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Abstract 
We describe here the context of the LLL 
challenge of Genic Interaction extraction, 
the background of its organization and the 
data sets. We discuss then the results of 
the participating systems. 

1.  Introduction 

The Learning Language in Logic (LLL05) 
challenge is part of the 2005 LLL workshop. The 
LLL05 challenge task is to learn rules to extract 
protein/gene interactions in the form of relations 
from biology abstracts from the Medline 
bibliography database. The goal of the challenge is 
to test the ability of the participating ML systems to 
learn rules for identifying the gene/proteins that 
interact and their roles, agent or target. The training 
data contains the following information: 

• The Agent and Target of the genic interactions.  

• A dictionary of named entities (including 
typographic variants and synonyms) 

• Linguistic information: word segmentation, 
lemmatization and syntactic dependencies. 

The participants have tested their Information 
Extraction (IE) rules on a separate test set in a 
limited amount of time. The challenge organizers 
have provided the facilities for computing the 
scores of the results. Six different teams have 
participated and reported their results in the papers 
in this volume.  This paper aims at summarizing the 
motivation for the challenge, the presentation of the 
training and test data and comparing the participant 
results. 

2.  Motivation 

2.1  Biological motivation 

Developments in biology and biomedicine are 
reported in large bibliographical databases either 
focused on a specific species (e.g. Flybase, 
specialized on Drosophila Melanogaster) or not 

(e.g. Medline). These types of information sources 
are crucial for biologists, but there is a lack of tools 
to explore them and extract relevant information. 

While recent named entity recognition tools have 
gained a certain success on these domains, event-
based Information Extraction (IE) is still 
challenging. Biologists can search bibliographic 
databases via the Internet, using keyword queries 
that retrieve a large set of relevant papers. To 
extract the requisite knowledge from the retrieved 
papers, they must identify the relevant paragraphs 
or sentences. Such manual processing is time 
consuming and repetitive, because of the 
bibliography size, the relevant data sparseness, and 
because the database is continually updated.  
For example, from the Medline database, the 
focused query "Bacillus subtilis and transcription", 
which returned 2,209 abstracts in 2002 retrieves 
more than 2,693 today. We chose this example 
because Bacillus subtilis is a model bacterium and 
because transcription is both a central phenomenon 
in functional genomics involved in gene interaction 
and a popular IE problem. 

Example: 
GerE stimulates cotD transcription and inhibits 
cotA transcription in vitro by sigma K RNA 
polymerase, as expected from in vivo studies, and, 
unexpectedly, profoundly inhibits in vitro 
transcription of the gene (sigK) that encode 
sigma K. 

In this example, there are 6 genes and proteins 
mentioned and among the 30 potential ordered 
couples, 5 couples actually interact: (GerE, cotD), 
(GerE, cotA), (sigma K, cotA), (GerE, SigK) and 
(sigK, sigma K). The precision of the baseline 
method that extracts gene/protein cocitations is then 
20 % for 100 % recall. In gene interactions, the 
agent is distinguished from the target of the 
interaction. Such interactions are central in 
functional genomics because they form regulation 
networks that are very useful for determining the 
function of the genes. The description of such gene 
interactions is not available in structured databases 
but only in scientific papers. Figure 1 gives an 
example of such a regulation network.  
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Figure 1. Example of a regulation network 

The arrows in Figure 1. represent the interactions 
between proteins and genes of Bacillus subtilis 
involved into the sporulation process. The 
numbered textual annotations around represent the 
fragments of MedLine abstracts the interactions 
have been extracted from.  

2.2  Learning Language in Logic motivation 

Applying IE to genomics and more generally to 
biology is not an easy task because IE systems 
require deep analysis methods to extract the 
relevant pieces of information. As shown in the 
example, retrieving that GerE is the agent of the 
inhibition of the transcription of the gene sigK 
requires at least coordination processing and 
syntactic dependency analysis (e.g. GerE is the 
subject of inhibits and cotA transcription is the 
object of inhibits). Such a relational representation 
of the text motivates relational learning to be 
applied to automatically acquire the information 
extraction rules. 

For instance:  
genic_interaction(X,Z):-  

is-a(X,protein), subject(X,Y), verb(Y), is-
a(Y,interaction_action), Obj(Z,Y), is-a(Z,gene-
expression).  

