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Abstract. This chapter presents the ILP method, Asium, that learns 
ontologies and verb subcategorization frames from parsed corpora in 
specific domains. The ontology is learned by bottom-up conceptual 
clustering from parsed corpora. The clustering method also generalizes 
the grammatical relations between verbs and complement heads as they 
are observed in the corpora. The set of grammatical relations learned 
for a given verb forms the verb subcategorization frame. This paper 
details Asium's learning algorithms in an ILP formalism and shows how 
the learned linguistic resources can be applied to semantic tagging, 
language control and syntactic disambiguation within the ILP 
framework. 

1. Introduction 

Many applications that handle electronic documents, especially industry-oriented 
applications, require specific knowledge bases and linguistic resources. Among them, 
predicate schemata are syntactico-semantic resources, which let the system interpret 
chunks of documents at the knowledge level. By predicate schemata we mean 
conceptual graphs which relate predicates to their semantic roles defined as semantic 
sets of terms such as 

Pouring1 object liquid, powder 
  place recipient, preparation 

where liquid = {milk, wine, ...}. Such resources are useful in many 
applications such as Information Extraction (Riloff, 93), Information Retrieval, and 
Question Answering. So far, there is no fully automatic method for learning this kind 
of predicate schemata from parsed training corpora. However, verb subcategorization 
frames and semantic classes can already be learned and this is a step in the right 

                                                             
1The examples illustrated in this paper have all been taken from the application of Asium to the 

cooking recipes domain. 



direction towards predicate schemata learning. In addition, they are useful for the 
same applications as predicate schemata. For instance, the subcategorization frame of 
« to pour » could be defined as 

 
To pour direct object liquid, powder 
  adjunct (preposition = in, into) recipient, 
preparation 

Compared to predicate schemata, the predicate here is a verb or a noun and the 
relations are syntactic. Semantic classes are defined in a similar way as in predicate 
schemata. 

Previous work attempted to learn verb syntactic relations and semantic classes by 
observing syntactic regularities in parsed corpora. The work reported in (Grishman 
and Sterling, 94),  (Hindle, 90), (Grefenstette, 92), (Pereira et al., 93), (Dagan et al., 
96) among others, is based on Harris' hypothesis of the distributional foundation of 
meaning in sublanguages (Harris et al., 89): syntactic schemata that consists of 
semantic word classes that reflect the knowledge domain can be identified by 
analyzing syntactic regularities in specific domain parsed corpora. Most of them learn 
flat classes (Grefenstette, 92), (Hindle, 90) or distances between terms which 
represent their semantic similarities (Grishman & Sterling, 94),  (Sekine et al., 92), 
(Dagan et al., 96), (Resnik, 95).  

Hierarchies of concepts attached to verb frames (Pereira et al., 93), (Hogenhout & 
Matsumoto, 97) are more understandable than flat classes and they allow semantic 
interpretations of document chunks at the appropriate level of abstraction. This is 
particularly useful in query extension and question answering as shown by WordNet 
exploitation (Resnik & Hearst, 94), (Yarowsky, 92) but unnecessary for syntactic 
disambiguation which is the goal of most of the work cited above.  

Here, we present Asium, a method that learns verb subcategorization frames and 
concepts from parsed texts in a specific domain. It learns graphs of concepts instead 
of concept hierarchies so that a given concept may be related to more than a "mother". 
This property is required for representing the different meanings and roles of terms. 
Asium is based on a bottom-up clustering method as in previous work by Pereira et al 
(93) and Hogenhout and Matsumoto (97). The clustering method forms semantic 
classes of head terms, which represent the concepts of the ontology. It applies a novel 
distance that proves to be robust when applied to noisy corpora. The grammatical 
relations observed in the corpora between verbs and terms are also generalized so that 
they link verbs and all the classes of acceptable terms, not only the ones actually 
occurring in the corpora. The set of learned grammatical relations for a given verb 
forms its subcategorization frame where the selection restrictions are filled by the 
concepts of the ontology. 

Asium is formalized as an ILP method as opposed to previous work described in 
the statistics framework. The ILP formalism increases the comprehensibility of the 
learned knowledge and makes the comparison and the integration with other ILP 
methods easier. The nature of Asium input and output is intrinsically relational: it 
consists of relations between verbs and their complements and generality relations 
between concepts. Moreover, Asium has to be coupled with tools that can handle 
relational data and knowledge. For instance, parsing disambiguation and semantic 
tagging will apply coverage testing operations such as filtering, saturation and 



 

resolution. In the current implementation of the platform, data and knowledge are all 
stored in a relational database. In addition, learning predicate schemata from verb 
subcategorization frames and ontologies requires a relational representation for 
expressing the dependencies among concepts of the semantic roles. The ILP 
framework is thus viewed as a unified framework for integrating these tools and 
methods. 

The remainder of this chapter is organized as follows. Section 2 introduces the 
settings Asium uses, while Section 3 details the learning algorithms.  Section 4 then 
presents some potential applications of the learning results.  Future work is discussed 
in Section 5 and finally, Section 6 compares the approach with other related work. 

