
Corpus-based Learning of Semantic Relations by the
ILP System, Asium

Claire Nedellec

Inference and Learning group
 Laboratoire de Recherche en Informatique

UMR 8623 CNRS, bât 490
Université Paris-Sud, F-91405 Orsay

e-mail: cn@lri.fr

Abstract. This chapter presents the ILP method, Asium, that learns
ontologies and verb subcategorization frames from parsed corpora in
specific domains. The ontology is learned by bottom-up conceptual
clustering from parsed corpora. The clustering method also generalizes
the grammatical relations between verbs and complement heads as they
are observed in the corpora. The set of grammatical relations learned
for a given verb forms the verb subcategorization frame. This paper
details Asium's learning algorithms in an ILP formalism and shows how
the learned linguistic resources can be applied to semantic tagging,
language control and syntactic disambiguation within the ILP
framework.

1. Introduction

Many applications that handle electronic documents, especially industry-oriented
applications, require specific knowledge bases and linguistic resources. Among them,
predicate schemata are syntactico-semantic resources, which let the system interpret
chunks of documents at the knowledge level. By predicate schemata we mean
conceptual graphs which relate predicates to their semantic roles defined as semantic
sets of terms such as

Pouring1 object liquid, powder
 place recipient, preparation

where liquid = {milk, wine, ...}. Such resources are useful in many
applications such as Information Extraction (Riloff, 93), Information Retrieval, and
Question Answering. So far, there is no fully automatic method for learning this kind
of predicate schemata from parsed training corpora. However, verb subcategorization
frames and semantic classes can already be learned and this is a step in the right

1The examples illustrated in this paper have all been taken from the application of Asium to the

cooking recipes domain.

direction towards predicate schemata learning. In addition, they are useful for the
same applications as predicate schemata. For instance, the subcategorization frame of
« to pour » could be defined as

To pour direct object liquid, powder
 adjunct (preposition = in, into) recipient,
preparation

Compared to predicate schemata, the predicate here is a verb or a noun and the
relations are syntactic. Semantic classes are defined in a similar way as in predicate
schemata.

Previous work attempted to learn verb syntactic relations and semantic classes by
observing syntactic regularities in parsed corpora. The work reported in (Grishman
and Sterling, 94), (Hindle, 90), (Grefenstette, 92), (Pereira et al., 93), (Dagan et al.,
96) among others, is based on Harris' hypothesis of the distributional foundation of
meaning in sublanguages (Harris et al., 89): syntactic schemata that consists of
semantic word classes that reflect the knowledge domain can be identified by
analyzing syntactic regularities in specific domain parsed corpora. Most of them learn
flat classes (Grefenstette, 92), (Hindle, 90) or distances between terms which
represent their semantic similarities (Grishman & Sterling, 94), (Sekine et al., 92),
(Dagan et al., 96), (Resnik, 95).

Hierarchies of concepts attached to verb frames (Pereira et al., 93), (Hogenhout &
Matsumoto, 97) are more understandable than flat classes and they allow semantic
interpretations of document chunks at the appropriate level of abstraction. This is
particularly useful in query extension and question answering as shown by WordNet
exploitation (Resnik & Hearst, 94), (Yarowsky, 92) but unnecessary for syntactic
disambiguation which is the goal of most of the work cited above.

Here, we present Asium, a method that learns verb subcategorization frames and
concepts from parsed texts in a specific domain. It learns graphs of concepts instead
of concept hierarchies so that a given concept may be related to more than a "mother".
This property is required for representing the different meanings and roles of terms.
Asium is based on a bottom-up clustering method as in previous work by Pereira et al
(93) and Hogenhout and Matsumoto (97). The clustering method forms semantic
classes of head terms, which represent the concepts of the ontology. It applies a novel
distance that proves to be robust when applied to noisy corpora. The grammatical
relations observed in the corpora between verbs and terms are also generalized so that
they link verbs and all the classes of acceptable terms, not only the ones actually
occurring in the corpora. The set of learned grammatical relations for a given verb
forms its subcategorization frame where the selection restrictions are filled by the
concepts of the ontology.