Interpretation of the rule 
If the subject X of an interaction action verb Y, is 
a protein name, and the object Z is a gene name or 
a gene expression, then, X is the agent and Z is the 
target of the interaction. 

2.3  Expected impact on Machine Learning 
research and field of interest 

Information Extraction has been a ML application 
area since the beginning of the nineties. However, 
most of the work focuses on the named-entity 
recognition problem with mainly statistics-based 
methods applied on shallow text representations. 
There were few attempts to develop ML methods 
for extracting relations from text although the 
development of relational methods and inductive 
learning yield excellent results in other application 

areas. The main reason for the lack of relational 
learning development in IE is due to the lack of 
dataset in IE that ML researchers could use without 
any investment in natural language processing 
(NLP). Indeed, relational event extraction requires 
that the text is deeply processed by syntactic 
parsing including syntactic dependencies. Most of 
the ML research groups do not have the NLP 
competencies and tools for performing this 
processing in specific domains with a good quality 
level. As a consequence, the training data set has 
been prepared so that ML researchers only could 
perform basic format change to be able to apply 
their methods. 

The LLL challenge data set meets this requirement. 
Its use does not need any investment in biology 
neither in NLP. All the needed information is 
provided at a good quality level. The syntactic 
dependencies, which are critical here, have been 
automatically produced by LinkParser (Sleator and 
Temperley, 1993) and manually crosschecked by 
specialists of syntactic analysis of MIG and LIPN 
laboratories. 

The expected impact on ML is a growing interest 
for IE and more generally for semantic knowledge 
learning from textual data. It is a great opportunity 
for ILP to evaluate, compare, adapt and develop 
methods on a large application domain that is 
critical from both a research and economic point of 
view. For instance, automatically producing meta 
data for the semantic Web from textual Web pages 
is strongly related to this ML and IE domain. 

Moreover, the biologist expectations are very high 
and the particular task proposed here is not artificial 
but is critical in functional genomics. Even a partial 
automatization of the information extraction would 
be a considerable progress. We also expect a high 
impact of the availability of this data on the 
development of ML in bioinformatics for the access 
to textual content. 



3.  Description of the data 

The challenge focuses on information extraction of 
gene interactions in Bacillus subtilis. Extracting 
gene interaction is the most popular event 
extraction task in biology. Bacillus subtilis (Bs) is a 
model bacterium and many papers have been 
published on direct gene interactions involved in 
sporulation, as opposed to what happens for 
eukaryotes. The gene interactions are generally 
mentioned in the abstract and the full text of the 
paper is not needed here. The relevant abstracts 
have been selected by querying MedLine on 
Bacillus subtilis transcription and sporulation. The 
relevant information is mostly local to single 
sentences (Ding et al., 2002). The main exception 
comes from coreferences. For instance, the 
gene/protein name is mentioned in a sentence and 
referred to in the form of a pronoun or an 
hyperonym in the next sentence. We do not 
consider this case here. The abstracts have been 
segmented into sentences. Sentences have been 
automatically filtered by the STFilter system in 
order to retain those that contain at least two 
gene/protein names and are most probable to denote 
interactions (Nedellec et al., 2000). MIG-INRA 
expert biologists have annotated with the XML 
editor CADIXE1 hundreds of the interactions and 
the experimental conditions. For this challenge, a 
simple subset of them is provided as training and 
test data. The protein/gene names that can play the 
roles of agent and target of the gene interaction in 
the data sets are also recorded in a named-entity 
dictionary in the form of lists of canonical forms 
and variants. There could be more than one 
interaction per sentence and a given protein / gene 
may be involved in several interactions in different 
roles, agent or target.  

3.1  Biological typology  

The data has been selected on the following basis, 
the gene interaction is expressed,  

• By an explicit action such as,  GerE stimulates 
cotD transcription 

• Or by a binding of the protein on the 
promoter of the target gene, Therefore, ftsY is 
solely expressed during sporulation from a 
sigma(K)- and GerE-controlled promoter that 
is located immediately upstream of ftsY inside 
the smc gene. 

• Or by membership to a regulon family, yvyD 
gene product, being a member of the sigmaB 
regulon [..] 

                                                             
1 It has been developed by the National inter-EPST 
Caderige project and mainly involves LEIBNIZ-IMAG, 
MIG-INRA, LIPN-CNRS and ENSAR-INRA. It is 
available on demand. 

