Tomato (Solanum lycopersicum L.) is one of the most important vegetable crops. It also represents a model plant for studying genetic traits related to disease and pest resistance and molecular processes underlying plant-pathogen interactions mechanisms....
Adhikari P, Oh Y, Panthee DR (2017) Current status of early blight resistance in tomato: an update. Int J Mol Sci 18. https://doi.org/10.3390/ijms18102019
Agrios GN (2005) Plant pathology. Elsevier Academic Press, San Diego, CA
Google Scholar
Andolfo G, Sanseverino W, Rombauts S, Van de Peer Y, Bradeen JM, Carputo D, Frusciante L, Ercolano MR (2013) Overview of tomato (Solanum lycopersicum) candidate pathogen recognition genes reveals important Solanum R locus dynamics. New Phytol 197:223–237
CAS PubMed CrossRef Google Scholar
Andolfo G, Jupe F, Witek K, Etherington GJ, Ercolano MR, Jones JDG (2014) Defining the full tomato NB-LRR resistance gene repertoire using genomic and cDNA RenSeq. BMC Plant Biol 14:120. https://doi.org/10.1186/1471-2229-14-120
CAS CrossRef PubMed PubMed Central Google Scholar
Andolfo G, Iovieno P, Frusciante L, Ercolano MR (2016) Genome-editing technologies for enhancing plant disease resistance. Front Plant Sci 7:1813
PubMed PubMed Central CrossRef Google Scholar
Andolfo G, D’Agostino N, Frusciante L, Ercolano MR (2021) The tomato interspecific NB-LRR gene arsenal and its impact on breeding strategies. Genes 12:184. https://doi.org/10.3390/genes12020184
CAS CrossRef PubMed PubMed Central Google Scholar
Aflitos S, Schijlen E, de Jong H, De Ridder D, Smit S, Finkers R et al (2014) Exploring genetic variation in the tomato (Solanum section Lycopersicon) clade by whole-genome sequencing. Plant J 80:136–148. https://doi.org/10.1111/tpj.12616
CAS CrossRef PubMed Google Scholar
Arafa RA, Rakha MT, Soliman NEK, Moussa OM, Kamel SM, Shirasawa K (2017) Rapid identification of candidate genes for resistance to tomato late blight disease using next-generation sequencing technologies. PLoS ONE 12:e0189951. https://doi.org/10.1371/journal.pone.0189951
CAS CrossRef PubMed PubMed Central Google Scholar
Arens P, Mansilla C, Deinum D, Cavellini L, Moretti A, Rolland S, van der Schoot H, Calvache D, Ponz F, Collonnier C, Mathis R, Smilde D, Caranta C, Vosman B (2010) Development and evaluation of robust molecular markers linked to disease resistance in tomato for distinctness, uniformity and stability testing. Theor Appl Genet 120:655–664
CAS PubMed CrossRef Google Scholar
Ashikawa I, Hayashi N, Abe F, Wu J, Matsumoto T (2012) Characterization of the rice blast resistance gene Pik cloned from Kanto51. Mol Breed 30:485–494. https://doi.org/10.1007/s11032-011-9638-y
CAS CrossRef Google Scholar
Ashrafi H, Foolad MR (2015a) Characterization of early blight resistance in a recombinant inbred line population of tomato: II. Identification of QTLs and their co-localization with candidate resistance genes. Adv Stud Biol 7:149–168
CrossRef Google Scholar
Ashrafi H, Foolad MR (2015b) Charaterization of early blight resistance in a recombinant inbred line population of tomato: I. Heritability and trait correlations. Adv Stud Biol 7:131–148
CrossRef Google Scholar
Asseng S, Ewert F, Martre P, Rötter RP, Lobell DB et al (2015) Rising temperatures reduce global wheat production. Nat Clim Chang 5:143–147
CrossRef Google Scholar
Babadoost M (2011) Important fungal diseases of tomato in the United State. Acta Hort 914:85–92
CrossRef Google Scholar
Botstein D, White RL, Skolnick M, Davis RW (1980) Construction of a genetic linkage map in man using restriction fragment length polymorphisms. American journal of human genetics 32(3):314–331
Google Scholar
Barone A, Di Matteo A, Carputo D, Frusciante L (2009) High-throughput genomics enhances tomato breeding efficiency. Curr Genom 10:1–9. https://doi.org/10.2174/138920209787581226
CAS CrossRef Google Scholar
Bazzini AA, Asís R, González V, Bassi S, Conte M et al (2010) miSolRNA: a tomato micro RNA relational database. BMC Plant Biol 10:240. https://doi.org/10.1186/1471-2229-10-240
CAS CrossRef PubMed PubMed Central Google Scholar
Boehm CR, Bock R (2018) Recent advances and current challenges in synthetic biology of the plastid genetic system and metabolism. Plant Physiol 3:00767
Google Scholar
Bolger A, Scossa F, Bolger M, Lanz C, Maumus F et al (2014) The genome of the stress-tolerant wild tomato species Solanum pennellii. Nat Genet 46:1034–1038
CAS PubMed PubMed Central CrossRef Google Scholar
Bonnema G, Hontelelz J, Verkerk R, Zhang YQ, Van Daelen R, Van Kammen A, Zabel P (1996) An improved method of partially digesting plant megabase DNA suitable for YAC cloning: application to the construction of a 5.5 genome equivalent YAC library of tomato. Plant J 9:125–133
CAS PubMed CrossRef Google Scholar
Boysen C, Simon ML, Hood L (1997) Analysis of the 1.1-Mb human a/d T-cell receptor locus with bacterial artificial chromosome clones. Genome Res 7:330–338
