D6.3NE Software Package Guide

Robert Bossy

July 10, 2006

Contents

I Installation
1 Requirements

2 Installation

IT General work flow

3 Corpus selection

4 Automatic annotation of NEs

5 Manual validation

6 Machine Learning attributes and examples selection

7 Learning

IIT Data formats
8 In-text Named Entity Annotation
9 In-Text Full Linguistic Annotation

10 Alvis Named Entities Differences

IV Tools

11 XSLT sheets
11.1 alvis2full-la~tag.xslt
11.2 alvis2manual-ne-tag.xslt oL,
11.3 alvis-la-count.xslto
114 alvis-ne-diff-count.xslt
11.5 alvis-ne-diff.xslt o

11.6 extract-comments.xslt

12 Scripts
12.1 manual-ne-tag2alvis.pl 0oL
12.2 sum.pl e
12.3 tag2arffpl oL
12.3.1 Action options
12.3.2 Attribute selection options L. L.

12.3.3 Example selection options

V Framework

13 The corpus sub-directory
13.1 start e
13.2 automatic.
13.3 manuallo
13.4 manual2o
1350 learn L e

14 The corpus_transcript sub-directory

© © © o oo oo

10
10
10
11
11
11
12

12

13
15
15
15
16
16

18

Part 1

Installation

1 Requirements

The D6.3NE package is primarily developed for Linux but it should work (though
not tested) on any Unix platform. It requires that the following software is in-
stalled on your system:

e to install the package:

— GNU tar (1.15.1) and gzip (1.2.4) or bzip2 (1.0.2)
— or zip (2.3)

e to run the tools:

— Perl (5.8.6) and the following packages must be installed:

* Getopt::Long (2.68)
* XML::DOM (no version provided)
* XML:DOM::XPath (1.11)

— xsltproc (1.1.12)

e to benefit from the framework:

GNU Make (3.80)
— GNU xargs 4.1.20
— Java (1.4.2)
— CADIXE (2.0a4)
Weka 3.4.7

e to recompile this guide:

— pdflatex from the kpathsea (3.5.4)
— fig2dev (3.2)

2 Installation

Get the archive in your favourite compression format, and decompress it by
typing either:

e tar -x -z —-f D6.3NE.tar.gz
e tar -x -j —-f D6.3NE.tar.bz2

e unzip D6.3NE.zip

It will create a D6.3NE directory in your current working directory. This di-
rectory contains a dtd directory with the DTD definitions introduced by the
package, a tools directory with all the scripts, a corpus directory that consti-
tutes the main framework, and a corpus_transcript which is a copy of corpus
filled with the biology example corpus.

There is no need to install it in the root directory, it is meant to work locally.

Part 11

General work flow

The goal of the D6.3NE software package is the acquisition of named entities
recognition (NER) resources by using machine learning. The process is split
into five consecutive steps:

1. corpus selection;
2. automatic annotation of NEs;
manual validation of the annotation;

machine learning attributes selection;

AR

learning.

Each step will produce modified version of the original corpus that will be used
in the following step. In the rest of the section, we will describe each step,
the expert knowledge required and the software provided to achieve them. The
D6.3NE software package contains a suite of scripts and a framework directory
tree to handle steps 3, 4 and 5. However we give some guidelines to get the
steps 1 and 2 done.

3 Corpus selection

This phase depends essentially on what is available for the domain one wishes
to acquire NEs. Standard corpora may already exist, but most of the time, you
will have to build it by yourself.

We advise to select documents both rich in NE content and typical of the kind
of documents you will apply NER. Indeed this corpus will be used as a train-
ing/testing set for machine learning algorithms. In other words, select web
pages if you wish to extract NEs in web pages, select press releases if you wish
to process press releases, select academic texts if you wish to process academic
texts. If you want something more generic, the corpus should contain a balanced
combination of the document types you want to process.

Having this corpus in Alvis Enriched Document format is an excellent idea,
since it will allow you to use the Alvis NLP line for the following step.