The sentences relying on other biological models 
have not been considered. For instance, a very 
frequent case involves gene mutants where the role 
of the genes in the interactions can be derived from 
the comparison with the normal experimental 
conditions. Other biological models are less 
represented. Then, the three selected categories are 
well representative of the interaction distribution 
excluding the mutant category. 

3.2  Linguistic typology 

The data set is decomposed into two subsets of 
increasing difficulties. The first subset  does not 
include coreferences neither ellipsis, as opposed to 
the second subset. The coreferences selected are 
kept very simple. Most of them are just appositions. 

For example,  
Transcription of the cotD gene is activated by a 
protein called GerE, [..]  

GerE binds to a site on one of this promoter, 
cotX [..] 

Notice that when the absence of interaction 
between two genes is explicitly stated, it is 
represented as interaction information.  

For example,  
There likely exists another comK-independent 
mechanism of hag transcription. 

3.3  Linguistic information 

These two subsets are available with two kinds of 
linguistic information, 

1. The Basic data set includes sentences, 
word segmentation and biological target 
information: agents, targets and genic 
interactions 

2. The Enriched data set includes also 
lemmas and syntactic dependencies 
manually checked. 

The corpora and the information extraction task are 
the same in both cases. The two sets differ only by 
the nature of the linguistic information available. 
The participants to the challenge were free to use or 
not this linguistic information or to apply their own 
linguistic tools. When publishing their results, the 
participants had to be clear about the kind of 
information that has been used for training the 
learning methods.  

3.4  Data representation 

The data representation is detailed on the Web site: 
http://genome.jouy.inra.fr/texte/LLLchallenge/ The 
training data includes the target information to be 
extracted, the agent and target of the interaction. 



Example from the Basic data set: 

ID 11011148-1 

sentence ykuD was transcribed by 
SigK RNA polymerase from T4 of 
sporulation. 

words word(0,'ykuD',0,3)
 word(1,'was',5,7)
 word(2,'transcribed',9,19)
 word(3,'by',21,22)
 word(4,'SigK',24,27)
 word(5,'RNA',29,31)
 word(6,'polymerase',33,42)
 word(7,'from',44,47)
 word(8,'T4',49,50)
 word(9,'of',52,53)
 word(10,'sporulation',55,65) 

agents  agent(4) 

targets target(0) 

genic_interactions
 genic_interaction(4,0) 

There is one genic interaction involving one agent 
and target here. The arguments of the agent, target 
and genic-interaction literals refer to the unique 
identifier of the word.  

Example from the enriched data set:  

ID 10747015-5 

sentence Localization of SpoIIE 
was shown to be dependent on the 
essential cell division protein FtsZ. 

words word(0,'Localization',0,11)
 word(1,'of',13,14) 
word(2,'SpoIIE',16,21) 

lemmas lemma(0,'localization')
 lemma(1,'of') lemma(2,'SpoIIE') 

syntactic_relations
 relation('comp_of:N-N',0,2)
 relation('mod_att:NADJ',13,10)
 relation('mod_pred:N-ADJ',0,7)
 relation('mod_att:N-N',14,13) 

agents  agent(14) 

targets target(2) 

genic_interactions
 genic_interaction(14,2) 

The lemma of named-entities is the canonical form 
as defined in the associated named-entity 
dictionary. For instance, the canonical form of kinD 
is ykvD according to the dictionary. The syntactic 
relations are defined in the Syntactic Analysis 
Guidelines document. For instance, 
relation('comp_of:N-N',0,2) means that 
word 0 and 2, namely, 'Localization' and 'SpoIIE' 
are two nouns and SpoIIE is a modifier of 
Localization which is the head of the relation 
introduced by the preposition 'of'. 

Participants were free to use all external 
information that they find useful, annotated 
Medline abstracts included. However, for this latter 
resource, they had to select abstracts later than year 
2000 in order to avoid overlapping with the test 
data. 