CAS PubMed CrossRef Google Scholar
Branthôme FX (2020) Worldwide consumption of tomato products, 2018/2019 (Part 1). WPTC congress—Lire en français. Sources: WPTC, Trade Data Monitor LLC, FoodNavigator
Google Scholar
Brouwer DJ, Jones ES, St Clair DA (2004) QTL analysis of quantitative resistance to Phytophthora infestans (late blight) in tomato and comparisons with potato. Genome 47:475–492. https://doi.org/10.1139/g04-001
CAS CrossRef PubMed Google Scholar
Cappetta E, Andolfo G, Di Matteo A, Ercolano MR (2020a) Empowering crop resilience to environmental multiple stress through the modulation of key response components. J Plant Physiol 246–247:153134
PubMed CrossRef CAS Google Scholar
Cappetta E, Andolfo G, Di Matteo A, Barone A, Frusciante L, Ercolano MR (2020b) Accelerating tomato breeding by exploiting genomic selection approaches. Plants 9:1236
PubMed Central CrossRef Google Scholar
Catanzariti AM, Do HT, Bru P, De Sain M, Thatcher LF, Rep M, Jones DA (2017) The tomato I gene for Fusarium wilt resistance encodes an atypical leucine-rich repeat receptor-like protein whose function is nevertheless dependent on SOBIR1 and SERK3/BAK1. Plant J 89:1195–1209
CAS PubMed CrossRef Google Scholar
Chaerani R, Smulders MJM, van der Linden CG, Vosman B, Stam P, Voorrips RE (2007) QTL identification for early blight resistance (Alternaria solani) in a Solanum lycopersicum × S. arcanum cross. Theor Appl Genet 114:439–450. https://doi.org/10.1007/s00122-006-0442-8
CAS CrossRef PubMed Google Scholar
Chandrasegaran S, Carroll D (2016) Origins of programmable nucleases for genome engineering. J Mol Biol 428(5):963–989
CAS PubMed CrossRef Google Scholar
Chang FP, Kuang LY, Huang CA, Jane WN, Hung Y, Hsing YIC et al (2013) A simple plant gene delivery system using mesoporous silica nanoparticles as carriers. J Mater Chem B 1:5279–5287
CAS PubMed CrossRef Google Scholar
Chaudhary J, Alisha A, Bhatt V, Chandanshive S, Kumar N, Mir Z, Kumar A, Yadav SK, Shivaraj SM, Sonah H, Deshmukh R (2019) Mutation breeding in tomato: advances, applicability and challenges. Plants 8:128. https://doi.org/10.3390/plants8050128
CAS CrossRef PubMed Central Google Scholar
Cheema J, Dicks J (2009) Computational approaches and software tools for genetic linkage map estimation in plants. Brief Bioinformat 10:595–608. https://doi.org/10.1093/bib/bbp045
CAS CrossRef Google Scholar
Choi HK (2019) Translational genomics and multi-omics integrated approaches as a useful strategy for crop breeding. Genes Genom 41:133–146. https://doi.org/10.1007/s13258-018-0751-8
CrossRef Google Scholar
Chunwongse J, Chunwongse C, Black L, Hanson P (2002) Molecular mapping of the Ph-3 gene for late blight resistance in tomato. J Hortic Sci Biotechnol 77:281–286
CAS CrossRef Google Scholar
Costache M, Roman T, Costache C (2007) Bolile si daunatorii culturilor de legume. Editura Agris, Bucuresti
Google Scholar
Cui Y, Jiang J, Yang H, Zhao T, Xu X, Li J (2018) Virus-induced gene silencing (VIGS) of the NBS-LRR gene SLNLC1 compromises Sm-mediated disease resistance to Stemphylium lycopersici in tomato. Biochem Biophys Res Commun 503:1524–1529
CAS PubMed CrossRef Google Scholar
Cunningham FJ, Goh NS, Demirer GS, Matos JL, Landry MP (2018) Nanoparticle-mediated delivery towards advancing plant genetic engineering. Trends Biotechnol 36:882–897
CAS PubMed CrossRef Google Scholar
Demirer GS, Zhang H, Goh NS, González-Grandío E, Landry MP (2019) Carbon nanotube-mediated DNA delivery without transgene integration in intact plants. Nat Protoc 14:2954–2971. https://doi.org/10.1038/s41596-019-0208-9
CAS CrossRef PubMed Google Scholar
Demirer GS, Zhang H, Goh NS, Pinals RL, Chang R, Landry MP (2020) Carbon nanocarriers deliver siRNA to intact plant cells for efficient gene knockdown. Sci Adv 6:eaaz0495
Google Scholar
Di Donato A, Filippone E, Ercolano MR, Frusciante L (2018) Genome sequencing of ancient plant remains: findings, uses and potential applications for the study and improvement of modern crops. Front Plant Sci 9:441
PubMed PubMed Central CrossRef Google Scholar
Du H, Wang Y, Yang J, Yang W (2015) Comparative transcriptome analysis of resistant and susceptible tomato lines in response to infection by Xanthomonas perforans race T3. Front Plant Sci 6:1173. https://doi.org/10.3389/fpls.2015.01173
CrossRef PubMed PubMed Central Google Scholar
Dunn NA, Unni DR, Diesh C, Munoz-Torres M, Harris NL, Yao E et al (2019) Apollo: democratizing genome annotation. PLoS Comput Biol 15(2):e1006790. https://doi.org/10.1371/journal.pcbi.1006790
CAS CrossRef PubMed PubMed Central Google Scholar
Ercolano M, Sanseverino W, Carli P, Ferriello F, Frusciante L (2012) Genetic and genomic approaches for R-gene mediated disease resistance in tomato: retrospects and prospects. Plant Cell Rep 31:973–985
CAS PubMed PubMed Central CrossRef Google Scholar