4 Automatic annotation of NEs

The goal of this step is to have a broad linguistic annotation of the corpus
gathered in step 1. The first use of this automatic annotation is a pre-detection
of NE candidates which facilitates the manual validation. Indeed the validation
requires expert intervention and it is faster and more reliable to proofread a
rough annotation than to start from scratch. The second advantage of the
automatic annotation is that it is a source of information for attribute selection.

We advise you to use the Alvis NLP line! for this step because it is reason-
ably fast, scalable, robust and reliable. Moreover D6.3NE tools uses the Alvis
Enriched Document format to build file in fomats suitable for the next steps.

5 Manual validation

The objective is to build a corpus with a “perfect” annotation of NEs: a gold
standard for machine learning. The more this step has been well prepared, the
more accurate the results will be. This step eventually involves domain experts
reading the corpus documents and annotating NEs, therefore it is the most
costly step in terms of time and human resources.

The CADIXE? software was especially developed to annotate such texts; the
D6.3NE provides scripts to translate Alvis Enriched Documents to a format
suitable for CADIXE.

Ideally each document should be double-checked by two different experts and
conflictual annotations arbitrated by the college of experts. It may seem unrea-
sonable due to time and resources constraints, however a corpus with a clean
annotation is crucial for machine learning. If you use a team of experts, we
advise to write down a set of clear guidelines for them in order to obtain a
homogeneous training set.

The D6.3NE package provides a directory framework to assist the organization
of a double validation.

6 Machine Learning attributes and examples se-
lection

Once the preceding step is finished, you have a gold standard at your disposal,
which means you can feed the machine learning algorithms with clean training
data.

Relevant attributes may be domain-specific, however we provide tools for prepar-
ing training data as generic as possible. There are five kinds of attributes han-
dled by D6.3NE tools:

Lurl NLP
2http://caderige.imag.fr

1. a single document context attribute, named title;
a set of typographic attributes;

four dictionary attributes;

= W N

2 x N morphosyntactic context attributes, where N is the size of the
window around the example;

5. a set of word context attributes, we distinguish the context before and
after the example.

Table 1 outlines the meaning and the type of these attributes.

Attribute Type Meaning

Title Boolean Whether the example is in the title

Length Numeric Number of characters in the example

Other typographic Boolean Whether the example matches a given regular expression
Dictionary Boolean = Whether the example is in a given dictionary

Dictionary inclusion Boolean = Whether the example is a sub-string of a dictionary entry
POS before X Modal POS tag of the Xth word before the example

POS after X Modal POS tag of the Xth word before the example

Word X after Boolean = Whether signal word X is present after the example
Word X before Boolean =~ Whether signal word X is present before the example

Table 1: Type and meaning of attributes

The selection of most attributes is either straightforward or domain-specific
but requires external resources. One needs a list of regular expressions for
typographic attributes, which can be acquired by domain expertise. Optionally,
you may build a dictionary and an ant-dictionary by using existing community
resources. Finally signal word lists can be manually created through domain
expertise, however you may miss a lot of relevant words. Another way is to
systematically examine all words in the examples context and choose those who
seem to discriminate the most NEs according to some kind of measure.

One tricky part is the selection of examples for machine learning. Positive
examples are easy since the manual validation step provides certified NEs. In the
other hand, there are main two strategies to select negative training examples.
The first one is to pick near-misses. A near-miss is a word that is not NEs
but looks like one or could be for some reason confused with one. The second
strategy is to take all non-empty words.

D6.3NE provides tools to facilitate the signal word selection as well as the
selection of relevant negative examples.

7 Learning

For machine learning purposes, we use the Weka software suite?. Weka imple-
ments a large span of machine learning techniques (cross-validation, IR eval-

Shttp://www.cs.waikato.ac.nz,/ml/weka

uation...) and has a comprehensive library of algorithms (Bayesian, SVM,
decision tree. ..).