2. Settings 

2.1 Subcategorization Frames 

Subcategorization frames describe the grammatical relations between verbs and 
their arguments and adjuncts. The verb adjuncts are the verb complements such as the 
place, time, and means adjuncts that are optional as opposed to verb arguments 
(subject, direct object and indirect objects). A grammatical relation represents the type 
of complement and preposition needed if any. The verb sucategorization frames 
include selection restrictions, which define the concepts that are valid for a given 
grammatical relation. For example, Table 1 represents the subcategorization frame for 
the verb "to pour"  as Asium learns it. Each clause represents a single grammatical 
relation between "to pour", and one argument or one adjunct. X represents the 
grammatical relation and Y represents the complement. 

Table 1. The subcategorization frame for the verb "to pour". 

c(pour,X) :-  
  verb(pour,X),comp(dobj,Y,X),prep(none,Y),head(liquid,Y). 
c(pour,X) :-  
  verb(pour,X),comp(dobj,Y,X),prep(none,Y),head(preparation,Y)
. 
c(pour,X) :-  
  verb(pour,X),comp(padj,Y,X),prep(into,Y),head(liquid,Y). 
c(pour,X) :-  
  verb(pour,X),comp(padj,Y,X),prep(into,Y),head(recipient,Y). 

The two first Horn clauses say that "to pour" allows two concepts "liquid" and 
"preparation" as selection restrictions for the direct object (denoted "dobj"). The last 
two clauses show that "to pour" also allows the two concepts "liquid"  and "recipient" 
as selection restrictions for the place adjunct (denoted "padj") and they are both 
introduced by the preposition "into". 



2.2 Ontology 

The concepts filling the selection restrictions of the verb frames are defined in the 
ontology. The ontology concepts learned by the method are defined both 
extensionally and intensionally. The extensional definition defines a concept as a 
class of terms. Term should be understood in the linguistic sense.  For instance 
"baking powder" is a term.  The membership relation of a term T to a concept C is 
represented by a Horn clause, C(X) :- T(X). For instance, the clauses 
 liquid(X) :- milk(X).    
 liquid(X) :- water(X). 
 liquid(X) :- red_wine(X). 

define the concept "liquid" as the set of terms "{milk, water, red_wine}".  
The intensional concept definition defines concepts as being related to other 

concepts by a generality relation. The generality relation on the ontology concepts is 
defined by the inclusion between term classes. A concept C is more general than a 
concept C' if the class of terms of C' is included in the class of terms of C. The 
generality relation between a concept C and a concept C' is represented by the Horn 
clause C(X) :- C'(X), as exemplified by the clauses below. 
 liquid(X) :- milky_liquid(X). 
 milky_liquid(X) :- milk(X).   
 milky_liquid(X) :- cream(X).   

 liquid(X) :- alcoholic_beverage(X). 

Concepts and terms are not explicitly distinguished in this representation; both are 
represented by unary predicates. The corpus terms are the predicates that do not occur 
as a head of Horn clauses in the ontology, they are terminal nodes. The structure of 
the ontology is a directed acyclic graph. The only relation represented in the ontology 
is the generality relation among the concepts.  

2.3 Applications 

The applications of this kind of linguistic resource are numerous. Among others, 
they are useful for disambiguating syntactic parsing. For instance, the noun phrase "3 
minutes", in the clause "cook until golden, 3 minutes per side", could be interpreted 
by a syntactic parser in two ways: as the direct object or as a time adjunct. No 
syntactic hint can help the parser here; additional semantic knowledge is needed. The 
appropriate ontology allows the parser to identify "3 minutes" as belonging to the 
"duration" concept. With the subcategorization frame of "to cook", the parser 
recognizes that the duration concept plays the role of time adjunct without a 
preposition, and the result is that the interpretation of "3 minutes" as time adjunct is 
selected and its interpretation as direct object is removed. Section 4 gives a more 
complete description of verb subcategorization frame use and it also presents how 
learned linguistic resources can also be used for semantic tagging and language 
control. 



 

2.4 Learning Input and Output 

The concepts of the ontology and the generality relation among them are learned 
from a parsed training corpus. The argument and adjunct heads of the verbs in the 
training corpus form Asium's input.  The head of a complement is its main term. For 
example, in "pour the hot milk into the prepared pan. ", "milk" is the head of the noun 
phrase "hot milk". In the following, head should be understood in the linguistic sense 
and not the logical one. The output of the algorithm is a set of subcategorizations 
frames and ontologies as defined above. 

3. Learning 

Ontology and verb subcategorization frame learning consists of three phases: 
corpus pre-processing, an initial generalization step, and further generalization steps. 
Corpus pre-processing transforms the training corpus into a set of examples. The 
initial generalization step builds the leaves of the ontology while further 
generalization steps build the higher levels and learn the valid grammatical relations 
between verbs and concepts. 

