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Abstract* 
 

Over-generalization is a well-known problem in 
empirical learning. Incremental and prudent 
generalization is a means to avoid it. This is not 
always sufficient. The language in which the 
concepts are described may be incomplete, so 
that there is no conjunction to express a concept 
that is consistent with all the examples. This 
paper presents an interactive incremental learning 
method that generalizes in such a way that it is 
able to efficiently assist an user in locating the 
insufficiencies of the language and in correcting 
them whenever an over-generalization occurs. 
The generalization algorithm is based on a 
smallest generalization step strategy that 
determines processing order of the examples and 
the successive hypothesis to study. 
 

1 INTRODUCTION 
Empirically learning concept definitions requires the 
ability to generalize accurately. One approach to the 
problem of generalization consists in incrementally 
submitting examples to an oracle and asking him if they 
are representative of the target concept the system is 
looking for. The accepted examples are called positive, 
the rejected ones are called negative. The learner modifies 
its current hypothesis of the definition of the concept to 
learn according to the oracle's answers. At each learning 
step, the current hypothesis is consistent with all the tested 
examples.  

As it is impossible to propose all the existing examples, it 
is possible that the learned concept verifies additional 
examples which have not been submitted to the oracle. If 
some of them are counter examples, the learned concept is 
said to be over generalized. The method described in this 
paper uses incremental and prudent generalization as a 
way to reduce this risk. Prudent generalization means that 
the successive hypothesis of the concept definition are 
always the most specific definitions that cover all the 
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known positive examples, just as with timid generalization 
[Berwick R.C., 1986]. However, over generalization may 
nevertheless appear. Indeed, the description language may 
be insufficient, so that there is no way to express a 
concept definition that covers all the positive examples 
and no negative ones. The conception by an expert of a 
description language free from such insufficiencies 
[Shapiro, 83] is a critical aspect of the more general 
problem of knowledge acquisition . 

At that time, the learner has no means of detecting the 
problem, since the learned concept is consistent with 
evrything the learner knows. The only solutions for the 
learner are either to have other strategic information about 
what is a good degree of generality or to ask the oracle to 
himself validate the learned concepts. In this paper we are 
interested in the latter approach which is safer in the case 
where the learned concepts must cover absolutely no 
negative example and all the known positive examples. 

Then at the end of the learning phase, an expert is asked to 
evaluate the learned concept. If he detects an over 
generalization, the learned concept has to be specialized in 
such a way that it no longer covers any negative example . 
As it is the most specific description that covers all the 
known positive examples, it can not be specialized 
without positive examples being excluded. That means 
that it is necessary to modify the description language. 
The intervention of the expert is needed to integrate the 
missing vocabulary in the language and to modify the 
existent vocabulary. This would be a difficult task for an 
expert to locate and correct the causes of the over 
generalizations without further information. 

We propose a method to tackle this problem whose 
generalization strategy gives it the capability to efficiently 
help an expert whenever an overgeneralization occurs. On 
one hand, it restricts the range of the search for the causes 
of the over generalization to a delimited sub-part of the 
vocabulary, and on the other hand, it guides the expert in 
the discovery of the missing vocabulary by presenting him 
positive and negative examples that are covered by the 
over generalized concept and that are semantically close. 
 
2 PRUDENTLY GENERALIZING  
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This method is supported by implementation and 
experimentation in KAA, the learning module of APT. 
APT architecture is that of DISCIPLE, the multistrategy, 
integrated learning system [Tecuci, Kodratoff, 90]. KAA 
is able to incrementally learn the preconditions of 
application of problem-solving rules in a 
nonhomogeneous graph-structured domain theory by 
interactive learning and problem-solving sessions with an 
expert [Nédellec, 1990]. The concept definitions, that is to 
say the preconditons of the rules, and the examples are 
described with the same language which is restricted to 
the predicates of the domain theory. Then the 
improvement of the description language leads to the 
refinement and the completion of the domain theory.  

KAA learns a general concept definition by using a 
specific example initially given by the expert. This 
example is expressed in the form of a conjunction of 
predicates completed by explanation that the system 
extracts from the domain theory. An example set is 
generated automatically by analogy with the completed 
example. 
Initially, the search space of the concept definition is 
limited by a lower bound equal to the initial example and 
an upper bound equal to the same formula where all the 
predicates are replaced by the most general predicates in 
the corresponding hierarchies of the domain theory. 
Indeed, the predicate hierarchies determine completely the 
generality relation. 