The preferred training examples format file for Weka is called ARFF (Attribute-
Relation File Format), the D6.3NE tools produce ARFF if you can provide all
or part of the resources mentioned in the attribute selection step.

Part 111
Data formats

This section describes the different data formats introduced with the D6.3NE.
The paths to the files are relative to the root directory of the D6.3NE software
package.

8 In-text Named Entity Annotation

The in-text named entity annotation file format was specifically designed to
manually annotate named entities with the CADIXE software. A document in
this format is an XML file valid to the manual-ne-tag DTD*. An Alvis Enriched
Document can be translated in this format with the XSLT sheet alvis2manual-ne-tag®

The root element, called document, contains two elements. The first, id, indi-
cates the document ID, it is the same as the id attribute of the documentRecord
element in the Alvis Enriched Document. The second, text, contains the doc-
ument text contents with NEs enclosed between ne tags, the rest of the text is
left as is. The ne element accepts several attributes that correspond to Alvis
Enriched Document linguistic features as shown in table 2. Additionally there’s
a comment attribute that allows annotators to record their remarks and doubts
about each NE.

Attribute Alvis tag
canonical canonical_form
type named_entity_type
alvis-id id

Table 2: manual-ne-tag vs enriched-document

This format doesn’t need to store explicitly the position of the NE in the text
or the references to the included tokens since it is an in-text annotation format.

In order to render an XML file nicely, three files should be placed in CADIXE’s
directory tree: the document to edit in manual-ne-tag format, the correspond-
ing DTD® and a rendering style sheet”.

4dtd/manual-ne-tag.dtd
5tools/alvis2manual-ne-tag.xslt
6dtd/manual-ne-tag.dtd
7dtd/manual-ne-tag.css

9 In-Text Full Linguistic Annotation

The in-text full linguistic annotation format is a super-set of the in-text named
entity annotation format. The main addition are word tags that enclose non-NE
words. This tag accepts attributes so it can hold additional information such
as POS-tag and lemma. The rest of the text, mainly spaces and punctuation,
is left as is.

Documents in this format are mainly aimed at building machine learning exam-
ples. They are valid to the full-la-tag DTD®. You can generate them from
an Alvis Enriched Document with the alvis2full-la-tag XSLT sheet?

10 Alvis Named Entities Differences

The Alvis named entities differences format is an XML format that follows the
alvis-ne-diff DTD'?. It has been designed to register differences between two
Alvis Enriched Documents in NE annotations. It is useful to retrieve differences
in NE annotations of the same document before and after the manual validation
or the differences between two manual annotations.

The root element, diff, accepts two attributes: reference-id and modified-id,
the documents IDs of the reference and modified documents respectively. In
principle they should be the same since it is only useful to compare different an-
notations of the same documents. Below diff, a list of added elements denotes
NEs present in the modified document but lacking in the reference document,
and removed elements denote NEs present in the reference document but lacking
in the modified document. Both elements accept a id attribute corresponding
to the NE IDs in the compared Alvis files. Obviously the id in an added tag ref-
erences a NE in the modified document whereas, in a removed tag, it references
a NE in the reference document. Additionally a added element can contain a
list of overlap tags; each one denotes a NE in the reference document whose
boundaries overlap with the new named entities. In this way the addition of
new NEs can be distinguished from the correction of NE boundaries.

The alvis-ne-diff XSLT sheet allows you to generate a difference document
from two Alvis Enriched Documents: one of them is a reference document and

the other one is the modified document. Alternatively the manual-ne-tag2alvis.pl
script can build a difference file.

84td/full-la-tag.dtd
9tools/alvis2full-la-tag.xslt
10dtd /alvis-ne-diff.dtd

Part IV
Tools

11 XSLT sheets

XSLT is a language designed to manipulate XML documents. We used this lan-
guage whenever we had to translate a format to another, especially if both
formats are XML. XSLT processors are widely available on all platforms, the
D6.3NE framework assumes the use of xsltproc from the 1ibxml libraries.