Ercolano MR, Sacco A, Ferriello F, D’Alessandro R, Tononi P et al (2014) Patchwork sequencing of tomato San Marzano and Vesuviano varieties highlights genome-wide variations. BMC Genomics 15:138. https://doi.org/10.1186/1471-2164-15-138
CAS CrossRef PubMed PubMed Central Google Scholar
Eshed Y, Zamir D (1995) An introgression line population of Lycopersicon pennellii in the cultivated tomato enables the identification and fine mapping of yield-associated QTL. Genetics 141:1147–1162
CAS PubMed PubMed Central CrossRef Google Scholar
Espinosa-Calabuig R (2016) Obtenciones vegetales y cálculo de una indemnización razonable (STJUE de 9 de junio de 2016, asunto C 481/2014: Jørn Hansson/Jungpflanzen Grünewald GmbH)”, La Ley Unión Europea, nº 42, 30 de noviembre de 2016, pp 1–13
Google Scholar
Eulalio A, Huntzinger E, Izaurralde E (2008) Getting to the root of miRNA-mediated gene silencing. Cell 132:9–14
CAS PubMed CrossRef Google Scholar
Fahad S, Bajwa AA, Nazir U, Anjum SA, Farooq A, Zohaib A, Sadia S, Nasim W, Adkins S, Saud S, Ihsan MZ, Alharby H, Wu C, Wang D, Huang J (2017) Crop production under drought and heat stress: plant responses and management options. Front Plant Sci 8:1147
PubMed PubMed Central CrossRef Google Scholar
Faino L, Carli P, Testa A, Cristinzio G, Frusciante L, Ercolano MR (2010) Potato R1 resistance gene confers resistance against Phytophthora infestans in transgenic tomato plants. Eur J Plant Pathol 128:233. https://doi.org/10.1007/s10658-010-9649-2
CAS CrossRef Google Scholar
Fei Z, Joung JG, Tang X, Zheng Y, Huang M, Lee JM, McQuinn R, Tieman DM, Alba R, Klee HJ et al (2011) Tomato functional genomics database: a comprehensive resource and analysis package for tomato functional genomics. Nucleic Acids Res 39:D1156-1163
CAS PubMed CrossRef Google Scholar
Fernandez-Pozo N, Menda N, Edwards JD, Saha S, Tecle IY, Strickler SR, Bombarely A, Fisher-York T, Pujar A, Foerster H, Yan A, Mueller LA (2015) The sol genomics network (SGN)—from genotype to phenotype to breeding. Nucleic Acids Res 43:D1036–D1041
CAS PubMed CrossRef Google Scholar
Fernandez-Pozo N, Zheng Y, Snyder SI, Nicolas P, Shinozaki Y, Fei Z, Catala C, Giovannoni JJ, Rose JKC, Mueller LA (2017) The tomato expression atlas. Bioinformatics 33:2397–2398. https://doi.org/10.1093/bioinformatics/btx190
CAS CrossRef PubMed PubMed Central Google Scholar
Foolad M (2007) Genome mapping and molecular breeding of tomato. Intl J Plant Genom :PMCID: PMC2267253. https://doi.org/10.1155/2007/64358
Food and Agriculture Organization of the United Nations (FAO) (2017). FAOSTAT statistical database. Rome. http://www.fao.org/faostat/en/?#data/
Food and Agriculture Organization of the United Nations (FAO) (2019). FAOSTAT statistical database. Rome. http://www.fao.org/faostat/en/?#data/
Food and Agriculture Organization of the United Nations (FAO) (2021). FAOSTAT statistical database. Rome. http://www.fao.org/faostat/en/?#data/
Foolad MR, Zhang LP, Khan AA, Nino-Liu D, Lin GY (2002) Identification of QTLs for early blight (Alternaria solani) resistance in tomato using backcross populations of a Lycopersicon esculentum × L-hirsutum cross. Theor Appl Genet 104:945–958
CAS PubMed CrossRef Google Scholar
Foolad MR, Merk HL, Ashrafi H (2008) Genetics, genomics and breeding of late blight and early blight resistance in tomato. Crit Rev Plant Sci 27:75–107
CAS CrossRef Google Scholar
Foolad MR, Panthee DR (2012) Marker-assisted selection in tomato breeding. Crit Rev Plant Sci 31:93–123. https://doi.org/10.1080/07352689.2011.616057
CrossRef Google Scholar
Frary A, Xu YM, Liu JP, Mitchell S, Tedeschi E, Tanksley S (2005) Development of a set of PCR-based anchor markers encompassing the tomato genome and evaluation of their usefulness for genetics and breeding experiments. Theor Appl Genet 111:291–312
CAS PubMed CrossRef Google Scholar
Fulton TM, Van der Hoeven R, Eannetta NT, Tanksley S (2002) Identification, analysis, and utilization of conserved ortholog set markers for comparative genomics in higher plants. Plant Cell 14:1457–1467
CAS PubMed PubMed Central CrossRef Google Scholar
Galvez LC, Banerjee J, Pinar H, Mitra A (2014) Engineered plant virus resistance. Plant Sci 228:11–25
CAS PubMed CrossRef Google Scholar
Garcia-Vidal A (2017) Capítulo 6. La variedad vegetal como objeto de protección. Garcia Vidal A. Derecho de las Obtenciones Vegetales, Tirant lo Blanch, pp 263–289
Google Scholar
Geethanjali S, Chen KY, Pastrana DV, Wang J-F (2010) Development and characterization of tomato SSR markers from genomic sequences of anchored BAC clones on chromosome 6. Euphytica 173:85–97. https://doi.org/10.1007/s10681-010-0125-z
CAS CrossRef Google Scholar
Giannakopoulou A, Steele JFC, Segretin ME, Bozkurt TO, Zhou J, Robatzek S, Banfield MJ, Pais M, Kamoun S (2015) Tomato I2 immune receptor can be engineered to confer partial resistance to the oomycete Phytophthora infestans in addition to the fungus Fusarium oxysporum. Mol Plant Microbe Interact 28:1316–1329
CAS PubMed CrossRef Google Scholar