Next, the training examples are selected successively in 
the example set. As in [Mitchell, 1978] the search space 
converges incrementally on the target concept : each 
rejected example leads to a specialization of the upper 
bound so that the resulting upper bound is the most 
general possible without covering the rejected example. 
Each accepted example leads to a generalisation of the 
lower bound so that the resulting lower bound is the most 
specific one that covers all the accepted examples. The 
generalization of the lower bound respects the subset 
principle [Berwick R.C., 1986], in that two example 
subsets Si and Si+1 covered by any two successive states 
of the lower bound LBi and LBi+1 are so that Si+1 ⊇ Si. 
The transformation of LBi in LBi+1 is called the 
generalization step. Each generalization step corresponds 
to the changes a new positive example causes to the 
current lower bound in the course of the incremental 
learning. At the end of the learning phase, if not over 
generalized, the learned concepts are added to the 
problem-solving rules set that the problem solving module 
of APT uses. Otherwise a search for the causes of the over 
generalization begins . 

To restrict the range of the search, the learner guides the 
expert in the identification of the generalization step 
where the over generalization occurs, as it is described in 
[Nédellec 1990]. The negative examples that must be 

excluded from the concept definition are covered by this 
identified generalization step and by no previous one. This 
property follows from the subset principle. That means 
that the words of the vocabulary that has to be corrected to 
suppress the over generalization belong to the subpart of 
the language that is involved in the transformation of the 
previous step in the over generalized one.  

A means to reduce this subpart is to limit as much as 
possible the difference between two successive 
generalization steps with the "smallest generalization step 
strategy", so that a generalization step consists in 
generalizing just one predicate of the current lower bound, 
on one degree, according to the generality relation of the 
domain theory. That is to say, replacing a predicate in the 
current lower bound by its "father" in the corresponding 
theory hierarchy. As a generalization step is performed 
only if the generalization is necessary to cover a new 
positive example, the smallest generalization step strategy 
determines the processing order of the examples. So, the 
examples are successively chosen in such a way that those 
that are declared positive by the expert lead to the smallest 
transformation of the current lower bound.  

Thus, at each step, KAA chooses an example, whose 
predicates are all less general than the corresponding ones 
in the lower bound, except one and this particular 
predicate is less general than the most specific 
generalization (a father) of the corresponding predicate in 
the lower bound (figures 5 & 6). If this training example 
is accepted by the expert, it is called "near success" and 
the consequent generalization of the lower bound is one of 
the most elementary ones, since just one predicate of the 
lower bound has to be generalized on only one degree to 
cover this near success, as shown in the figure 1 (the black 
arrows indicate a direct generality relation between two 
predicates, the grey ones indicate a generality relation by 
transitivity between two predicates) 
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Figure 1: One of the Smallest Generalization Steps 

 
If the example is refused by the expert, this near miss is 
excluded from the search space by the specialization of 
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the upper bound which is just the same as that described 
for the INBF algorithm [Smith, Rosenbloom, 90], which 
shows the efficiency of pruning the search space in that 
way. Since the guilty predicate is completely identified, 
(this is the only predicate that does not match the current 
lower bound) this allows to specialize the most the 
corresponding predicate in the upper bound, so that it 
becomes equal to the corresponding predicate in the lower 
bound, , without any risk of over specialization (figure 2).  
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Figure 2: A Specialization Step 

 
By this generalization strategy, the examples that are 
newly covered by a generalization step and not by the 
previous one are semantically close since their predicates 
have close common ancesters in the theory. Thus, when 
the generalization step responsible for the over 
generalization is identified by the expert, the comparison 
of positive and negative examples that are newly covered 
make sense for the expert. At that moment, he is able to 
find what is the missing vocabulary, which should allow 
to describe separetely negative and positive examples. By 
opposing close examples, it is significantly easier for the 
expert to complete the language than by just studying the 
successive generalization steps. Indeed, they are more 
abstract since they are more general than the examples. 
 
 
3 EXAMPLE 
KAA learns new rules by generalizing the condition part 
of rules such as the rule in figure 3. It describes how to 
build arches using three blocks. 
 

IF block (x) & block  (y) & block (z)  
 & supports(x,  z) & supports (y, z) 

THEN BUILD arch ; solve the problem  
 
  ; by solving the subproblems 
 ERECT x ERECT y LAY z 

 Figure 3: An Example of Rule in APT 
 

The learning phase is divided into two different stages : 
the generalization stage and the revaluation stage. 
 