To use any XSLT processor, you must provide an XML source document and a
XSLT sheet. The processor will yield one or several documents resulting from
the application of the sheet to the source. Additionally, XSLT sheets can accept
named parameters.

The present section describes each XSLT sheet provided in the D6.3NE software
package; what they do and which parameters they need.

11.1 alvis2full-la-tag.xslt

The alvis2full-la-tag sheet translates an Alvis Enriched Document into an
In-Text Full Linguistic Annotation document. The source document is the Alvis
Enriched Document with linguistic annotation (presumedly from the NLP line).
The single yielded document is a valid full-la-tag XML document.

This sheet works without parameters.

11.2 alvis2Zmanual-ne-tag.xslt

The manual-ne-tag sheet translates an Alvis Enriched Document into an In-
Text Manual NE Annotation document. The source document is the Alvis
Enriched Document with linguistic annotation (presumed from the NLP line).
The single yielded document is a valid manual-ne-tag XML document ready for
use with CADIXE.

This sheet works without parameters.

11.3 alvis-la-count.xslt

The alvis-la-count sheet is used to count linguistic features in an Alvis En-
riched Document in order to get an overview of a corpus. The source document
is a an Alvis Enriched Document with linguistic annotation, it yields the docu-
ment ID, the number of tokens, words, NEs, sentences and terms.

The table 3 shows the different accepted parameters.

Parameter Accepted values Default value Effect

id {yes, no} yes Display the document ID

nes {yes, no} no Count named entities

ne-type string empty Limit the NE counting to the specified type
quiet {yes, no} no Don’t display labels

sentences {yes, no} no Count sentences

terms {yes, no} no Count terms

tokens {yes, no} no Count tokens

words {yes, no} no Count words

Table 3: alvis-la-count.xslt parameters

11.4 alvis-ne-diff-count.xslt

The alvis-ne-diff-count sheet is used to count differences contained in a
Alvis Named Entities Differences file, in order to get an overview of the impact
of the validation on the corpus. The source document is a alvis-ne-diff file,
it yields the number of removed and added NEs (with or without overlap).

The table 4 shows the different accepted parameters.

Parameter Accepted values Default value Effect

quiet {yes, no} no Don’t display labels

added {yes, no} yes Count added NEs without overlap
modified {yes, no} yes Count added NEs with overlaps
removed {yes, no} yes Count removed NEs

Table 4: alvis-ne-diff.xslt parameters

11.5 alvis-ne-diff.xslt

The alvis-ne-diff sheet computes the differences in NE annotation between
two Alvis Enriched Document files with linguistic annotations. It is assumed
that aside NEs, both files are identical. Indeed differences cannot be computed
if both files do not share the same word and sentence segmentation. The source
is the modified Alvis Enriched Document, it yields a alvis-ne-diff file.

The only mandatory parameter, reference-file, specifies the path to the ref-
erence file.

11.6 extract-comments.xslt

The extract-comments sheet lists the NEs for which the comment attribute is
not empty. This is useful in the validation process to watch annotations that
may need an arbitration. The source is a manual-ne-tag document, it yields
the NEs and their associated comment.

This sheet works without parameters.

10

12 Scripts

All scripts are written in Perl.

12.1 manual-ne-tag2alvis.pl

The manual-ne-tag2alvis.pl script translates a manual-ne-tag back to an
Alvis Enriched Document. This script needs a reference Alvis Enriched Docu-
ment in order to fill the non-NE linguistic annotations and to retrieve the right
tokens for each NE. It basically copies the reference file but replaces all NEs by
those found in the manual-ne-tag file.