Gonda I, Ashrafi H, Lyon DA, Strickler SR, Hulse-Kemp AM, Ma Q, Sun H et al (2019) Sequencing-based bin map construction of a tomato mapping population, facilitating high-resolution quantitative trait loci detection. Plant Genome 12:180010
CrossRef CAS Google Scholar
Gupta P, Dholaniya PS, Devulapalli S, Tawari NR, Sreelakshmi Y, Sharma R (2020) Reanalysis of genome sequences of tomato accessions and its wild relatives: development of Tomato Genomic Variation (TGV) database integrating SNPs and INDELs polymorphisms. Bioinformatics 36:4984–4990. https://doi.org/10.1093/bioinformatics/btaa617
CAS CrossRef PubMed Google Scholar
Haggard JE, Johnson EB, St Clair DA (2013) Linkage relationships among multiple QTL for horticultural traits and late blight (P. infestans) resistance on chromosome 5 introgressed from wild tomato Solanum habrochaites. Genes Genomes Genet 3:2131–2146. https://doi.org/10.1534/g3.113.007195
CAS CrossRef Google Scholar
Haggard JE, Johnson EB, St Clair DA (2015) Multiple QTLs for horticultural traits and quantitative resistance to Phytophthora infestans linked on Solanum habrochaites chromosome 11. Genes Genomes Genet 5:219–233. https://doi.org/10.1534/g3.114.014654
CrossRef Google Scholar
Hamilton CM, Frary A, Lewis C, Tanksley SD (1996) Stable transfer of intact high molecular weight DNA into plant chromosomes. Proc Natl Acad Sci USA 93:9975–9979
CAS PubMed PubMed Central CrossRef Google Scholar
Hemming MN, Basuki S, McGrath DJ, Carroll BJ, Jones DA (2004) Fine mapping of the tomato I-3 gene for fusarium wilt resistance and elimination of a co-segregating resistance gene analogue as a candidate for I-3. Theor Appl Genet 109:409–418
CAS PubMed CrossRef Google Scholar
Hiatt A, Caffferkey R, Bowdish K (1989) Production of antibodies in transgenic plants. Nature 342:76–78
CAS PubMed CrossRef Google Scholar
Hong Y, Meng J, He X, Zhang Y, Liu Y, Zhang C, Qi H, Luan Y (2020) Editing miR482b and miR482c simultaneously by CRISPR/Cas9 enhanced tomato resistance to Phytophthora infestans. Phytopathology 10. 1094/PHYTO-08-20-0360-R
Google Scholar
Hosmani PS, Flores-Gonzalez M, Van de Geest H, Maumus F, Bakker LV, Schijlen JE, van Haarst J, Cordewener G, Sanchez-Perez S et al (2019) An improved de novo assembly and annotation of the tomato reference genome using single-molecule sequencing, Hi-C proximity ligation and optical maps. Biorxiv. https://doi.org/10.1101/767764
CrossRef Google Scholar
Jablonska B, Ammiraju JS, Bhattarai KK, Mantelin S, Martinez de Ilarduya O, Roberts PA, Kaloshian I (2007) The Mi-9 gene from Solanum arcanum conferring heat-stable resistance to root-knot nematodes is a homolog of Mi-1. Plant Physiol 143(2):1044–1054. https://doi.org/10.1104/pp.106.089615
CAS CrossRef PubMed PubMed Central Google Scholar
Jeong HR, Lee BM, Lee BW, Oh JE, Lee JH, Kim JE, Jo SH (2020) Tag-SNP selection and web database construction for haplotype-based marker development in tomato. J Plant Biotechnol 47:218–226
CrossRef Google Scholar
Jiang N, Meng J, Cui J, Sun G, Luan Y (2018) Function identification of miR482b, a negative regulator during tomato resistance to Phytophthora infestans. Hortic Res 5:9. https://doi.org/10.1038/s41438-018-0017-2
CAS CrossRef PubMed PubMed Central Google Scholar
Jo KR, Kim CJ, Kim SJ, Kim TY, Bergervoet M, Jongsma MA, Visser RGF, Jacobsen E, Vossen JH (2014) Development of late blight resistant potatoes by cisgene stacking. BMC Biotech 14:50. https://doi.org/10.1186/1472-6750-14-50
CrossRef Google Scholar
Kahlau S, Aspinall S, Gray JC, Bock R (2006) Sequence of the tomato chloroplast DNA and evolutionary comparison of solanaceous plastid genomes. J Mol Evol 63:194–207
CAS PubMed CrossRef Google Scholar
Khan MN, Mobin M, Abbas ZK, Almutairi KA, Siddiqui ZH (2017) Role of nanomaterials in plants under challenging environments. Plant Physiol Biochem 110:194–209. https://doi.org/10.1016/j.plaphy.2016.05.038
CAS CrossRef PubMed Google Scholar
Kheir AMS, Baroudy AE, Aiad MA, Zoghdan MG, Abd El-Aziz MA et al (2019) Impacts of rising temperature, carbon dioxide concentration and sea level on wheat production in North Nile delta. Sci Total Environ 651:3161–3173. https://doi.org/10.1016/j.scitotenv.2018.10.209
CAS CrossRef PubMed Google Scholar
Kim HJ, Baek KH, Lee BW, Choi D, Hur CG (2011) In silico identification and characterization of microRNAs and their putative target genes in Solanaceae plants. Genome 54(2):91–98. https://doi.org/10.1139/G10-104 PMID: 21326365
CAS CrossRef PubMed Google Scholar
Kim M, Park Y, Lee J, Sim SC (2020) Development of molecular markers for Ty-2 and Ty-3 selection in tomato breeding. Sci Hort 265. https://doi.org/10.1016/j.scienta.2020.109230
Kudo T, Kobayashi M, Terashima S, Katayama M, Ozaki S, Kanno M, Saito M, Yokoyama K, Ohyanagi H, Aoki K, Kubo Y, Yano K (2017) TOMATOMICS: a web database for integrated omics information in tomato. Plant Cell Physiol 58:e8. https://doi.org/10.1093/pcp/pcw207
CAS CrossRef PubMed PubMed Central Google Scholar