Asium is formalized as an ILP method as opposed to previous work described in
the statistics framework. The ILP formalism increases the comprehensibility of the
learned knowledge and makes the comparison and the integration with other ILP
methods easier. The nature of Asium input and output is intrinsically relational: it
consists of relations between verbs and their complements and generality relations
between concepts. Moreover, Asium has to be coupled with tools that can handle
relational data and knowledge. For instance, parsing disambiguation and semantic
tagging will apply coverage testing operations such as filtering, saturation and

resolution. In the current implementation of the platform, data and knowledge are all
stored in a relational database. In addition, learning predicate schemata from verb
subcategorization frames and ontologies requires a relational representation for
expressing the dependencies among concepts of the semantic roles. The ILP
framework is thus viewed as a unified framework for integrating these tools and
methods.

The remainder of this chapter is organized as follows. Section 2 introduces the
settings Asium uses, while Section 3 details the learning algorithms. Section 4 then
presents some potential applications of the learning results. Future work is discussed
in Section 5 and finally, Section 6 compares the approach with other related work.

2. Settings

2.1 Subcategorization Frames

Subcategorization frames describe the grammatical relations between verbs and
their arguments and adjuncts. The verb adjuncts are the verb complements such as the
place, time, and means adjuncts that are optional as opposed to verb arguments
(subject, direct object and indirect objects). A grammatical relation represents the type
of complement and preposition needed if any. The verb sucategorization frames
include selection restrictions, which define the concepts that are valid for a given
grammatical relation. For example, Table 1 represents the subcategorization frame for
the verb "to pour" as Asium learns it. Each clause represents a single grammatical
relation between "to pour", and one argument or one adjunct. X represents the
grammatical relation and Y represents the complement.

Table 1. The subcategorization frame for the verb "to pour".

c(pour,X) :-
 verb(pour,X),comp(dobj,Y,X),prep(none,Y),head(liquid,Y).
c(pour,X) :-
 verb(pour,X),comp(dobj,Y,X),prep(none,Y),head(preparation,Y)
.
c(pour,X) :-
 verb(pour,X),comp(padj,Y,X),prep(into,Y),head(liquid,Y).
c(pour,X) :-
 verb(pour,X),comp(padj,Y,X),prep(into,Y),head(recipient,Y).

The two first Horn clauses say that "to pour" allows two concepts "liquid" and
"preparation" as selection restrictions for the direct object (denoted "dobj"). The last
two clauses show that "to pour" also allows the two concepts "liquid" and "recipient"
as selection restrictions for the place adjunct (denoted "padj") and they are both
introduced by the preposition "into".

2.2 Ontology

The concepts filling the selection restrictions of the verb frames are defined in the
ontology. The ontology concepts learned by the method are defined both
extensionally and intensionally. The extensional definition defines a concept as a
class of terms. Term should be understood in the linguistic sense. For instance
"baking powder" is a term. The membership relation of a term T to a concept C is
represented by a Horn clause, C(X) :- T(X). For instance, the clauses
 liquid(X) :- milk(X).
 liquid(X) :- water(X).
 liquid(X) :- red_wine(X).

define the concept "liquid" as the set of terms "{milk, water, red_wine}".
The intensional concept definition defines concepts as being related to other

concepts by a generality relation. The generality relation on the ontology concepts is
defined by the inclusion between term classes. A concept C is more general than a
concept C' if the class of terms of C' is included in the class of terms of C. The
generality relation between a concept C and a concept C' is represented by the Horn
clause C(X) :- C'(X), as exemplified by the clauses below.
 liquid(X) :- milky_liquid(X).
 milky_liquid(X) :- milk(X).
 milky_liquid(X) :- cream(X).

 liquid(X) :- alcoholic_beverage(X).

Concepts and terms are not explicitly distinguished in this representation; both are
represented by unary predicates. The corpus terms are the predicates that do not occur
as a head of Horn clauses in the ontology, they are terminal nodes. The structure of
the ontology is a directed acyclic graph. The only relation represented in the ontology
is the generality relation among the concepts.