Usage:

manual-ne-tag2alvis.pl [--diff DIFF_FILE] [--prefix PREFIX]
REFERENCE_FILE MODIFIED FILE

REFERENCE_FILE is the path to the reference Alvis Enriched Document file and
MODIFIED_FILE is path to the manual NE annotation file. The script writes the
new Alvis Enriched Document to the standard output. Since it knows about
the reference file, it can also create a alvis-ne-diff file through the --diff
option. The DIFF_FILE argument to this option is the path to the file it should
write the differences in.

The manual-ne-tag2alvis.pl script keeps the old ID from the reference file
when the NE has been unchanged. It creates a new unique ID for new NEs
with the prefix named_entity_man, you can change the prefix with the --prefix
option.

12.2 sum.pl

Surprisingly there is no standard Unix utility to sum numbers in a file. The
sum.pl script sums numbers from standard input, it accepts one number per
line and yields the addition of all numbers. Additionally if the input consists of
lines with several numbers split by a separator, sum.pl will output a sum for
each column.

Usage:
sum.pl [--separator REGEXP] [--cumulative]

The --separator option allows you to specify a regular expression to be used
as a column separator. By default it is any non-numeric character.

If the ——cumulative option has been set, sum.pl will output the sum computed
for each input line. That may useful to build cumulative distributions.

11

12.3 tag2arff.pl

The tag2arff.pl script builds an ARFF file for Weka from one or several
full-la-tag file(s).

Usage:
tag2arff.pl [OPTIONS] TAGFILE [TAG._FILES...]

In principle, the TAG_FILE arguments are the paths to the source full-la-tag
files. We'll see that when the --diff option is set, these arguments are a bit
different.

12.3.1 Action options

--header
This option causes the script to output the header part of the ARFF file.

--data
This option causes the script to output the data part of the ARFF file.

--count
This option inhibits any other output and prints the number of positive and
negative examples found.

By default, without any of these three options, tag2arff.pl will not produce
any output. You can build the ARFF in two steps: the header the the data.
However both --header and --data options can be set together in order to
produce a complete ARFF file.

12.3.2 Attribute selection options

--range INT

This option sets the number of words to look around each example for POS and
signal word attributes. The script will never look beyond sentence boundaries.
By default --range is set to 5.

--following FILE

This option sets the path to a file containing the following signal words. It
should be a text file containing one word in each line. The script searches in
this list for words (in lemmatized form) after each example.

--preceding FILE
Same as above for preceding signal words.

--dict FILE

This option sets the path to a NE dictionary file for dictionary and dictionary
inclusion attributes. If the --dict option is not set, tag2arff.pl will skip
these attributes. The format is a dictionary entry for each line.

-—anti FILE
Same as above for anti-dictionary attributes.

12

--title
If this option is set, tag2arff.pl will set the value of the title attribute to true
for all examples found. Otherwise it sets to false by default.

--vocabulary

If this option is set, all attribute selection options will be ignored except for
—--range. In this case tag2arff.pl will produce an ARFF file with only three
attributes for each example shown in table 5. It is useful for selecting signal
words.

Attribute Type Meaning

position integer Distance between the example and the word
direction {following, preceding} Direction of the word from the example
word string Lemma of the word

class {ne, not_ne} Whether the example is NE or not

Table 5: Vocabulary attributes

12.3.3 Example selection options

-—-type TYPE
This option sets the type of NEs to build positive examples. By default tag2arff.pl
takes all NEs regardless of their type.

--negative REGEXP
If this option is set, the script will consider that all non-NE words that match
the specified regular expression (Perl syntax) are negative examples.

--anti FILE

If this option is set, the script will consider that all non-NE nouns and adjectives
in the anti-dictionary are negative examples. Note that this option has an effect
both on attribute and example selection.

--sink FILE

This option sets the path to a “sink” file that has the same format as dictio-
naries. The script will consider that all non-NE words immediately preceding
sink entries will be negative examples. This option corresponds to the context
near-miss selection.

--diff

This option tells tag2arff .pl that it must select negatives from alvis-ne-diff
files. It considers that removed NEs to be negative examples. If this option is
set, the usage is slightly different than usual: each full-la-tag file name must
be followed by the corresponding alvis-ne-diff file name.