Kumar A, Jindal SK, Dhaliwal MS, Sharma A, Kaur S, Jain S (2019) Gene pyramiding for elite tomato genotypes against ToLCV (Begomovirus spp.), late blight (Phytophthora infestans) and RKN (Meloidogyne spp.) for northern India farmers. Physiol Mol Biol Plants 25:1197–1209. https://doi.org/10.1007/s12298-019-00700-5
CAS CrossRef PubMed PubMed Central Google Scholar
Kwak SY, Lew TTS, Sweeney CJ, Koman VB, Wong MH et al (2019) Chloroplast-selective gene delivery and expression in planta using chitosan-complexed single-walled carbon nanotube carriers. Nat Nanotechnol 14:447–455. https://doi.org/10.1038/s41565-019-0375-4
CAS CrossRef PubMed Google Scholar
Labate JA, Robertson LD (2012) Evidence of cryptic introgression in tomato (Solanum lycopersicum L.) based on wild tomato species alleles. BMC Plant Biol 12(1):133
Google Scholar
Labate JA, Grandillo S, Fulton T, Muños S, Caicedo AL et al (2007) Tomato. In: Kole C (ed) Genome mapping and molecular breeding in plants. Volume 5 Vegetables. Springer, Berlin, Heidelberg, pp 1–125
Google Scholar
Kole C, Kole P, Randunu KM, Choudhary P, Podila R, Ke PC, Rao AM, Marcus RK (2013) Nanobiotechnology can boost crop production and quality: first evidence from increased plant biomass, fruit yield and phytomedicine content in bitter melon (Momordica charantia). BMC Biotechnol 13:37
PubMed PubMed Central CrossRef Google Scholar
Lemaux PG (2008) Genetically engineered plants and foods: a scientist’s analysis of the issues (Part I). Annu Rev Plant Biol 59:771–812
CAS PubMed CrossRef Google Scholar
Li W, Guo G, Zheng G (2000) Agrobacterium-mediated transformation: state of the art and future prospect. Chin Sci Bull 45:1537–1546. https://doi.org/10.1007/BF02886209
CAS CrossRef Google Scholar
Li JM, Liu L, Bai YL, Finkers R, Wang F, Du YC, Yang YH, Xie BY, Visser RGF, van Heusden AW (2011) Identification and mapping of quantitative resistance to late blight (Phytophthora infestans) in Solanum habrochaites LA1777. Euphytica 179:427–438. https://doi.org/10.1007/s10681-010-0340-7
CrossRef Google Scholar
Li J, Ouyang B, Wang T, Luo Z, Yang C, Li H, Sima W, Zhang J, Ye Z (2016) HyPRP1 gene suppressed by multiple stresses plays a negative role in abiotic stress tolerance in tomato. Front Plant Sci 7:967
PubMed PubMed Central Google Scholar
Liabeuf D, Sim SC, Francis DM (2018) Comparison of marker-based genomic estimated breeding values and phenotypic evaluation for selection of bacterial spot resistance in tomato. Phytopathology 108:392–401
PubMed CrossRef Google Scholar
Lin T, Zhu G, Zhang J, Xu X, Yu Q et al (2014) Genomic analyses provide insights into the history of tomato breeding. Nat Genet 46:1220–1226. https://doi.org/10.1038/ng.3117
CAS CrossRef PubMed Google Scholar
Liu G, Liu J, Zhang C, You XQ, Zhao TT, Jiang JB et al (2018) Physiological and RNA-seq analyses provide insights into the response mechanism of the Cf-10-mediated resistance to Cladosporium fulvum infection in tomato. Plant Mol Biol 96:403–416. https://doi.org/10.1007/s11103-018-0706-0
CAS CrossRef PubMed Google Scholar
Malzahn A, Lowder L, Qi Y (2017) Plant genome editing with TALEN and CRISPR. Cell Biosci 7:21. https://doi.org/10.1186/s13578-017-0148-4
CAS CrossRef PubMed PubMed Central Google Scholar
Mândru I, Costache M, Cristea S (2017) Aspects of the pathogens control in fall-summer fierld tomato (Lycopersicon esculentum Mill.) crops in the region Vidra, Ilfov. Curr Trends Natural Sci 6(12):60–67
Google Scholar
Martin GB, Ganal MW, Tanksley SD (1992) Construction of a yeast artificial chromosome library of tomato and identification of cloned segments linked to two disease resistance loci. Mol Gen Genet 233:25–32
CAS PubMed CrossRef Google Scholar
Martin GB, Brommonschenkel SH, Chunwongse J, Frary A, Ganal MW, Spivey R, Wu T, Earle ED, Tanksley SD (1993) Map-based cloning of a protein kinase gene conferring disease resistance in tomato. Science 262:1432–1436
CAS PubMed CrossRef Google Scholar
Martínez S, Bracuto MI, Koseoglou V, Appiano M, Jacobsen E et al (2020) CRISPR/Cas9-targeted mutagenesis of the tomato susceptibility gene PMR4 for resistance against powdery mildew. BMC Plant Biol 20:284. https://doi.org/10.1186/s12870-020-02497-y
CAS CrossRef Google Scholar
McCormick S, Niedermeyer J, Fry J, Barnason A, Horsch R, Fraley R (1986) Leaf disc transformation of cultivated tomato (L. esculentum) using Agrobacterium tumefaciens. Plant Cell Rep 5:81–84
CAS PubMed CrossRef Google Scholar
Mitter N, Worrall E, Robinson K, Li P, Jain RG et al (2017) Clay nanosheets for topical delivery of RNAi for sustained protection against plant viruses. Nat Plants 3:16207. https://doi.org/10.1038/nplants.2016.207
CAS CrossRef PubMed Google Scholar
Morais T, Zaini PA, Chakraborty S, Gouran H, Carvalho CP et al (2019) The plant-based chimeric antimicrobial protein SlP14a-PPC20 protects tomato against bacterial wilt disease caused by Ralstonia solanacearum. Plant Sci 280:197–205. https://doi.org/10.1016/j.plantsci.2018.11.017
