ̄ (s̄m′)− γ̄ (ŝm′) + γ̄ (s)− γ̄ (s̄m′) (5.34)
+γ̄ (s̄m)− γ̄ (s) .

First we give in the following Section some results essential for the control
of the risk of the penalized estimator s̃ in Theorem 2.3.

5.2.1 Exponential bounds

The first result gives a concentration inequality of the random variable∑r
i=1 χ2

m (i) where χ2
m (i) is given in Definition 4.1. The idea is to con-

trol
∑r

i=1 χ2
m (i) for a fixed partition m ∈ Mn by Bernstein Theorem on a

event where ŝm (t, i) is close to sm (t, i) for every t and i.

Proposition 5.3. Fix a partition m defined in (1.1). For any positive real
numbers x and ε

P

(
r∑

i=1

χ2
m (i) 1lΩm(ε) ≥ r|m|+ 8r

(
1 +

ε

3

)√
x|m|+ 4r

(
1 +

ε

3

)
x

)

≤ r exp (−x)

where Ωm (ε) is defined in (4.25).

Proof. We would like to apply the Bernstein concentration inequality re-
called in Section 3.1 to

χ2
m (i) =

∑

J∈m

Z (J, i) ,

for a given i ∈ {1, . . . , r}, where

Z (J, i) =
NJ (i)

2

∑
t∈J s (t, i)

,
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and NJ (i) =
∑

t∈J

[
1l{Yt=i} − s(t, i)

]
. We set 1l{Yt=i} = 1l{Yt=i}−s(t, i), and

according to inequality (3.19), we have to control the moments of Z (J, i).
For every p ≥ 2 we have,

Es

[
Z (J, i)p 1lΩm(ε)

]

=
1[∑

t∈J s (t, i)
]p

∫ +∞

0
(2p) x2p−1P

[{
|
∑

t∈J

1l{Yt=i}| ≥ x

}
∩ Ωm (ε)

]
dx

≤ 1[∑
t∈J s (t, i)

]p

∫ ε
P

t∈J s(t,i)

0
(2p) x2p−1P

[
|
∑

t∈J

1l{Yt=i}| ≥ x

]
dx.

By applying inequality (3.21), one obtains for 0 < x ≤ ε
∑

t∈J s (t, i)

P

[
|
∑

t∈J

1l{Yt=i}| ≥ x

]
≤ 2 exp

(
− x2

2
(

x
3 +

∑
t∈J s (t, i)

)
)

≤ 2 exp

(
− x2

2
(
1 + ε

3

) ∑
t∈J s (t, i)

)
.

Therefore

Es

[
Z (J, i)p 1lΩm(ε)

]

≤ 1[∑
t∈J s (t, i)

]p

∫ ε
P

t∈J s(t,i)

0
4px2p−1 exp

(
− x2

2
(
1 + ε

3

) ∑
t∈J s (t, i)

)
dx

≤ 4p
(
1 +

ε

3

)p
∫ +∞

0
u2p−1 exp

(
−u2

2

)
du

≤ 4p
(
1 +

ε

3

)p
∫ +∞

0
(2t)p−1 exp (−t) dt

≤ 2p+1p
(
1 +

ε

3

)p
p!

and ∑

J∈m

Es

[
Z (J, i)p 1lΩm(ε)

] ≤ 2p+1p
(
1 +

ε

3

)p
p!× |m|.

Since p ≤ 2p−1,

∑

J∈m

Es

[
Z (J, i)p 1lΩm(ε)

] ≤ p!
2
×

[
25

(
1 +

ε

3

)2
|m|

]
×

(
4

(
1 +

ε

3

))p−2
.
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Moreover E
[
χ2

m (i)
] ≤ |m| (see the proof of the inequality (4.28)) so we get

for every positive x that

P

(∑

J∈m

Z (J, i) 1lΩm(ε) ≥ |m|+ 8
(
1 +

ε

3

) √
x|m|+ 4

(
1 +

ε

3

)
x

)

≤ exp (−x) .

We conclude the proof of Proposition 5.3 by summing in i ∈ {1, ..., r}.
The second result given in this section is an exponential bound of γ̄ (s)−

γ̄ (u) for every u ∈ S. Here we control the contrast as a function of Hellinger
distance instead of Kullback-Leiber information which is possibly infinite.