-—full

If this option is set, all example selection options will be ignored except for
—--type. In this case tag2arff.pl will consider that all non-NE noun phrases
are negative examples. The script uses an heuristic for discovering noun phrases:
it takes all word sequences whose POS tags are noun or adjective.

13

Part V

Framework

The D6.3NE software package contains a framework directory in order to use
the provided tools according to the work flow presented in part II. The direc-
tory structure is practically empty since you must provide the corpus and the
resources needed by the tools (for instance dictionaries). Figure 1 details the
work flow, the data formats used successively and the tools required to translate,
the external resources you must provide and the places where files are stored.

13 The corpus sub-directory

The data corresponding to the processing of a corpus is in the corpus sub-
directory. You will find sub-directories that will hold the same corpus in different
stages of the work flow and in different formats:

e start: the original corpus;
e automatic: automatically annotated corpus;

e manuall: the corpus manually validated once;

manual2: the corpus manually validated twice;

e learn: the corpus in machine learning format.

Each one of these directories share a common set of conventions.

Single document The corpus is handled in a single document per file basis for
practical reasons. It allows you to make corpus statistics based on documents
(NEs per document, for instance). Additionally the error recovery is better
when documents are held in different files.

File formats The files are stored in a directory named after the file format.
For instance the automatically annotated corpus is stored in both Alvis En-
riched Document format and Manual Annotation Tags, thus you will find them
in the automatic/alvis-enriched-document and automatic/manual-ne-tag
directories respectively.

Makefile Each directory contains a Makefile that allows you to fill it auto-
matically whenever it is possible simply by typing make eventually followed by
a target name.

The rest of this part is dedicated to the description of each directory/step.

14

Buiurea (g

uonoaa|as aINgUNY (v

uonepijen renuei (€

uonelouue snewoIny (g

uonoa|as sndio) (T

ENETTY

spiom [eubis
Areuonolp-nuy
Areuonolp 3N

|d-regbey

ysx Bel-e|-|Injzsine

|d'sinfezbel—au—fenuew

sauljapinB uonelouuy

slojejouue padx3 3IX1avo

ysx'Bel-au—jenuewgzsinje

sIayisse|D

444v

Bey—e|—|Iny

Hip-au-siafe
JUBWINOOP-PaYOLIUS

pel-au—jenuew

Bel-au—enuew

JUSWNJ0P—PaYdLIUD

JUBWINJ0P—PaYILUD

}

Areuonolp 3N aull 47N SNV
sndio)
S921N0Sal [eulalxy |00 1

Tewoy aji4

yejures|/sndiod

Bel—e|—-|nyurealsndiod

HIp-au-sinfe/zienuew/sndiod
JUBWINOOP-PayoLUS-SIAfe/Zlenuew/sndiod
HIp-au-siAfe/Tienuew/sndiod
JUBWINOOP-PaYoLUS-SIA[e/Tfenuew/sndiod

Bel—au—jenuewy/zrenuew;sndiod

Bel-au—jenuew,Trenuew;/sndiod

Bel-au—[enuew onewoine/sndiod

JUBWINJ0P-PaYdLIUS-SIA[e/oewoine/sndiod

Buipjoy soe|d

Figure 1: Description of the framework: the file format column shows
the successive tranformations that will affect the corpus; the leftmost column
indicates the path where the corpus will be held in each step; the Tool and
External resources columns indicate the software and the resources used in each
tranformation; the leftmost column anchors the transformations to a general
workflow step.

15

13.1 start

This is where you should put your selected original corpus. The only necessary
file format is the Alvis Enriched Document format. In order to have a maximum
automation in the following steps, you should observe the following restrictions:

e cach file contains a single documentRecord tag;

e the following tags must be filled: documentRecord (especially the id at-
tribute), canonicalDocument and originalDocument, the other ones are
optional though we encourage you to fill some meta-data;

e cach file name ends with .alvis.