CAS CrossRef PubMed Google Scholar
Moreau P, Thoquet P, Olivier J, Laterrot H, Grimsley N (1998) Genetic mapping of Ph-2, a single locus controlling partial resistance to Phytophthora infestans in tomato. Mol Plant-Microbe Interact 11:259–269
CAS CrossRef Google Scholar
Narise T, Sakurai N, Obayashi T, Ohta H, Shibata D (2017) Co-expressed pathways database for tomato: a database to predict pathways relevant to a query gene. BMC Genomics 18:437. https://doi.org/10.1186/s12864-017-3786-3
CAS CrossRef PubMed PubMed Central Google Scholar
Nekrasov V, Wang C, Win J, Lanz C, Weigen D et al (2017) Rapid generation of a transgene-free powdery mildew resistant tomato by genome deletion. Sci Rep 7:482. https://doi.org/10.1038/s41598-017-00578-x
CAS CrossRef PubMed PubMed Central Google Scholar
Oey M, Lohse M, Kreikemeyer B, Bock R (2009) Exhaustion of the chloroplast protein synthesis capacity by massive expression of a highly stable protein antibiotic. Plant J 57:436–445
CAS PubMed CrossRef Google Scholar
Ori N, Paran I, Aviv D, Eshed Y, Tanksley S, Zamir D, Fluhr R (1994) A genomic search for the gene conferring resistance to Fusarium wilt in tomato. In: Tomato molecular biology symposium, Wageningen, Netherlands, pp 201–204
Google Scholar
Ortigosa A, Gimenez-Ibanez S, Leonhardt N, Solano R (2019) Design of a bacterial speck resistant tomato by CRISPR/Cas9-mediated editing of SlJAZ2. Plant Biotechnol J 17:665–673
CAS PubMed CrossRef Google Scholar
Osuna-Cruz CM, Paytuvi-Gallart A, Di Donato A, Sundesha V, Andolfo G, Aiese Cigliano R, Sanseverino W, Ercolano MR (2018) PRGdb 3.0: a comprehensive platform for prediction and analysis of plant disease resistance genes. Nucleic Acids Res 46:D1197–D1201. https://doi.org/10.1093/nar/gkx1119
CAS CrossRef PubMed Google Scholar
Pachner M, Paris HS, Winkler J, Lelley T (2015) Phenotypic and marker-assisted pyramiding of genes for resistance to Zucchini Yellow Mosaic Virus in oilseed pumpkin (Cucurbita pepo). Plant Breed 134(1):121–128. https://doi.org/10.1111/pbr.12219Returntoref2015inarticle
CAS CrossRef Google Scholar
Padmanabhan C, Ma Q, Shekasteband R, Stewart KS, Hutton SF et al (2019) Comprehensive transcriptome analysis and functional characterization of PR-5 for its involvement in tomato Sw-7 resistance to Tomato Spotted Wilt Tospovirus. Sci Rep 7673. https://doi.org/10.1038/s41598-019-44100-x
Panthee DR, Piotrowski A, Ibrahem R (2017) Mapping quantitative trait loci (QTL) for resistance to late blight in tomato. Int J Mol Sci 18. https://doi.org/10.3390/ijms18071589
Petit-Lavall MV (2017) Capítulo 13. Derechos del titular de una obtención vegetal. In Garcia Vidal A (ed) Derecho de las Obtenciones Vegetales, Tirant lo Blanch, pp 533–574 and “Ámbito de protección de las obtenciones vegetales en derecho europeo y español” (2011). Gaceta jurídica de la Unión Europea y de la competencia, no 23, pp 9–29
Google Scholar
Prabhandakavi P, Pogiri R, Kumar R, Acharya S, Esakky R, Chakraborty M, Pinnamaneni R, Palicherla SR (2021) Pyramiding Ty-1/Ty-3, Ty-2, ty-5 and ty-6 genes into tomato hybrid to develop resistance against tomato leaf curl viruses and recurrent parent genome recovery by ddRAD sequencing method. J Plant Biochem Biotechnol. https://doi.org/10.1007/s13562-020-00633-1
CrossRef Google Scholar
Pramanik DS, Rahul M, Park Jiyeon, Kim MJ, Hwang I, Park Y, Kim Jae-Yean (2021) CRISPR/Cas9-mediated generation of pathogen-resistant tomato against tomato yellow leaf curl virus and powdery mildew. Int J Mol Sci 22, 4:1878. https://doi.org/10.3390/ijms22041878
Quinet M, Angosto T, Yuste-Lisbona FJ, Blanchard-Gros R, Bigot S, Martinez JP, Lutts S (2019) Tomato fruit development and metabolism. Front Plant Sci 10:1554
PubMed PubMed Central CrossRef Google Scholar
Ran F, Hsu P, Wright J, Agarwala V, Scott DA et al (2013) Genome engineering using the CRISPR-Cas9 system. Nat Protoc 8:2281–2308. https://doi.org/10.1038/nprot.2013.143
CAS CrossRef PubMed PubMed Central Google Scholar
Rick CM, Yoder JI (1988) Classical and molecular genetics of tomato: highlights and perspectives. Annu Rev Genet 22:281–300. https://doi.org/10.1146/annurev.ge.22.120188.001433
CAS CrossRef PubMed Google Scholar
Sahu KK, Chattopadhyay D (2017) Genome-wide sequence variations between wild and cultivated tomato species revisited by whole genome sequence mapping. BMC Genomics 18:430. https://doi.org/10.1186/s12864-017-3822-3
CAS CrossRef PubMed PubMed Central Google Scholar
Sanseverino W, Roma G, Simone MD, Faino L, Melito S, Stupka E et al (2010) PRGdb: a bioinformatics platform for plant resistance gene analysis. Nucleic Acids Res 38
Google Scholar
Seong K, Seo E, Witek K, Li M, Staskawicz B (2020) Evolution of NLR resistance genes with noncanonical N-terminal domains in wild tomato species. New Phytol. https://doi.org/10.1101/786194
CrossRef PubMed Google Scholar