2.3 Applications

The applications of this kind of linguistic resource are numerous. Among others,
they are useful for disambiguating syntactic parsing. For instance, the noun phrase "3
minutes", in the clause "cook until golden, 3 minutes per side", could be interpreted
by a syntactic parser in two ways: as the direct object or as a time adjunct. No
syntactic hint can help the parser here; additional semantic knowledge is needed. The
appropriate ontology allows the parser to identify "3 minutes" as belonging to the
"duration" concept. With the subcategorization frame of "to cook", the parser
recognizes that the duration concept plays the role of time adjunct without a
preposition, and the result is that the interpretation of "3 minutes" as time adjunct is
selected and its interpretation as direct object is removed. Section 4 gives a more
complete description of verb subcategorization frame use and it also presents how
learned linguistic resources can also be used for semantic tagging and language
control.

2.4 Learning Input and Output

The concepts of the ontology and the generality relation among them are learned
from a parsed training corpus. The argument and adjunct heads of the verbs in the
training corpus form Asium's input. The head of a complement is its main term. For
example, in "pour the hot milk into the prepared pan. ", "milk" is the head of the noun
phrase "hot milk". In the following, head should be understood in the linguistic sense
and not the logical one. The output of the algorithm is a set of subcategorizations
frames and ontologies as defined above.

3. Learning

Ontology and verb subcategorization frame learning consists of three phases:
corpus pre-processing, an initial generalization step, and further generalization steps.
Corpus pre-processing transforms the training corpus into a set of examples. The
initial generalization step builds the leaves of the ontology while further
generalization steps build the higher levels and learn the valid grammatical relations
between verbs and concepts.

3.1 Corpus Pre-processing

First of all, a syntactic parser analyzes the training corpus. In the current
implementation, SYLEX (Ingenia corp.) is used (Constant, 95). In each clause, the
parser identifies the verb, its arguments and its adjuncts. It identifies the head and the
preposition, if any, of each argument or adjunct (Section 3.1.1). Properly identifying a
head term as a single word or a complex phrase depends on whether or not the
terminology dictionary of the parser is suitable for the domain. Only grammatical
relations between verbs and heads plus prepositions are relevant as input to Asium.
Asium extracts all grammatical relations independently of each other (Section 3.1.2).

Concept construction by clustering classes of terms is based on a predicate
invention operator. Thus, we need a pre-processing flattening step that will turn terms
into predicates (Section 3.1.3).

3.1.1 Parsing Output

Parsed sentences (clauses) are represented by Horn clauses in the following form,
verb(V_label,Clause_id) :- [
 comp(Gram_rel,Phrase_id,Clause_id),
 prep(Prep_label,Phrase_id),
 head(Head_term,Phrase_id)]*.

A verb can have several complements, each of which has a preposition and a head.
Each triple represents a complement of the verb.

- The verb literal represents the verb, the comp literal, a complement of the verb,
argument or adjunct, the prep literal, the preposition of the given complement, and
the head literal, the head of the given complement.

- V_label, Prep_label and Head_term respectively represent the labels of the
verb, of the preposition and of the head term. In case where the argument of the
verb is not introduced by a preposition, Prep_label is equal to none.

- Clause_id and Phrase_id represent the unique identifiers of the clause and the
phrase in the training corpus.

- Gram_rel represents the grammatical relation in the clause between the arguments
and the verb, as subject (subj), object (dobj), indirect object (iobj), and between the
adjuncts and the verb as time adjunct (tadj), place adjunct (padj), etc. When the
parser is not able to specify the type of adjunct, the more general label "adj" is
given.

Example. The Horn clause E represents the parsing of the clause, "pour the hot milk
into the prepared pan".
E: verb(pour,c1) :-
 comp(dobj,p11,c1), prep(none,p11), head(milk,p11),
 comp(padj,p12,c1), prep(into,p12), head(pan,p12). 

Subjects are generally absent from cooking recipes. However, the method treats
subjects as the other verb arguments. When the syntactic analysis is insufficient for
disambiguating multiple interpretations, all interpretations are kept as input.

3.1.2 Extraction of Verb Grammatical Relations

The learning method generalizes the observed grammatical relations independently
from each other. Thus single grammatical relations are extracted from parsed
examples: extraction splits the input Horn clauses into the same number of new Horn
clauses as there are grammatical relations between the verb and the complements
occurring in the input Horn clause.