Exceptionally, there isn’t any Makefile since you're the one who provides the
corpus.

13.2 automatic

This directory holds the corpus automatically annotated with the Alvis NLP
line. By typing make you launch the NLP line on each document and store the
result in alvis-enriched-document. Additionally it translates each file in the
manual-ne-tag format, ready for manual validation.

However in order to work properly you must have filled the start with your
corpus and edited the Makefile to set the NLPLINE_ROOT variable. It should
point to the path wherever you installed the NLP line. If you want to skip this
step for any reason and directly make a manual annotation, leave NLPLINE_ROOT
empty: it will copy the original corpus without annotating it.

13.3 manuall

The manuall directory will contain the corpus manually once validated by
experts. You can send the automatically annotated corpus files to the ex-
perts in manual-ne-tag format, they validate thanks to the CADIXE software
and send you back the corrected files. These obviously should be kept in the
manual-ne-tag sub-directory. We advise you to take extra care of these files
since they represent a lot of man-hours of work.

By typing make, you'll see a list of accepted targets:

e check will check that your experts have sent you files valid against the
manual-ne-tag DTD;

e both alvis and diff will translate the experts files into Alvis Enriched
Document and alvis-ne-diff;

e check-diff will ensure that the difference files are valid.

Type make followed by the target name to achieve the desired result. There is
no need to edit the Makefile, all is ready.

16

13.4 manual2

The manual2 directory will contain the corpus twice validated by experts. The
process is the same than above, except that you send experts files from manuali
instead of automatic. If you can’t afford to have a second annotation and will
be satisfied with just one, you will just have to copy the files from manualil.

Another difference is that both alvis-enriched-document and alvis-ne-diff
directories contain two sub-directories called vs_automatic and vs_manuall. In-
deed these formats are generated with the manual-ne-tag2alvis.pl tool that
need a reference Alvis Enriched Document file. These two directories are filled
whether we take as reference the automatic annotation or the first manual vali-
dation. This is particularly useful because you get differences of NE annotation
between the first and second validation pass as well as the resulting differences
against the initial automatic annotation.

By typing make, you’ll see a list of accepted targets:

e check will check that your experts have sent you files valid against the
manual-ne-tag DTD;

e alvis-vs_automatic, diff-vs_automatic and vs_automatic will trans-
late the experts files into Alvis Enriched Document and alvis-ne-diff
by taking the automatic annotation as reference;

e alvis-vs_manuall, diff-vs_manuall and vs_manuall will translate the
experts files into Alvis Enriched Document and alvis-ne-diff by taking
the first validation as reference;

e check-diff will ensure that the difference files are valid.

Type make followed by the target name to achieve the desired result. There is
no need to edit the Makefile, all is ready.

13.5 1learn

This directory will hold the corpus in formats suitable for machine learning, their
experiments and classifiers. The Makefile is quite complex since it handles the
building of training examples, the selection of signal words, the launching of
machine learning experiments and the production of classifiers. It is necessary
you edit it to set a couple of variables to suit your corpus:

VOCABULARY This variable lists the paths to training set configuration
files. These sets will be specifically used to build a vocabulary of words sur-
rounding NEs in order to select signal words.

The configuration files are in fact command-line options for tag2arff.pl. The
default value, resources/no-attributes_all-examples.cl, should handle most
of the corpora. However you must edit this file and replace XXX with the desired
values; basically you must choose the range and the NE type to consider.

17

If you wish to experiment signal word selection for different ranges and different
NE types, make as many copies of this file, edit them with the according values
and add the file names to the VOCABULARY variable. Note that they must have
the .cl extension and should be placed in the resources directory in order to
benefit from the make automation.

EXPERIMENTS This variable is similar to the previous one but concerns
learning examples for experiments and classifiers. The default files are also quite
standard but you must fill in the values in place of XXX. Unfortunately you won’t
be able to set the signal word lists before you proceed their selection.