Sarfatti M, Katan J, Fluhr R, Zamir D (1989) An RFLP marker in tomato linked to the Fusarium oxysporum resistance gene I-2. Theor Appl Genet 78:755–759
CAS PubMed CrossRef Google Scholar
Sarfatti M, Abuabied M, Katan J, Zamir D (1991) RFLP mapping of I1, a new locus in tomato conferring resistance against Fusarium oxysporum f.sp. lycopersici race 1. Theor Appl Genet 82:22–26
CAS PubMed CrossRef Google Scholar
Semagn K, Bjornstad A, Xu YB (2010) The genetic dissection of quantitative traits in crops. Elec J Biotechnol 13. https://doi.org/10.2225/vol13-issue5-fulltext-14
Severin V, Constantinescu Florica, Frăsin Loredana Beatrice (2001) Fitopatologie Ed. Ceres, București 122
Google Scholar
Sewelam N, Kazan K, Schenk PM (2016) Global plant stress signaling: reactive oxygen species at the cross-Road. Front Plant Sci 7
Google Scholar
Shi R, Panthee DR (2020) Transcriptome-based analysis of tomato genotypes resistant to bacterial spot (Xanthomonas perforans) race T4. Int J Mol Sci 21:4070. https://doi.org/10.3390/ijms21114070
CAS CrossRef PubMed Central Google Scholar
Shirasawa K, Asamizu E, Fukuoka H, Ohyama A, Sato S, Nakamura Y, Tabata S, Sasamoto S, Wada T, Kishida Y, Tsuruoka H, Fujishiro T, Yamada M, Isobe S (2010) An interspecific linkage map of SSR and intronic polymorphism markers in tomato. Theor Appl Genet 121:731–739. https://doi.org/10.1007/s00122-010-1344-3
CAS CrossRef PubMed PubMed Central Google Scholar
Shu P, Li Z, Min D, Zhang X, Ai W, Li J, Zhou J, Li Z, Li F, Li X (2020) CRISPR/Cas9-mediated SlMYC2 mutagenesis adverse to tomato plant growth and MeJA-induced fruit resistance to Botrytis cinerea. J Agric Food Chem 68:5529–5538
CAS PubMed CrossRef Google Scholar
Singh A, Taneja J, Dasgupta I, Mukherjee SK (2014) Development of plants resistant to tomato geminiviruses using artificial trans-acting small interfering RNA. Mol Plant Patholol 16(7):724–734. https://doi.org/10.1111/mpp.12229
CAS CrossRef Google Scholar
Singh G, Kuzniar A, Brouwer M, Martinez-Ortiz C, Bachem CWB, Tikunov YM, Bovy AG, Finkers RGFV (2020a) Linked data platform for Solanaceae species. Appl Sci 10:6813. https://doi.org/10.3390/app10196813
CAS CrossRef Google Scholar
Singh N, Mukherjee SK, Rajam MV (2020b) Silencing of the Ornithine Decarboxylase gene of Fusarium oxysporum f. sp. lycopersici by host-induced RNAi confers resistance to Fusarium wilt in tomato. Plant Mol Biol Rep 38:419–429. https://doi.org/10.1007/s11105-020-01205-2
CAS CrossRef Google Scholar
Sim S, Robbins M, Van Deynze A, Michel A, Francis D (2010) Population structure and genetic differentiation associated with breeding history and selection in tomato (Solanum lycopersicum L.). Heredity 106(6):927–935
Google Scholar
Sim SC, Durstewitz G, Plieske J, Wieseke R, Ganal MW, Van Deynze A et al (2012) Development of a large SNP genotyping array and generation of high-density genetic maps in tomato. PLoS ONE 7(7):e40563. https://doi.org/10.1371/journal.pone.0040563
CAS CrossRef PubMed PubMed Central Google Scholar
Smart CD, Tanksley SD, Mayton H, Fry WE (2007) Resistance to Phytophthora infestans in Lycopersicon pennellii. Plant Dis 91:1045–1049. https://doi.org/10.1094/pdis-91-8-1045
CrossRef PubMed Google Scholar
Stam R, Nosenko T, Hörger AC, Stephan W, Seidel M, Kuhn JMM, Haberer G, Tellier A (2019) The de Novo reference genome and transcriptome assemblies of the wild tomato species Solanum chilense highlights birth and death of NLR genes between tomato species. Genes Genomes Genet 3;9(12):3933–3941. https://doi.org/10.1534/g3.119.400529
Stirnweis D, Milani SD, Jordan T, Keller B, Brunner S (2014) Substitutions of two amino acids in the nucleotide-binding site domain of a resistance protein enhance the hypersensitive response and enlarge the PM3F resistance spectrum in wheat. Mol Plant Microbe Interact 27:265–276
CAS PubMed CrossRef Google Scholar
Tomato Genome Consortium (TGC) (2012) The tomato genome sequence provides insights into fleshy fruit evolution. Nature, 485(7400):635–641. https://doi.org/10.1038/nature11119
CAS CrossRef Google Scholar
Tranchida-Lombardo V, Aiese Cigliano R, Anzar I, Landi S, Palombieri S, Colantuono C, Bostan H, Termolino P, Aversano R, Batelli G, Cammareri M, Carputo D, Chiusano ML, Conicella C, Consiglio F, D’Agostino N, de Palma M, Di Matteo A, Grandillo S, Sanseverino W, Tucci M, Grillo S (2018) Whole-genome re-sequencing of two Italian tomato landraces reveals sequence variations in genes associated with stress tolerance, fruit quality and long shelf-life traits. DNA Res 25(2):149–160. https://doi.org/10.1093/dnares/dsx045
CAS CrossRef PubMed Google Scholar
Tamir-Ariel D (2007) Identification of genes in Xanthomonas campestris pv. vesicatoria induced during its interaction with tomato. J Bacteriol 189 (17):6359–6371. https://doi.org/10.1128/JB.00320-07