3.1 GENERALIZATION 

The search space of the target concepts is represented by 
an oriented generalization graph that is a boolean lattice 
[Ganascia, 1987]. Its root is the initial lower bound of the 
search space as defined above and the only leaf is the 
initial upper bound such as all its predicates are 
generalized the most in respect to the theory (figure 4). So 
they are equal to something in our example. 
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Figure 4: A Part of the Initial Domain Theory (in black) 

 
The search space converges incrementally on the target 
concept. The algorithm ends when there are no more 
examples or the two bounds are equal. 
 
3.2 EVALUATION 

As the generalization algorithm ends, the expert evaluates 
with the help of the system the learned concepts 
represented by the disjunction of the most general nodes 
of the graph. If some of them are said to be over 
generalized, the revaluation phase starts. 

 In our example, at the end of the generalization phase, the 
concept associated with the most general accepted node of 
the graph is learned, it is noted Cn in the figure 5. Then, 
we suppose that the expert has accepted all the proposed 
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examples where the bases of the arch are cubes or columns 
and reject the examples where the base of the arch are not 
volumes (the top of the arch and the predicate supports 
remain unchanged). 
It is submitted to the expert, who refuses it, as over-
generalized. Indeed the expert knows intuitively it is 
impossible to build arches whose bases are any volume, 
but he is not yet able to complete the theory by himself so 
that this over generalization disappears. 
 
Cn volume (x) & volume  (y) & block (z)  
 & supports (x,  z) & supports (y, z)  

Cn - 1 parallelepiped (x) & volume  (y) & block (z)  
 & supports (x,  z) & supports (y, z)  

Cn - 2 volume (x) & parallelepiped  (y) & block (z)  
 & supports (x,  z) & supports (y, z)  

Cn - 3 parallelepiped  (x) & parallelepiped  (y) & block 
(z)  & supports (x,  z) & supports (y, z)  

Figure 5 : Four Related Concepts 
 

When such an over-generalization is detected, it is 
necessary to specialize the current lower and upper 
bounds of the search space, so that they no longer cover 
the negative example but continue to cover all the known 
positive examples. Then, the system back tracks in the 
generalization graph until finding the most general nodes 
that are not over geneneralized.  

The node Cn depends directly on the two nodes Cn-1 and 
Cn-2 (figure 5). The concepts represented by those two 
nodes are proposed to the expert who refuses both as 
being over generalized and points out the feature volume 
(that describes the two bases of the arch), as being too 
general. KAA back tracks by specializing volume and then 
proposes the concept of arch whose two bases are 
parallelepipeds (Cn-3 in figure 5). The expert accepts it, since 
it is not over generalized. The problem is now that it is 
too specific, indeed it does not cover the positive 
examples that have allowed the generalization of the 
parallelepipedic base of the arch into volume. That is to say for 
instance, the example in figure 6. 
 

 cy linder  (x) & block (y) & block (z) &  
 supports (x, z) & supports (y, z)  

Figure 6 : A Positive Example of Arch 
 
The most specific over-generalized nodes, Cn-1 and Cn-2, 
are now identified, as well as the inconsistent example set 
which contains the negative examples that caused the over 
generalization, covered by Cn-3 and not by Cn-1 and Cn-
2. 
 

3.3 CORRECTING THE DOMAIN THEORY 

After backtracking, KAA still has to identify the negative 
examples that belong to the identified inconsistent set, so 
that it will be able to help the expert in the correction of 
the domain theory. With this aim, it proposes to the expert 
examples of the inconsistent set whose bases are volumes 
but not parallelepiped such as pyramid, sphere or column. 
 

  pyramid (x) & block  (y) & block (z) & 
 supports (x,  z) & supports (y, z)  

Figure 7: A Negative Example of Arch 
 

When some of the negative examples are identified 
(figure 7), they are compared to positive examples that 
belong to the same set (figure 6) ; this comparison is 
significant for the expert, since the compared positive and 
negative examples are semantically close. Then, the 
expert is asked what differentiates pyramid or sphere, which 
appear in rejected examples, from cylinder, that appears in 
previously accepted examples.  

The only solution to express the definition of  concept of 
arch that covers all the positive examples and no negative 
ones, is to add new constraints to the over generalized 
definition and/or to complete the domain theory if the 
available vocabulary is insufficient. 