3.5  Training data set  

The training set without coreferences includes 57 
sentences describing 106 positive examples of genic 
interactions:  

• 70 examples of action 

• 30 examples of binding and promoter 

• 6 examples of regulon 

The training set with coreferences includes 23 
sentences describing 165 positive examples of 
interactions with coreferences  

• 42 examples of action 

• 10 examples of binding and promoter 

• 7 examples of regulon 

There are then 271 training examples in 80 
sentences. The training data does not explicitly 
describe negative examples. A straightforward way 
for generating negative examples is to use the 
Closed-World Assumption: if no interaction is 
specified between two given biological objects A 
and B, then they do not interact and form a negative 
example. This way, they could be easily derived 
from the training data and the dictionary as near-
miss examples. 

3.6  Test set 

The test data are examples from sentences 
following the same biological typology as the 
training data. The distribution of the positive 
examples among the biological categories (action, 
binding, promoter and regulon) and with / without 
coreferences is the same as in the training data. The 
test set also includes negative examples, namely 
sentences without any genic interaction. This set 
follows the same distribution as in the initial corpus 
selected by MedLine query and containing at least 
two gene names, i.e. 50 % of the sentences are 
negative. The test set includes 87 sentences 
describing 106 positive examples of genic 
interactions:  

• 55 examples of action 

• 23 examples of binding and promoter 

• 5 examples of regulon 

There is no sentence in the test data with no clear 
separation between the agent and the target (e.g., 
"gene products x and y are known to interact").  

The distinction between the sentences, with and 
without coreferences is not done in the test set and 



is not known by the participants because the test 
data set also contains sentences without any 
interaction. Marking "coreferences" sentences in 
the test set would bias the test task by giving hints 
for identifying the sentences without any 
interaction.  However, the distinction is taken into 
account by the score computation.  

4.  Information extraction task  

Given the description of the test examples and the 
named-entity dictionary, the task consists in 
automatically extracting the agent and the target of 
all genic interactions.  

In order to avoid ambiguous interpretations, the 
agents and targets have to be identified by the 
canonical forms of their names as they are defined 
in the dictionary and by lemmas in the enriched 
version of the data. Thus there are two ways of 
retrieving the canonical name, given the actual 
name.  

The agent and target roles should not be exchanged. 
If the sentence mentions different occurrences of an 
interaction between a given agent and target, then 
the answer should include all of them. For instance, 
in A low level of GerE activated transcription of 
cotD by sigmaK RNA polymerase in vitro, but a 
higher level of GerE repressed cotD transcription. 
There are two interactions to extract between GerE 
and cotD. 

5.  Computation of the score  

The evaluation is based on the usual counting of 
false positive and false negative examples and on 
recall and precision. Partially correct answers will 
be considered as wrong answers. By partially 
correct answer we mean answers where the roles 
are exchanged, or only one of the two arguments 
(agent or target) of the genic interaction is correct. 
The score computation has been measured by the 
organizers on the results provided by the 
participants by applying the score computation 
program available to download as well as the check 
format program. These official scores are compared 
in section 6. The details on how scores are 
computed can be found on line in the user's manual 
of the score computation program. 

The learning methods have been trained either on 
the file without coreferences or with coreferences, 
or on both of them (union). The participants have to 
specify which data set they compete for, so that the 
score computation program takes it into account for 
computing the scores.  

The organizers also provide Web facilities to the 
participants for automatically uploading result files 
and compute the scores on the test data after the 
result submission deadline. These results have been 
further improved by the participants after the 
deadline. These "non official" results are not 

considered here for comparison because of the risk 
of over-fitting on the test data. However, they are 
interpreted and analyzed in the participant papers in 
this volume.  

6.  Result interpretation and comparison 

Six research groups have participated in the 
challenge by submitting the results of the test set. 
The papers reporting their method and results are 
included in this volume. This section compares the 
official results among the participants. 

6.1  Participating systems 

Group 1 (KMB, Univ. Berlin and EBI) has applied 
alignment and finite-state automata technology for 
generating IE patterns from the LLL data set and an 
additional corpus of 256 positive examples 
manually annotated. The corpus has been enriched 
by POS tags and a list of words denoting 
interactions. 

Group 2 (CS, Univ. Sheffield) method generates 
candidate patterns from examples parsed by 
MiniPar and semantically tagged by WordNet and 
PASBio. The candidates are manually filtered and 
then generalized with respect to a similarity 
criterion with already learned patterns. The training 
set has been augmented by weakly labeled training 
examples (cocitations of genes and proteins from 
positive examples, occurring in new sentences). 