3.1 Corpus Pre-processing 

First of all, a syntactic parser analyzes the training corpus. In the current 
implementation, SYLEX (Ingenia corp.) is used (Constant, 95). In each clause, the 
parser identifies the verb, its arguments and its adjuncts. It identifies the head and the 
preposition, if any, of each argument or adjunct (Section 3.1.1). Properly identifying a 
head term as a single word or a complex phrase depends on whether or not the 
terminology dictionary of the parser is suitable for the domain. Only grammatical 
relations between verbs and heads plus prepositions are relevant as input to Asium. 
Asium extracts all grammatical relations independently of each other (Section 3.1.2). 

Concept construction by clustering classes of terms is based on a predicate 
invention operator. Thus, we need a pre-processing flattening step that will turn terms 
into predicates (Section 3.1.3). 

3.1.1 Parsing Output 

Parsed sentences (clauses) are represented by Horn clauses in the following form, 
verb(V_label,Clause_id) :- [ 
  comp(Gram_rel,Phrase_id,Clause_id),       
  prep(Prep_label,Phrase_id), 
  head(Head_term,Phrase_id)]*. 

A verb can have several complements, each of which has a preposition and a head. 
Each triple represents a complement of the verb. 



- The verb literal represents the verb, the comp literal, a complement of the verb, 
argument or adjunct, the prep literal, the preposition of the given complement, and 
the head literal, the head of the given complement. 

- V_label, Prep_label and Head_term respectively represent the labels of the 
verb, of the preposition and of the head term. In case where the argument of the 
verb is not introduced by a preposition, Prep_label is equal to none. 

- Clause_id and Phrase_id represent the unique identifiers of the clause and the 
phrase in the training corpus.  

- Gram_rel represents the grammatical relation in the clause between the arguments 
and the verb, as subject (subj), object (dobj), indirect object (iobj), and between the 
adjuncts and the verb as time adjunct (tadj), place adjunct (padj), etc. When the 
parser is not able to specify the type of adjunct, the more general label "adj" is 
given. 

Example. The Horn clause E represents the parsing of the clause, "pour the hot milk 
into the prepared pan". 
E: verb(pour,c1) :- 
   comp(dobj,p11,c1), prep(none,p11), head(milk,p11),   
   comp(padj,p12,c1), prep(into,p12), head(pan,p12).  

Subjects are generally absent from cooking recipes. However, the method treats 
subjects as the other verb arguments. When the syntactic analysis is insufficient for 
disambiguating multiple interpretations, all interpretations are kept as input. 

3.1.2 Extraction of Verb Grammatical Relations 

The learning method generalizes the observed grammatical relations independently 
from each other. Thus single grammatical relations are extracted from parsed 
examples: extraction splits the input Horn clauses into the same number of new Horn 
clauses as there are grammatical relations between the verb and the complements 
occurring in the input Horn clause. 

Input Horn clauses are connected with a maximal depth of 3. Connection paths 
form a tree and this tree's root is Clause_id in the head literal. Extraction copies the 
head of the input clause as the input of each new clause and follows each possible 
connection path from the head clause variables through the variables of the body 
literals until it finds the deepest variables. It amounts to partitioning the variable set 
into subsets of k-local variables, where k = 4 (Cohen, 93). 

Example. The clause E from the above example is split into the two Horn clauses E1 
and E2, with one clause per grammatical relation in E. 

E1: verb(pour,c1) :-     
   comp(dobj,p11,c1), prep(none, p11), head(milk, p11). 

E2: verb(pour,c1) :-         
   comp(tadj,p12,c1), prep(into, p12), head(pan, p12).  

Candidate hypotheses are represented in the same way. Thus hypothesis generation 
and coverage tests are simplified during learning. In particular, this allows example 
storage in relational databases for faster coverage test. However, this results in 



 

overgeneralization since the grammatical relations and selection restrictions for a 
given verb are generalized independently of each other (Section 5). 

3.1.3 Head Term Flattening 

Flattening then turns the head term in each Horn clause into a predicate so that 
predicate invention by intraconstruction can then apply. The other terms remain 
unchanged.  
verb(V_label,Clause_id) :-   
  comp(Gram_rel,Phrase_id,Clause_id),prep(prep_label,Phrase_id
), 
  head(Head_term,Phrase_id).  

becomes 
verb(V_label,Clause_id) :-   
  comp(Gram_rel,Phrase_id,Clause_id),prep(Prep_label,Phrase_id
),  
  head(Head_id,Phrase_id), head_term(Head_id). 

Example. F1 results from flattening E1. 

F1: verb(pour,c1) :-  
   comp(dobj,p11,c1),prep(none,p11),head(h11,p11),milk(h11)
.  

The flattened clauses form the input examples of the generalization algorithm. 
Flattening in Asium slightly differs from flattening as defined by (Rouveirol, 94) in 
that it applies to constant head terms instead of all constants. The other constants c1, 
p11, h11 are turned into variables by the initial generalization step. 