WEKA _JAR Set this variable to the path to the weka. jar file that comes
with the Weka package. It will be used for signal word selection, experiments
and classifiers.

JAVA_MEM In some cases Java doesn’t allocate enough memory depending
on the ML algorithm and the size of the corpus. If the ML steps gives an ”Out
of memory” error message, uncomment this line.

Let’s do something now: if you type make, you’ll see a list of valid targets. The
first one you should trigger launches a preliminary task: the translation of the
corpus in full-la-tag format which is very practical to build training examples
with context-dependent attributes. Type make full-la-tag, it will take the
annotation from manual2 and fill the full-la-tag directory.

The next steps consist in selecting signal words, making experiments and cre-
ating classifiers:

Signal words selection The next target, vocabulary, will produce several
lists of words that discriminate the best NEs from non-NE words. This is
automatically achieved in three steps:

1. creation of training sets in ARFF format in the arff/vocabulary directory;

2. vectorisation of these training sets, it is a standard ML technique that
translates a string attribute into a vector of boolean attributes;

3. calculation of most discriminant words by using Information Gain.

The results are stored in results/selected-vocabulary and intermediary files
in arff/vocabulary for reference. For each file mentioned in the VOCABULARY
variable, there are three results: one for the following signal words, one the
preceding ones and a last one for signal words regardless their direction.

The results displays a score but it is not possible to automatically build a
list since a bit of expert knowledge is necessary to validate the signal words.
Once you’ve build the signal word lists you can complete the .cl files for the
experiments.

18

Experiments Making experiments consists on testing several ML algorithms
on different attribute sets in order to detect the best possible combination for
the production phase. In the framework this is done in two stages: the creation
of the examples, then the application of ML algorithms implemented by Weka
on the examples.

The examples are created by the tag2arff.pl tool. It is automatically launched
by make with the examples target. The result is an ARFF file for each .cl file
mentioned in the EXPERIMENTS variable, they are stored in the arff/examples
directory.

Now you can experiment on this data in two different manners: either you
use the Weka experimenter GUI to load and play with the data, either you
can type make experiments to run the Weka CLI on a couple of prepared
algorithms. With the first solution (Weka GUI), you have full control on all
experiment parameters however it requires you to have some mastering of Weka.
With the second solution you’ll be limited to the pre-made parameters. Three
algorithms have been parametrized: naive Bayes, J48 decision trees (C4.5) and
SMO (SVM). The evaluation is done by randomly splitting the data in a training
set with two thirds of the examples and a test set with the remaining examples;
this process is repeated ten times.

Because SVMs are longer in several orders of magnitude to run, they won’t
be launched with the experiments target but with the smo-experiments. The
experiment results are stored in the results/experiments directory in the form
of csv files containing the IR scores of the ten repetitions for each algorithm;
you should be able to open them with most spreadsheet programs.

Classifiers When you found the best algorithm and the most optimal settings,
you may wish to generate the actual classifier. Again you can use the Weka
GUI to have full control on the classifier generation process. However if you
are satisfied with one of the algorithms we selected, you can generate them
automatically by typing make classifiers.

The results are stored in the results/classifiers directory. There are two
files for each algorithm: a .classifier file and a .model file. The .classifier
file contains the classifier in a human readable format alongside with some per-
formance results (IR scores, confusion matrix, etc.). The .model binary file
may be used with the Weka CLI to classify another corpus provided they are in
ARFF format.

14 The corpus_transcript sub-directory

The corpus_transcript directory contains a copy of the framework with all
steps filled with the corpus used for learning classifiers for the domain of DNA
transcription in Bacillus subtilis. The original corpus is the result of a query
to the MedLine database''. We selected 422 NE-rich abstracts for manual

Mhttp://www.ncbi.nlm.nih.gov/entrez

19

annotation amongst 2397 yielded by MedLine. The detail for biology NE process
is detailed in the D6.3 report.

20