Input Horn clauses are connected with a maximal depth of 3. Connection paths
form a tree and this tree's root is Clause_id in the head literal. Extraction copies the
head of the input clause as the input of each new clause and follows each possible
connection path from the head clause variables through the variables of the body
literals until it finds the deepest variables. It amounts to partitioning the variable set
into subsets of k-local variables, where k = 4 (Cohen, 93).

Example. The clause E from the above example is split into the two Horn clauses E1
and E2, with one clause per grammatical relation in E.

E1: verb(pour,c1) :-
 comp(dobj,p11,c1), prep(none, p11), head(milk, p11).

E2: verb(pour,c1) :-
 comp(tadj,p12,c1), prep(into, p12), head(pan, p12). 

Candidate hypotheses are represented in the same way. Thus hypothesis generation
and coverage tests are simplified during learning. In particular, this allows example
storage in relational databases for faster coverage test. However, this results in

overgeneralization since the grammatical relations and selection restrictions for a
given verb are generalized independently of each other (Section 5).

3.1.3 Head Term Flattening

Flattening then turns the head term in each Horn clause into a predicate so that
predicate invention by intraconstruction can then apply. The other terms remain
unchanged.
verb(V_label,Clause_id) :-
 comp(Gram_rel,Phrase_id,Clause_id),prep(prep_label,Phrase_id
),
 head(Head_term,Phrase_id).

becomes
verb(V_label,Clause_id) :-
 comp(Gram_rel,Phrase_id,Clause_id),prep(Prep_label,Phrase_id
),
 head(Head_id,Phrase_id), head_term(Head_id).

Example. F1 results from flattening E1.

F1: verb(pour,c1) :-
 comp(dobj,p11,c1),prep(none,p11),head(h11,p11),milk(h11)
. 

The flattened clauses form the input examples of the generalization algorithm.
Flattening in Asium slightly differs from flattening as defined by (Rouveirol, 94) in
that it applies to constant head terms instead of all constants. The other constants c1,
p11, h11 are turned into variables by the initial generalization step.

3.2 Initial Generalization Step

The initial generalization step consists of first variabilizing the input examples
(Section 3.2.1). Next, it creates the basic concepts of the ontology by predicate
invention and compresses the input examples. The new predicates represent classes of
head terms. This way, a given grammatical relation between a given verb and all
heads occurring in the corpus is represented by a single Horn clause where a new
predicate represents all possible heads in the training corpus (Section 3.2.2).

3.2.1 Variabilization

The identifiers in the input examples are variabilized, while the grammatical role,
the verb and the preposition labels remain unchanged. The resulting clauses are called
variabilized examples and define the set V.

Example.
V1: verb(pour,X) :-
 comp(dobj,Y,X), prep(none,X), head(Z,Y), milk(Z).

V1 results from variabilizing F1. 
One may notice that the number of input examples that are covered by a given
variabilized example is the number of occurrences of the head terms occurring with
the verb and in the grammatical role defined in the variabilized example. For instance
clause V1 covers as many examples as the number of clauses in the corpus where
"milk" should be "poured". The number of examples covered is attached to each
variabilized example Vi and denoted Occ(Vi) as number of occurrences.

3.2.2 Predicate Invention

In Asium, predicate invention is done by applying Muggleton and Buntine's (88)
intraconstruction operator to variabilized examples. It creates one new predicate for
each set of head terms that occur with the same verb and the same grammatical role
and preposition if any. Let us first present the intraconstruction operator.

• Intraconstruction
As defined in (Muggleton & Buntine, 88), it applies to two clauses, the bodies of

which contain a same subpart. Let R1 and R2 be these clauses, the bodies of which
contain a same subpart B2,
 R1: C(X) :- B11 ∧ B2. R2: C(X) :- B12 ∧ B2.

Intraconstruction creates 2 new clauses,
C1: np(?) :- B11. and C2: np(?) :- B12.

which define the new predicate np(?) as the disjunction of B11(X) and B12(X),
the subparts of R1 and R2 that differ. Inverting the resolution with the parent clause
C1 and the resolvent R1 yields the parent clause G:
G: C(X) :- np(Xi) ∧ B2.

as well as inverting resolution with the clauses C2 and R2 (Figure 1).