3.2 Initial Generalization Step 

The initial generalization step consists of first variabilizing the input examples 
(Section 3.2.1). Next, it creates the basic concepts of the ontology by predicate 
invention and compresses the input examples. The new predicates represent classes of 
head terms. This way, a given grammatical relation between a given verb and all 
heads occurring in the corpus is represented by a single Horn clause where a new 
predicate represents all possible heads in the training corpus (Section 3.2.2). 

3.2.1 Variabilization 

The identifiers in the input examples are variabilized, while the grammatical role, 
the verb and the preposition labels remain unchanged. The resulting clauses are called 
variabilized examples and define the set V. 

Example. 
V1: verb(pour,X) :- 
   comp(dobj,Y,X), prep(none,X), head(Z,Y), milk(Z). 



V1 results from variabilizing F1.   
One may notice that the number of input examples that are covered by a given 
variabilized example is the number of occurrences of the head terms occurring with 
the verb and in the grammatical role defined in the variabilized example. For instance 
clause V1 covers as many examples as the number of clauses in the corpus where 
"milk" should be "poured". The number of examples covered is attached to each 
variabilized example Vi and denoted Occ(Vi) as number of occurrences. 

3.2.2 Predicate Invention 

In Asium, predicate invention is done by applying Muggleton and Buntine's (88) 
intraconstruction operator to variabilized examples. It creates one new predicate for 
each set of head terms that occur with the same verb and the same grammatical role 
and preposition if any. Let us first present the intraconstruction operator. 

• Intraconstruction 
As defined in (Muggleton & Buntine, 88), it applies to two clauses, the bodies of 

which contain a same subpart. Let R1 and R2 be these clauses, the bodies of which 
contain a same subpart B2,  
 R1: C(X) :- B11 ∧ B2. R2: C(X) :- B12 ∧ B2. 

Intraconstruction creates 2 new clauses,   
C1: np(?) :- B11.  and C2: np(?) :- B12. 

which define the new predicate np(?) as the disjunction of B11(X) and B12(X), 
the subparts of R1 and R2 that differ. Inverting the resolution with the parent clause 
C1 and the resolvent R1 yields the parent clause G:  
G:  C(X) :- np(Xi) ∧ B2. 

as well as inverting resolution with the clauses C2 and R2 (Figure 1). 
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Fig. 1. Intraconstruction 

• Predicate Invention in Asium 
In Asium, predicate invention applies to the set of variabilized examples of the 

same verb, the same grammatical role and the same preposition, if any, but where the 
head terms may differ (in italics below). 
verb(V_label,X) :-  
  comp(dobj,Y,X), prep(none,X), head(Z,Y), head_term(Z). 

Example. The three examples below concern the same verb "to pour", the same 
grammatical relation direct object, but different heads "milk", "water" and "wine". 



 

V1: verb(pour,X) :-

  comp(dobj,Y,X),prep(none,X),head(Z,Y),milk(Z). 
V2: verb(pour,X) :-  comp(dobj,Y,X),prep(none,X),head(Z,Y), 

water(Z). 
V3: verb(pour,X) :-

  comp(dobj,Y,X),prep(none,X),head(Z,Y),wine(Z). 
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Fig. 2. Predicate invention example.   

Let us call such sets of clauses (one set per verb plus grammatical relation) basic 
clusters. These clusters form a partition of the set of variabilized clauses. The 
predicate invention operator creates one new predicate per cluster. The new predicate 
is defined by the disjunction of all heads in the variabilized clauses. The clauses that 
define the new predicate form the so-called basic clauses of the Domain theory (DT). 

The clause obtained by intraconstruction 
verb(V_label,X) :- 
  comp(Gram_rel,Y,X), prep(Prep_label,X), head(Z,Y), np(Z). 

forms a generalization of the clauses of the corresponding basic cluster, with 
respect to DT according to generalized subsumption (Buntine, 88). Such clauses are 
called basic Grammatical Relation clauses, or basic GR  clauses. 

Example. The basic clauses  
np(X) :- milk(X). np(X) :- water(X). np(X) :- wine(X). 

are built from the clauses V1, V2 and V3. G is the basic GR clause obtained by 
intraconstruction. 
G: verb(pour,X) :- 
   comp(dobj,Y,X), prep(none,X), head(Z,Y), np(Z).  

New predicates formed by Asium are named by the user as they are built (see 
(Faure & Nedellec, 99) for more details on user interaction).  

At this stage, the set of GR clauses together with DT, comprehensively represents 
all the grammatical relations between verbs and terms that occur in the input corpus. 
As such, they represent pieces of subcategorization frames. Thus, in the example, np 
represents the set "{milk, water, wine}" of head terms observed in the corpus for the 
relation "pour - Direct Object" (Figure 2). Further steps will generalize these relations, 
extend DT and the variabilized example set. 