Proposition 5.4. For every u ∈ S and any positive x,

P
(
γ̄ (s)− γ̄ (u) ≥ nK (s, u)− 2nh2 (s, u) + 2xr

) ≤ r exp (−x) ,

where

γ̄ (s)− γ̄ (u) =
r∑

i=1

n∑

t=1

1l{Yt=i} log
[
u (t, i)
s (t, i)

]
,

and h2 is the Hellinger distance defined by (2.14).

Proof. Let a positive number a. By Markov inequality, we have for i ∈
{1, ..., r}

P

(
n∑

t=1

1l{Yt=i} log
[
u (t, i)
s (t, i)

]
≥ a

)

≤ exp

[
−a

2
+ log

(
Es

[
exp

[
1
2

n∑

t=1

(
1l{Yt=i} − s (t, i)

)
log

[
u (t, i)
s (t, i)

]]])]

≤ exp

[
−a

2
+

1
2

n∑

t=1

s (t, i) log
[

s (t, i)
u (t, i)

]]

n∏

t=1

Es

[
exp

[
1
2
1l{Yt=i} log

[
u (t, i)
s (t, i)

]]]
.

Let t ∈ {1, ...n} and i ∈ {1, ..., r}. We have

Es

[
exp

[
1
2
1l{Yt=i} log

[
u (t, i)
s (t, i)

]]]
=

√
u (t, i)
s (t, i)

s (t, i) + (1− s (t, i))

= 1− s (t, i)

[
1−

√
u (t, i)
s (t, i)

]
.
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Then

log
(
Es

[
exp

[
1
2
1l{Yt=i} log

[
u (t, i)
s (t, i)

]]])

≤ −s (t, i)

[
1−

√
u (t, i)
s (t, i)

]

≤ 1
2

[
u (t, i)− s (t, i)−

(√
s (t, i)−

√
u (t, i)

)2
]

.

If we choose for x positive real number

a = 2x +
n∑

t=1

s (t, i) log
[

s (t, i)
u (t, i)

]

+
n∑

t=1

[
u (t, i)− s (t, i)−

(√
s (t, i)−

√
u (t, i)

)2
]

,

then

P

(
n∑

t=1

1l{Yt=i} log
[
u (t, i)
s (t, i)

]
≥ a

)
≤ exp (−x) ,

and we conclude the proof by summing for i ∈ {1, ..., r}.

5.2.2 Proof of Theorem for the likelihood procedure estimation

According to the decomposition (5.34), we control first the two terms :
γ̄ (s̄m)− γ̄ (s) and γ̄ (s̄m′)− γ̄ (ŝm′).

• Control of the term γ̄ (s̄m)− γ̄ (s). We have to control

Es

[
(γ̄ (s̄m)− γ̄ (s)) 1lΩm(ε)

]
= −Es

[
(γ̄ (s̄m)− γ̄ (s)) 1lΩm(ε)c

]
,

and we bound this expectation by
∣∣Es

[
(γ̄ (s̄m)− γ̄ (s)) 1lΩm(ε)

]∣∣ ≤
∣∣E [

(γ̄ (s̄m)− γ̄ (s)) 1lΩc
m(ε)

]∣∣

≤ nr log
(

1
ρ

)
P (Ωm (ε)c) .

We use the result of Lemma 4.4 and we obtain a constant C1 (Γ, ρ, r, ε)
such that

Es

[
(γ̄ (s̄m)− γ̄ (s)) 1lΩm(ε)

] ≤ C1 (Γ, ρ, r, ε) . (5.35)
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• Control of the term γ̄ (s̄m′)− γ̄ (ŝm′). We write for m′ ∈Mn

γ̄ (s̄m′)− γ̄ (ŝm′) =
n∑

t=1

r∑

i=1

1l{Yt=i} log
[
ŝm′ (t, i)
s̄m′ (t, i)

]
.