Group 3 (HCS Lab, Univ. Amsterdam) has applied 
the rule induction method Ripper to lexical-
semantic-syntactic subtrees obtained by unification 
of the enriched form of the training examples. The 
semantics is given by an ad'hoc ontology designed 
for the challenge purpose. 

Group 4 (KDLab, Univ. Brno) has applied the ILP 
method Aleph on the enriched data set without 
coreferences. Two features have been added, POS 
tags by the Brill tagger and WordNet hyperonyms. 

Group 5 (Biostats and CS, Univ. Madison) has 
applied the ILP method Aleph on the enriched data 
set with and without coreferences wrapped into 
Gleaner that selects the best point on recall-
precision curves. The data sets have been 
preprocessed and enriched by 215 new predicates 
including position, neighborhood, typographic, 
syntactic, semantic (belonging to MesH) and 
counting features. 

Group 6 (ICCS, Univ. Edinburgh) has applied ILP 
and Markov Logic methods on the data parsed by 
the CCG and CCG2sem parsers that build syntactic 
and semantic paths. The best results are obtained 
without such preprocessing. 

6.2  Results 

Most of the results were obtained from the test set 
without coreferences (Table 1). The ML method of 



Group 1. and 6. have achieved the best F-measures 
with balanced recall and precision around 50 %, 
which is high compared to other challenges on 
event or relation extraction such as the Succession 
Management MUC competition. Both systems are 
based on the representation of the examples as 
sequences. It would be interesting to study the role 
of the semantic tagging of word denoting 
interaction as done by Group 1. The other methods 
achieved a high recall but a poor precision. The 
reasons for such an overgeneralization could be 
explained by the fact that the training data did not 
include sentences without any interaction, as 
opposed to test data. The systems trained without 
such sentences or on weakly labeled additional data 
could have been thus handicapped. The results 
obtained with and without linguistic information 
cannot be easily compared here, since only Group 
5. has provided results on both data sets. The role 
played by the syntactic dependencies cannot then 
be analyzed.  

Table 1. Results on the test set without coreferences 

Gr. # Basic test set Enriched test set 

 prec. rec. F prec. rec. F 

1.  50,0 53,8 51,8    

2.  10,6 98,1 19,1    

4.     37,9 55,5 45,1 

5.  25,0 81,4 38,2 20,5 90,7 33,4 

6.     60,9 46,2 52,6 

Table 2. Results on the test set with coreferences 

Gr. # Basic test set Enriched test set 
 prec. rec. F prec. rec. F 

5.  14,0 82,7 24,0 14,0 93,1 24,4 

Table 3. Results on the test set with and without 
coreferences 

Gr. # Enriched test set 
 prec. rec. F 

3. 51,8 16,8 25,4 

6.  55,6 53,0 54,3 

Table 2 presents the results as obtained on the test 
data with coreferences while Table 3 presents the 
results as obtained on the union of the test data 
with, and without coreferences. As shown by Table 
2, the F-measure of Group 5 on the basic and 
linguistically enriched data set is not significantly 
different, as it is the case in Table 1. In all cases, 
the precision is poor, the recall high and the recall 
improved by the linguistic information. 

Only the two groups 3. and 6. have provided results 
on the union of both test sets with and without 
coreferences. In both cases, the linguistic 
information has been exploited. Surprisingly, 

despite the difficulty of dealing with coreferences, 
the scores obtained on the set without coreferences 
(Table 1.) are similar: 52,6 against 54,3. Note that 
most of the coreferences in the test set were 
denoted by simple appositions and represented by 
explicit syntactic dependencies. 

7.  Conclusion 

The high scores (more than 50 %) yields by the best 
system as well as by further experiments done by 
the other participants are very encouraging. As 
described in section 3., the data have been carefully 
selected in order to keep the underlying biological 
models simple. The parsing results as computed by 
LinkParser have been corrected by hand. The next 
challenges now consist in extending the data sets so 
that it becomes more representative of the real data 
as it can be found in MedLine abstracts and leave 
the syntactic parsing partially incorrect as it is when 
produced by automatic methods. The influence of 
the domain knowledge such as for instance, 
semantic classes of actions and their role in 
interactions has not been fully explored here but 
only through ad'hoc lists or patterns.  It would 
certainly worthwhile to explore this direction. 
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