3.3 Further Generalization Steps 

All further generalization steps iterate the same way. The algorithm is given in 
Table 2. It outlines the generalization process detailed below. For input, each step 
uses the results of the previous steps (i.e.,  the Domain Theory DT, the GR clause set 
and the variabilized example set) and extends them.  

Table 2. Asium generalization algorithm. 

Initialization 
 GR ← {Basic GR clauses} 
 DT ← {Basic clauses} 
 V ← {Variabilized examples} 
 NewGR ← ∅ 

 Loop 
 
  For all (Gi, Gj)  ! GR x GR, and Gi ! Gj 
   Compute Dist(Gi, Gj)  
   If Dist(Gi,Gj) < Threshold, then  

    • Generalization: 
    Build a new predicate NewP, form NewP definition, and Gi' and Gj'  
    generalizing Gi and Gj by intraconstruction 
    NewGR ← {Gi'}! {Gj'}! NewGR 
    DT ← NewP definition ! DT 

    • Example generation: 
    Generate new examples sets VGi' and VGj'  
    by partial evaluation of Gi' and Gj'. 
    V =  VGi' !  VGj' !  V 
   Endif 
  Endfor 
  exit when NewGR = ∅  
  GR ← GR ! NewGR 
  NewGR ← ∅ 
 End loop 

 
A generalization step consists of selecting the most similar pairs among current GR 

clauses according to a given distance and generalizing each pair into two new clauses 
to be added to the current set of GR clauses. The similarity between clauses is based 
on the number of similar variabilized examples covered. Two examples are similar if 
they have the same head term (Section 3.3.2). The effect of such a generalization step 
on a given clause Gi, similar to a clause Gj, is that the new clause Gi' covers the 
grammatical relation of Gi, associating the verb of Gi and the terms of Gi plus the 
terms of the other clause Gj. In other words, it extends the set of acceptable terms for 
a given verb-grammatical relation by adding to it the terms of another similar set of 



 

terms for another verb - grammatical relation. The two extended sets of terms are 
equal and define a same new predicate (Section 3.3.1). New variabilized examples are 
then generated so that they can be associated to the number of occurrences required 
for computing distances in further generalization steps (3.3.3). 

3.3.1 Generalization 

All pairs of GR clauses which are separated by a distance less than a given 
threshold, are generalized by applying the APT predicate invention operator defined 
in (Nedellec, 92). As with Muggleton's and Buntine's (88), it is based on 
intraconstruction but results in generalization instead of compression. It operates in 
the following way. 

Given a pair GRi and GRj of GR clauses, a new predicate is created, which is 
substituted for the head term predicates in the clause pairs. This yields two new 
clauses, GRi' and GRj'. The new predicate is defined in DT as the "mother" of the two 
head terms of the clause pair. The initial two clauses cannot concern simultaneously 
the same verb and the same grammatical relation and their head term differ. It is 
because of the way the initial GR set of clauses has been built. The new clauses GRi' 
and GRj' are thus respectively more general than the GR clauses GRi and GRj they 
are built from (Figure 3).  
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Fig. 3. APT's predicate invention 

More formally, 
Gri:  verb(V_labeli,X) :-  
   comp(Gram_reli,Y,X),prep 
(Prep_labeli,X),head(Z,Y),npi(Z). 

GRj:  verb(V_labelj,X) :-  
   comp(Gram_relj,Y,X),prep(Prep_labelj,X),head(Z,Y),npj(Z). 

a new predicate np is defined in DT as, 
Ci: np(X) :- npi(X). Cj: np(X) :-  npj(X). 

Two new clauses GRi' and GRj' are built by intraconstruction, respectively 
substituting np for npi and npj in GRi and GRj by inverting two resolution steps.  

GRi': verb(V_labeli,X) :-  
 
   comp(Gram_reli,Y,X),prep(Prep_labeli,X),head(Z,Y),np(Z). 

GRj': verb(V_labelj,X) :-  
 
   comp(Gram_relj,Y,X),prep(Prep_labelj,X),head(Z,Y),np(Z). 



The APT predicate invention operator applied here differs from the one described 
in Section 3.2 as it performs generalization instead of compression as Muggleton’s 
and Buntine’s (88) operator does. The parts of the two initial clause bodies which are 
not replaced by the new predicate differ, and thus two parent clauses are built instead 
of one and all that they have in common is the invented head term. They are thus 
more general than the ones they have been built from. 

The new clauses GRi' and GRj' are added to the GR set of clauses, however GRi 
and GRj are not removed so that they can produce other generalizations than GRi' 
and GRj'. DT then forms an acyclic graph and not a hierarchy.  

Example. Suppose G1 and G2 , given below, considered as similar. 

G1: verb(pour,X):- comp(dobj,Y,X),prep 
(none,Y),head(Z,Y),np1(Z). 
G2: verb(drop,X):-comp(padj,Y,X),prep(in,Y),head(Z,Y),np2(Z). 

np1 and np2 are defined in DT by 

np1(X) :- milk(X). np1(X) :- water(X). np1(X) :- wine(X). 
np2(X) :- milk(X). np2(X) :- water(X). np2(X) :- 
cream(X). 