Tanksley SD, Ganal MW, Prince JP, Devicente MC, Bonierbale MW, Broun P, Fulton TM, Giovannoni JJ, Grandillo S, Martin GB, Messeguer R, Miller JC, Miller L, Paterson AH, Pineda O, Roder MS, Wing RA, Wu W, Young ND (1992) High-density molecular linkage maps of the tomato and potato genomes. Genetics 132:1141–1160
CAS PubMed PubMed Central CrossRef Google Scholar
Tashkandi M, Ali Z, Aljedaani F, Shami A, Mahfouz MM (2018) Engineering resistance against tomato yellow leaf curl virus via the CRISPR/Cas9 system in tomato. Plant Signal Behav 13:e1525996
PubMed PubMed Central CrossRef CAS Google Scholar
Tanksley SD, Young ND, Paterson AH, Bonierbale MW (1989) RFLP Mapping in Plant Breeding: New Tools for an Old Science. Nat Biotechnol 7:257–264. https://doi.org/10.1038/nbt0389-257
CAS CrossRef Google Scholar
Thompson JRM, Tepfer M (2010) Assessment of the benefits and risks for engineered virus resistance. Adv Virus Res 76:33–56
PubMed CrossRef Google Scholar
Tiwari M, Sharma D, Trivedi PK (2014) Artificial microRNA mediated gene silencing in plants: progress and perspectives. Plant Mol Biol 86:1–18
CAS PubMed CrossRef Google Scholar
Tomato Genome Consortium (2012) The tomato genome sequence provides insights into fleshy fruit evolution. Nature 485:635–641
CrossRef CAS Google Scholar
Torralba-Simon A (2019) Sobre la patentabilidad de productos obtenidos mediante procedimientos esencialmente biológicos. Actualidad Jurídica Uría Menéndez 51:95–101
Google Scholar
Torti S, Schlesier R, Thümmler A, Bartels D, Romer P et al (2021) Reprogramming of crop plants for agronomic performance. Nat Plants 7:159–171. https://doi.org/10.1038/s41477-021-00851-y
CAS CrossRef PubMed Google Scholar
Walker JC (1952) Diseases of vegetable crops. McGraw-Hill, New York and London, p 529
Google Scholar
Waltz E (2018) With a free pass, CRISPR-edited plants reach market in record time. Nat Biotechnol 36:6–7. https://doi.org/10.1038/nbt0118-6b
CAS CrossRef PubMed Google Scholar
Wang T, Zhang H, Zhu H (2019) CRISPR technology is revolutionizing the improvement of tomato and other fruit crops. Hortic Res 6:77. https://doi.org/10.1038/s41438-019-0159-x
CrossRef PubMed PubMed Central Google Scholar
Wang X, Gao L, Jiao C, Stravoravdis S, Hosmani PS et al (2020) Genome of Solanum pimpinellifolium provides insights into structural variants during tomato breeding. Nat Commun 11:5817. https://doi.org/10.1038/s41467-020-19682-0
CAS CrossRef PubMed PubMed Central Google Scholar
Wheeler T, von Braun J (2013) Climate change impacts on global food security. Science 341(6145):508–513
CAS PubMed CrossRef Google Scholar
Yang H, Zhao T, Jiang J, Chen X, Zhang H (2017) Transcriptome analysis of the Sm-mediated hypersensitive response to Stemphylium lycopersici in tomato. Front Plant Sci 8:1257
PubMed PubMed Central CrossRef Google Scholar
Yang W, Francis DM (2005) Marker-assisted selection for combining resistance to bacterial spot and bacterial speck in tomato. Journal of the American Society for Horticultural Science, vol 130, no 5, pp 716–721
CAS CrossRef Google Scholar
Yamaguchi H, Ohnishi J, Saito A, Ohyama A, Nunome T et al (2018) An NB-LRR gene, TYNBS1, is responsible for resistance mediated by the Ty-2 Begomovirus resistance locus of tomato. Theor Appl Genet 131:1345–1362. https://doi.org/10.1007/s00122-018-3082-x
CAS CrossRef PubMed Google Scholar
Yue J, Xu W, Ban R, Huang S, Miao M et al (2016) PTIR: Predicted Tomato Interactome Resource. Sci Rep 6:25047. https://doi.org/10.1038/srep25047
CAS CrossRef PubMed PubMed Central Google Scholar
Zhang LP, Lin GY, Nino-Liu D, Foolad MR (2003) Mapping QTLs conferring early blight (Alternaria solani) resistance in a Lycopersicon esculentum × L. hirsutum cross by selective genotyping. Mol Breed 12:3–19
CAS CrossRef Google Scholar
Zhang SJ, Wang L, Zhao RR, Yu WQ, Li R, Li YJ, Sheng JQ, Shen L (2018) Knockout of SIMAPK3 reduced disease resistance to Botrytis cinerea in tomato plants. J Agric Food Chem 66:8949–8956. https://doi.org/10.1021/acs.jafc.8b02191
CAS CrossRef PubMed Google Scholar
Zhao T, Liu W, Zhao Z, Yang H, Bao Y et al (2019) Transcriptome profiling reveals the response process of tomato carrying Cf-19 and Cladosporium fulvum interaction. BMC Plant Biol 19:572. https://doi.org/10.1186/s12870-019-2150-y
CAS CrossRef PubMed PubMed Central Google Scholar
Zouine M, Maza E, Djari A, Lauvernier M, Frasse P, Smouni A, Pirrello J, Bouzayen M (2017) TomExpress, a unified tomato RNA-Seq platform for visualization of expression data, clustering and correlation networks. Plant J 92:727–735
CAS PubMed CrossRef Google Scholar
Zhang C, Liu L, Wang X. et al (2014) The Ph-3 gene from Solanum pimpinellifolium encodes CC-NBS-LRR protein conferring resistance to Phytophthora infestans. Theor Appl Genet 127, 1353–1364. https://doi.org/10.1007/s00122-014-2303-1
CAS CrossRef PubMed Google Scholar
Zhang H, Demirer GS, Zhang H, Ye T, Goh NS, Aditham AJ, Cunningham FJ, Fan C, Landry MP (2019) DNA nanostructures coordinate gene silencing in mature plants. Proc Natl Acad Sci USA, 116, pp 7543–7548
Google Scholar