By Cauchy-Schwarz inequality,

γ̄ (s̄m′)− γ̄ (ŝm′) (5.36)

≤
√√√√

r∑

i=1

∑

K∈m′

(∑
t∈K 1l{Yt=i}

)2

∑
t∈K s (t, i)

× Vs (ŝm′ , s̄m′)

≤
√√√√

r∑

i=1

χ2
m′ (i)× Vs (ŝm′ , s̄m′) .

where Vs is defined by (4.24) and χ2
m′ (i) given in Definition 4.1. First

we have to bound √√√√
r∑

i=1

χ2
m′ (i)

by the concentration arguments proposed in Proposition 5.3 and then
we have to use the relation between V 2

s (ŝm′ , s̄m′) and l (ŝm′ , s̄m′) ex-
posed in Proposition 4.3. On Ωmf

(ε) with mf satisfying (2.17) we
have for all m′ constructed on the partition mf

∣∣∣∣
ŝm′ (t, i)
sm′ (t, i)

− 1
∣∣∣∣ ≤ ε

for all t ∈ {1, ..., n} , and i ∈ {1, ..., r}. Therefore according to the
inequality (5.36) and Proposition 4.3, we have on Ωmf

(ε) that for all
m′ ∈Mn

γ̄ (s̄m′)− γ̄ (ŝm′) ≤
√√√√

r∑

i=1

χ2
m′ (i)

√
2

1− ε
l (s̄m′ , ŝm′).

Using inequality (5.32) with θ = (1 + ε) / (1− ε), we obtain on Ωmf
(ε)

that for all m′ ∈Mn

γ̄ (s̄m′)− γ̄ (ŝm′) ≤ 1
2

(
1 + ε

1− ε

) r∑

i=1

χ2
m′ (i) +

1
1 + ε

l (s̄m′ , ŝm′) .
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We now introduce the following event defined for positive ξ

Ω1 (ξ) =

{ ∑r
i=1 χ2

m′ (i) 1lΩmf
(ε)

≤ r|m′|+ 8r
(
1 + ε

3

)√
xm′ |m′|+ 4r

(
1 + ε

3

)
xm′ , ∀m′ ∈Mn

}
,

where xm′ = Lm′ |m′|+ ξ for all m′ ∈ Mn, with Lm′ chosen such that
the condition (2.16) is satisfied and χ2

m′ (i) is given in Definition 4.1
for all i ∈ {1, . . . , r} and for all m′ ∈ Mn. We get on Ω1 (ξ) that for
all m′ ∈Mn

[γ̄ (s̄m′)− γ̄ (ŝm′)] 1lΩmf
(ε)

≤ 1
2

(
1 + ε

1− ε

) [
r|m′|+ 8r

(
1 +

ε

3

)√
(|m′|Lm′ + ξ) |m′|

]

+2r
(

1 + ε

1− ε

) (
1 +

ε

3

)
(|m′|Lm′ + ξ)

+
1

1 + ε
l (s̄m′ , ŝm′) 1lΩmf

(ε).

By the Cr inequality with r = 2 (|x + y|1/2 ≤ |x|1/2 + |y|1/2) and by
using inequality (5.32) with θ = ε

4 , we obtain on Ω1 (ξ) that for all
m′ ∈Mn

[γ̄ (s̄m′)− γ̄ (ŝm′)] 1lΩmf
(ε) (5.37)

≤ 1
2

(
1 + ε

1− ε

)
r|m′|

[
1 +

(
1 +

ε

3

)(
ε + 8

√
Lm′ + 4Lm′

)]

+2rξ

(
1 + ε

1− ε

)(
1 +

ε

3

)(
1 +

4
ε

)
+

1
1 + ε

l (s̄m′ , ŝm′) 1lΩmf
(ε).

Let us finally control l (s, s̃) on the set Ωmf
(ε) in defining the set

Ω2 (ξ) =
{
γ̄ (s)− γ̄ (s̄m′) ≤ nK (s, s̄m′)− 2nh (s, s̄m′) + 2xm′r,∀m′ ∈Mn

}

Combining inequality (5.34) with (5.37) applied for m′ = m̂, we obtain
on Ω1 (ξ) ∩ Ω2 (ξ)

l (s, s̃) 1lΩmf
(ε) ≤ l (s, s̄m) + pen (m)− pen (m̂) + R 1lΩmf

(ε)

+ r|m̂|C(ε)
[
1
2

+ 4
√

Lm̂ + 4Lm̂

]

+ 2rξ

[
1 +

(
1 + ε

1− ε

) (
1 +

ε

3

) (
1 +

4
ε

)]

+
[
nK (s, s̄m̂)− 2nh2 (s, s̄m̂) +

1
1 + ε

l (s̄m̂, s̃)
]

1lΩmf
(ε),
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where
R = γ̄ (s̄m)− γ̄ (s) , (5.38)

and

C(ε) =
{[(

1 + ε

1− ε

)
(1 + ε (1 + ε))

]
∨

[
(1 + ε)2

1− ε

]}
,

=
(

1 + ε

1− ε

)
(1 + ε (1 + ε))

≤
(

1 + ε

1− ε

)3

.