A new predicate np is invented and defined as 
np(X) :- np1(X). np(X) :- np2(X). 

and two new clauses G1' and G2' are built which generalize G1 and G2: 
G1': verb(pour,X):-
comp(dobj,Y,X),prep(none,Y),head(Z,Y),np(Z). 
G2': verb(drop,X):-comp(padj,Y,X),prep(in,Y),head(Z,Y),np(Z). 
 

3.3.2 Heuristics, Distance computing and Threshold 

Predicate invention results in generalizing the grammatical relation between verbs 
and head terms: the set of valid head terms for one verb and grammatical function is 
enriched by the addition of the valid head terms for another verb and grammatical 
function. For instance, the set of liquid terms valid as direct object of "to pour" is 
enriched by the set of liquid terms valid as place adjunct introduced by the preposition 
"in", after the verb "to drop". The induction leap due to predicate invention is 
controlled by a distance-based heuristic. GR clause pairs are considered as similar if 
their distance is less than a given threshold set by the user. 

The distance Dist (Table 3), between two clauses Gi and Gj of the GR set 
depends on the proportion of the number of occurrences of similar variabilized 
examples covered by both clauses, and of the total occurrence number of examples in 
V. 

• Similarity between examples 



 

Two examples of V are similar if their head terms are the same. For example, V1 
and V2 are similar. 

V1: verb(pour,X) :-  
   comp(dobj,Y,X), prep(none,Y), head(Z,Y), milk(Z). 

V2: verb(drop,X) :-  
   comp(padj,Y,X), prep(in,Y), head(Z,Y), milk(Z). 

The set of variabilized examples covered by a GR clause G is denoted Cov(G). The 
set SimGj(Gi) is the set of examples of Cov(Gi) such that there exists a similar 
example in Cov(Gj). Notice that SimGj(Gi)  = SimGi(Gj) . occ(VE) 
denotes the number of occurrences for the example VE. 

• Definition of the Distance, Dist 

The distance between two GR clauses Gi and Gj is defined as follows (Table 3). 

Table 3. Asium distance. 

ifSimGj
(Gi ) ! ",Dist(Gi ,Gj ) = 1 #

log Occ(v) + log Occ(v)
v$SimG j

(Gi )

%
v$SimGi

(Gj )

%

log Occ(v) + log Occ(v)
v$Cov(Gj )

%
v$Cov(Gi )

%

Dist(Gi ,Gj) = 1,otherwise.

 

The only criterion used for choosing the clause pairs is distance. It is possible for 
members of a candidate pair to have been built at different generalization steps. 

3.3.3 Example Generation 

The distance between two GR clauses is computed on the basis of the occurrence 
number of the examples covered. Thus we want to easily associate each new GR 
clause Gi' with the variabilized examples it potentially covers and not only with the 
training examples it actually covers (the ones covered by Gi). We also want to 
associate a number of occurrences to the new examples. Asium generates all these 
new examples by a partial evaluation of Gi', (Van Harmelen and Bundy, 88), with 
respect to DT. New examples are then added to V extending Cov(Gi'). This 
amounts to generating one new variabilized example Vinew per example Vjold of 
Cov(Gj) that is not in SimGi(Gj) so that Vinew is similar to Vjold and vice et 
versa.  

Thus Cov(Gi') and SimGj’(Gi') become equal. The number Occ(Vinew) 
associated to the example Vinew is equal to Occ(Vjold). 

Example. Consider G1' and G2'. 



G1': verb(pour,X) :-  
   comp(dobj,Y,X), prep(none,Y),head(Z,Y),np(Z). 

G2': verb(drop,X)  :-  
   comp(padj,Y,X), prep(in,Y), head(Z,Y), np(Z). 

np, np1 and np2 are defined in DT by, np(X) :- np1(X). np(X) :- 
np2(X). 

np1(X) :- milk(X). np1(X) :- water(X).  np1(X) :- wine(X). 
np2(X) :- milk(X). np2(X) :- water(X).  np2(X) :- cream(X). 

For Cov(G1') = SimG2’ Cov(G1') the following new examples have to be 
generated:  
verb(drop,X) :-  
  comp(padj,Y,X), prep(in,Y), head(Z,Y), wine(Z). 

verb(pour,X) :-  
  comp(dobj,Y,X), prep(none,Y), head(Z,Y), cream(Z). 

since "wine" is the only predicate that is less general than np1 and not less general 
than np2 and "cream" is the only predicate that is less general than np2 and not less 
general than np1.   

3.3.4 Learning Result 

Generalization ends when no GR clause can be generalized further: when there is 
no pair that is similar enough with respect to the threshold.  

The learned ontology is the set of DT clauses that are not basic clauses. The 
subcategorization frame SubCatVerb_Id of a given verb verb_Id, is the set of the 
most general GR clauses concluding with verb(Verb_Id,X). There is one such 
clause per valid concept for a given verb - grammatical relation. As DT is not 
hierarchical, learning can results in more than one most general clause for a given 
verb - grammatical relation. 