Then KAA proposes various means as to group pyramid, 
sphere and cone in the same cluster and column and 
parallelepiped  in another one and next, to choose the roots of 
these clusters among the existing predicates or to create 
new predicates (such as  flat-top and not-flat-top in figure 
4). KAA proposes also, to add a new relation to pyramid, 
sphere and cone (such as top-is related to the feature not-flat). 
Notice that this solution is better, the type of the top is just 
one aspect of the volums, moreover it avoids adding 
intermediate predicates that may cause complex 
treatments because of multiple inheritance. It proposes too 
to modify some of the existing relations to eliminate some 
ambiguities of the language, it is particularly usefull when 
the same predicate has two different meanings. Finally, 
KAA proposes to add constraints to the learned concepts 
to specialize them such as in figure 8. 
 

 volume (x) & volume  (y) & block (z) & supports (x,  z)  & 
supports (y, z)   
 & top-is  (x, t) & t op-is  (y, t) & f lat  (t) 

Figure 8: Constraining an Overgeneralized Concept 
 
In this way, the negative examples are isolated from the 
positive ones and there now exists a way to express 
conjunctively the concept of building arches. 

We have chosen this toy problem to illustrate the method, 
that has been also applied to real world problems. 
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4 RELATED WORKS 
 The algorithm of MARVIN, described in [Sammut and 
Banerji 86] presents some similarities with our work 
although it does not address the problem of identifying the 
causes of an over generalization but the problem of 
correcting them. The rewrite rules of the domain theory 
are used to generalize such as the premises are replaced in 
the current hypothesis by the rule head. The generalization 
strategy consists in executing, step by step, one of the 
elementary possible generalizations by applying just one 
rewrite rule. At each step, MARVIN submits to an expert 
an example that matches the current generalization but not 
the previous one. If the example is accepted, the 
generalization is carried out. If not, the system tries to 
specialize in the direction of the previous generalization. 
If no specialization is possible, the system backtracks and 
chooses another rewrite rule, among the possible ones. 
Our method differs on this last point. Indeed the domain 
theory representation in KAA is a semantic network and 
then the equivalent rewrite rules have just one premise 
unlike MARVIN rules. Although the representation by 
rewriting rules that can have more than one premise is 
more powerful, that means also that the smallest 
generalization step strategy in KAA leads to replace just 
one predicate by another one in the current hypothesis, 
when in MARVIN this strategy leads to replace by one 
predicate all the premises of the chosen rule. The 
consequences are various. First, in KAA no concept 
definition exists between two successive generalizations. 
Then, if an example is refused, KAA does not need to try 
to specialize in the direction of  the previous 
generalization. Moreover, the examples that are newly 
covered by a step are less various, since two successive 
steps differ by only one predicate and not by several. That 
make the search for the cause of the over generalization 
easier since it is based on the comparison between these 
examples. Indeed, the less semantically different they are, 
the easier is it to compare them.  

[Utgoff, 86] has addressed the problem of choosing and 
shifting the bias that determine how generalization are 
performed. The language in which concepts are described 
is one of the biases that Utgoff has presented. As the 
description language determines the limits of the 
hypothesis space, extending it to express more concepts 
means in effect to complete the language. Then, as we do, 
Utgoff studies how to change an incomplete language, 
(the syntax remaining the same) in the aim of expressing 
concepts that are consistent with example sets. 
Utgoff's method named STABB is applied to LEX 
[Michell, 82]. It consists in incrementally building a 
consistent and disjunctive definition of the target concept 
such as the disjuncts are as few as possible.  At the end of 

the generalization phase, if the concept definition remains 
expressed in a disjunctive form, a new symbol is 
automatically integrated in the language so that the 
concept may be expressed in a conjunctive form. KAA 
generalizes in a quite similar way but it does not 
automatically create new symbols. Expert abilities are 
required to modify the language, indeed, the needed 
modifications may be far more important than adding 
intermediate features in hierarchies as STABB do. So by 
interacting with an expert KAA is able do perform other 
changes such as those described above. More than 
completing a language, KAA refines it. 
 
 
5 CONCLUSION 
In this paper, we have presented a method to limit over 
generalization when empirically learning, by correcting 
the concept description language. It is based on prudent 
and incremental generalization and evaluation of the 
result with the interactive help of an expert of the domain. 
If necessary, the system guides him in locating the causes 
of the problem by comparing positive and negative 
examples which are semantically close examples of the 
same concept. Various means are next proposed to refine 
the subpart of the language that has been identified as 
incorrect. 
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