Then we use respectively the following different relations:

• the relation between the loss function and the Kullback-Leibler infor-
mation: l (s, s̃) = nK (s, s̃),

• the following Pythagore’s type identity

K(s, s̃) = K(s, s̄m̂) + K(s̄m̂, s̃),

• the relation between the Kullback-Leibler information and the Hellinger
distance given by (2.15),

• and the following inequality

h2(s, s̃) ≤ 2
[
h2(s, s̄m̂) + h2(s̄m̂, s̃)

]
.

We obtain according to the form of the penalty given by (2.18) and since
ε/ (1 + ε) < 1 on Ω1 (ξ) ∩ Ω2 (ξ)

ε

1 + ε
nh2(s, s̃)1lΩmf

(ε) ≤ nK (s, s̄m) + pen (m) + R 1lΩmf
(ε)

+ r|m̂|
[
1
2

+ 4
√

Lm̂ + 4Lm̂

] [(
1 + ε

1− ε

)3

− λ

]

+ 2rξ
[
1 +

(
1 + ε

1− ε

) (
1 +

ε

3

)(
1 +

4
ε

)]
.

We take ε such that λ = ((1 + ε) / (1− ε))3, i.e. ε =
(
λ1/3 − 1

)
/

(
λ1/3 + 1

)
,

and bound

2
[
1 +

(
1 + ε

1− ε

) (
1 +

ε

3

)(
1 +

4
ε

)]
≤ 16

(
1 + ε

ε (1− ε)

)3

.
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We have on Ω1 (ξ) ∩ Ω2 (ξ)

nh2(s, s̃)1lΩmf
(ε) ≤ 2λ1/3

λ1/3 + 1
[nK (s, s̄m) + pen (m)]

+
2λ1/3

λ1/3 + 1

[
R 1lΩmf

(ε) + 16rξK

(
K1/3 − 1
K1/3 + 1

)]
.

Since we derive from Propositions 5.3 and 5.4 that

P (Ω1 (ξ)c) ≤ r
∑

m′∈Mn

exp (−xm′)

and P (Ω2 (ξ)c) ≤ r
∑

m′∈Mn

exp (−xm′) ,

we deduce that

P (Ω1 (ξ)c ∪ Ω2 (ξ)c) ≤ 2r
∑

m′∈Mn

exp (−xm′) ≤ 2rΣexp (−ξ) ,

thus P (Ω1 (ξ) ∩ Ω2 (ξ)) ≥ 1−2rΣexp (−ξ). Now integrating this inequality
with respect to ξ and the control of Es[R1lΩmf

(ε)] given by (5.35) where R

is defined by (5.38) allow to conclude that

Es

[
nh2 (s, s̃) 1lΩmf

(ε)

]
≤ 2λ1/3

λ1/3 − 1
[l (s, s̄m) + pen (m)] + C (Σ, r,K, ρ,Γ, ε) .

Furthermore, with the control of P
(
Ωmf

(ε)c) given in Lemma 4.4, there
exists a constant C2 (Γ, ρ, r, ε) such that

Es

[
nh2 (s, s̃) 1lΩmf

(ε)c

]
≤ C (Γ, ρ, r, ε) ,

since h2 (s, s̃) ≤ 1. Hence, we conclude that

Es

[
nh2 (s, s̃)

] ≤ 2λ1/3

λ1/3 − 1
[l (s, s̄m) + pen (m)] + C (Σ, r,K, ρ,Γ, ε) ,

and minimizing the bound over m ∈Mn we complete the proof of Theorem
2.3.

6 Conclusion

In conclusion, in theoretical point of view the proof of the risk bound in
the likelihood procedure needs some more technicals points. So in the case
where the problem can be put into the least-square framework, the least-
square procedure is preferable.
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