4. Applications 

To illustrate the potential applications of the proposed approach we present how 
learning results contribute to solving the semantic tagging, parsing disambiguation 
and language control problems. These components have been implemented in Asium 
for measuring performance with respect to the three tasks. 
• Semantic tagging tags verb complement heads in the test corpus by the ontology 

concepts according to the verb subcategorization frames. Semantic tagging is a way 
to extend documents or user queries for Information Retrieval by enriching texts by 
synonyms or more abstract concepts than those actually occurring. 

• The ontology and verb subcategorization frames help disambiguate parsing in two 
ways: by determining if a given noun phrase should be attached to a verb or to a 



 

noun; and by determining the type of attachment to a verb  (argument, adjunct and 
the type of the argument or adjunct).  

• Language control checks the semantic validity of the heads of verb complements in 
the corpus according to the ontology and verb subcategorization frame.  

These three tasks are based on the same logical operation: given a parsed clause, show 
that the verb subcategorization frame covers the parsed clause according to 
generalized subsumption with DT. Examples to be handled  (disambiguated, 
controlled or tagged) should be pre-processed as described in Section 3.1, that is, 
parsed and split. Given an example E, 
E: verbe(v_labele,clause_id)  :-

  comp(gram_rele,phrase_id,clause_id),  

   prep(prep_label,phrase_id), 
   head(head_id,phrase_id), head_terme(head_id). 

The subcategorization frame Fr of the verb v_label, covers E iff there exists a 
clause G of Fr, 
G : VerbG(v_labelG,X) :-  
   comp(gram_relG,Y,X), prep(prep_labelG,Y), head(Z,Y),  
   head_termG(Z). 

that is more general than E according to SLD resolution with DT: G and E must have 
the same verb, they also must have the same grammatical relation (preposition plus 
type of argument), and the head term of G, head_termG, must be more general than 
head_terme with respect to DT. 

4.1 Semantic Tagging 

 Semantic tagging consists of listing all intermediate goals when proving 
head_termG(Z), that is to say, listing the concepts of the ontology, the definition of 
which is needed for proving head_termG(Z) given head_terme(head_id). 

Example. G covers the example E, 
E: verb(drop,c1) :- 
   comp(padj,p11,c1),prep(in,p11),head(h11,p11),wine(h11). 

G: verb(drop,X) :-  
   comp(padj,Y,X), prep(in,Y),head(Z,Y), liquid(Z). 

since DT says, 
 liquid(X) :- alcoholic_beverages(X). 
 alcoholic_beverages(X) :- wine(X). 

and E is tagged as, 
E: verb(drop,c1) :- 
   comp(padj,p11,c1), prep(in,p11), head(h11,p11), 
   wine(h11), Alcoholic_beverages(h11), liquid(h11).   



Notice that tagging an example differs from saturation: we do not want to add all 
concepts that are more general than wine, but only the ones that are relevant here. 
Relevancy depends on the syntactic and semantic context given by the 
subcategorization frame as highlighted in (Riloff, 93). Learning simple classes from 
co-occurrences in text-windows cannot provide a way to disambiguate the role of a 
term, but learning subcategorization frames can. 

4.2 Parsing Disambiguation 

 Parsing disambiguation simply selects the parsing interpretation that is covered by 
the subcategorization frames and removes the others. When no interpretation is left, a 
possible parsing can be suggested by abduction as in (Duval, 91). 

Example. Of the two possible interpretations 
E: verb(cook,c1) :- 
  comp(dobj,p11,c1),prep(none,p11),head(h11,p11),3_minutes(h
11). 

E': verb(cook,c1) : 
  comp(dadj,p11,c1),prep(none,p11),head((h11,p11),3_minutes(h
11). 

the second one is correct, according to C and DT, saying that 3_minutes is a 
duration, where C is given below. 
C: verb(cook,X) :-  
   comp(dadj,Y,X), prep(none,Y), head(Z,Y), duration(Z).  
  

If the parser would not have built the second and correct interpretation, but only the 
first one, the Asium disambiguating component would have suggested it by abducing 
comp(dadj,p11,c1). When only one literal lacks among the four needed, it is 
abduced in order to complete the proof. 

4.3 Language Control 

Language control checks the syntactic validity of the verbal grammatical relations, 
and the semantic validity of the heads. If there is no clause in the subcategorization 
frame covering the example to be tested, the example is considered as invalid. In 
particular, it allows one to detect metonymies. A possible replacement of the invalid 
head can be suggested by abduction in a similar way as when disambiguating.  

For example, C does not cover the example E, as "glass" is not defined as a  
"liquid" in DT. "liquid" can be suggested for replacing "glass". 
E: verb(drink,c1) :- 
   comp(dobj,p11,c1),prep(none,p11),head(h11,p11),glass(h11
). 
C: verb(drink,X) :- 
   comp(dobj,Y,X), prep(none,Y), head(Z,Y),liquid(Z). 



 

5. Future work 

The training example set ranges from large to very large. Asium, like other similar 
methods, learns grammatical relations for a given verb independently of one another 
for reasons of efficiency. As a consequence, concepts filling the selection restrictions 
can be overgeneral for some tasks like query extension in information retrieval where 
computational efficiency is crucial. 

For instance, the learned subcategorization frame of "to cook" will be, 
C1: verb(cook,X) :-  

   comp(dobj,Y,X), prep(none,Y), head(Z,Y), cake(Z). 

C2: verb(cook,X) :-  

   comp(dobj,Y,X), prep(none,Y), head(Z,Y), eggs(Z). 

C3: verb(cook,X) :-  

   comp(tadj,Y,X), prep(for,Y), head(Z,Y), duration(Z). 

It says that cakes and eggs can be cooked in any duration, although eggs should not 
be cooked more than 12 minutes. A user query "how long should eggs be cooked? " 
would trigger a search through the cooking recipe base for all combinations of "eggs" 
and "duration" defined in the ontology instead of only the relevant ones. Learning 
grammatical relations independently has another consequence: the properties of the 
grammatical relations of a given verb such as mutual exclusion, optionality or 
requirement are not learned. For instance in the cooking recipe corpus, the time 
adjuncts of "to cook", "for - duration" and "duration" are mutually exclusive and the 
preposition "for" is omitted when the direct object is present. We are developing a 
post-processing method based on the method HAIKU (Nedellec et al., 96) and the 
language CARIN (Levy & Rousset, 98) in order to learn such dependencies. It will 
both specialize the overgeneral selection restrictions and learn dependencies between 
verb complements. 

Clustering based on FOL distances (such as the ones of (Esposito et al., 91), 
(Bisson, 92), (Kirsten & Wrobel, 98)) instead of the Asium distance could help to 
control the generalization of dependent selection restrictions. They are not applicable 
here for reasons of complexity. For instance, the cooking recipe corpus contains 
90,000 examples. Up to 800 concepts and 1000 verb subcategorization frames have to 
be learned in parallel. However such distances could be successfully applied to 
learning predicate schemata from verb subcategorization frames and noun frames. 

6. Related work 

In this paper, we have presented the ILP method Asium which learns ontologies 
and verb subcategorization frames from a parsed corpus in an unsupervised way. 

As proposed by the work reported in (Hindle, 90), (Pereira et al., 93), (Grishman & 
Sterling, 94) and (Grefenstette, 92), among others, Asium clusters terms on the basis 
of syntactic regularities observed in a parsed corpus. The clustered terms are heads of 



verb complements, arguments and adjuncts. Asium differs from both Hindle's (90) 
and Grefenstette's (92) methods where adjuncts are not considered for learning.  
Instead, Hindle's method only considers arguments while Grefenstette's method 
considers arguments and noun relations (adjectival and prepositional). Experiments 
with the cooking recipe corpus and the Pascal corpus of INIST2 have shown that 
considering not only arguments but also adjuncts yields better results in terms of 
precision and recall. Further experiments are performed with the Mo’K system 
(Bisson et al.) for comparing the results when learning from noun relations as 
proposed by Grefenstette (92), and Grishman and Sterling (94). 

The way Asium clusters terms for building hierarchies of concepts fundamentally 
differs from the clustering methods described in (Pereira et al., 93), (Hogenhout & 
Matsumoto, 97) and more generally, from those applied in conceptual clustering. As 
the goal is to build classes of terms, terms are viewed as the examples, i.e. the objects 
to cluster. The examples are described by their attributes; that is to say, their syntactic 
context (verb plus grammatical relation) in the learning corpus. Notice that verbs are 
viewed as the objects when learning verb classes as in (Basili & Pazienza, 97). 
Bottom-up clustering usually computes the distances between pairs of objects 
according to the attributes they have in common. The best pair is selected, the two 
objects clustered, and clustering goes on until a tree is built with a single class 
containing all objects at its top. This strategy builds deep trees with many 
intermediate useless concepts and the concepts at the lowest levels contain very few 
terms. The novel strategy proposed here is to compute distances between all pairs of 
attributes and to cluster the two sets of objects which are described by the closest pair 
of attributes. Thus the number of terms in the classes is much larger and the tree much 
shallower. This improves the readability of the tree and the efficiency of its use. One 
effect could be a lack of precision; however, preliminary experiments on the two 
corpora cited above did not show major differences in precision but a notable 
reduction of tree size. Further experiments would be needed in order to characterize 
the properties of the corpora for which this strategy would be preferable. 

The ILP approach proposed here remains applicable in all the four cases, clustering 
terms versus clustering verbs, and clustering objects as usual, versus clustering 
attributes as in Asium. It could thus be usefully used for modeling previous work on 
clustering terms in an ILP framework. 
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