R

C

1

1

R
2

G C
2

Fig. 1. Intraconstruction

• Predicate Invention in Asium
In Asium, predicate invention applies to the set of variabilized examples of the

same verb, the same grammatical role and the same preposition, if any, but where the
head terms may differ (in italics below).
verb(V_label,X) :-
 comp(dobj,Y,X), prep(none,X), head(Z,Y), head_term(Z).

Example. The three examples below concern the same verb "to pour", the same
grammatical relation direct object, but different heads "milk", "water" and "wine".

V1: verb(pour,X) :-

 comp(dobj,Y,X),prep(none,X),head(Z,Y),milk(Z).
V2: verb(pour,X) :- comp(dobj,Y,X),prep(none,X),head(Z,Y),

water(Z).
V3: verb(pour,X) :-

 comp(dobj,Y,X),prep(none,X),head(Z,Y),wine(Z).

mi l k

wi ne

wa t er

n p

3

7

2

dobj

pour

Basi c Clust er

GR Cla use

Fig. 2. Predicate invention example. 

Let us call such sets of clauses (one set per verb plus grammatical relation) basic
clusters. These clusters form a partition of the set of variabilized clauses. The
predicate invention operator creates one new predicate per cluster. The new predicate
is defined by the disjunction of all heads in the variabilized clauses. The clauses that
define the new predicate form the so-called basic clauses of the Domain theory (DT).

The clause obtained by intraconstruction
verb(V_label,X) :-
 comp(Gram_rel,Y,X), prep(Prep_label,X), head(Z,Y), np(Z).

forms a generalization of the clauses of the corresponding basic cluster, with
respect to DT according to generalized subsumption (Buntine, 88). Such clauses are
called basic Grammatical Relation clauses, or basic GR clauses.

Example. The basic clauses
np(X) :- milk(X). np(X) :- water(X). np(X) :- wine(X).

are built from the clauses V1, V2 and V3. G is the basic GR clause obtained by
intraconstruction.
G: verb(pour,X) :-
 comp(dobj,Y,X), prep(none,X), head(Z,Y), np(Z). 

New predicates formed by Asium are named by the user as they are built (see
(Faure & Nedellec, 99) for more details on user interaction).

At this stage, the set of GR clauses together with DT, comprehensively represents
all the grammatical relations between verbs and terms that occur in the input corpus.
As such, they represent pieces of subcategorization frames. Thus, in the example, np
represents the set "{milk, water, wine}" of head terms observed in the corpus for the
relation "pour - Direct Object" (Figure 2). Further steps will generalize these relations,
extend DT and the variabilized example set.

3.3 Further Generalization Steps

All further generalization steps iterate the same way. The algorithm is given in
Table 2. It outlines the generalization process detailed below. For input, each step
uses the results of the previous steps (i.e., the Domain Theory DT, the GR clause set
and the variabilized example set) and extends them.

Table 2. Asium generalization algorithm.

Initialization
 GR ← {Basic GR clauses}
 DT ← {Basic clauses}
 V ← {Variabilized examples}
 NewGR ← ∅

 Loop

 For all (Gi, Gj) ! GR x GR, and Gi ! Gj
 Compute Dist(Gi, Gj)
 If Dist(Gi,Gj) < Threshold, then

 • Generalization:
 Build a new predicate NewP, form NewP definition, and Gi' and Gj'
 generalizing Gi and Gj by intraconstruction
 NewGR ← {Gi'}! {Gj'}! NewGR
 DT ← NewP definition ! DT

 • Example generation:
 Generate new examples sets VGi' and VGj'
 by partial evaluation of Gi' and Gj'.
 V = VGi' ! VGj' ! V
 Endif
 Endfor
 exit when NewGR = ∅
 GR ← GR ! NewGR
 NewGR ← ∅
 End loop

A generalization step consists of selecting the most similar pairs among current GR

clauses according to a given distance and generalizing each pair into two new clauses
to be added to the current set of GR clauses. The similarity between clauses is based
on the number of similar variabilized examples covered. Two examples are similar if
they have the same head term (Section 3.3.2). The effect of such a generalization step
on a given clause Gi, similar to a clause Gj, is that the new clause Gi' covers the
grammatical relation of Gi, associating the verb of Gi and the terms of Gi plus the
terms of the other clause Gj. In other words, it extends the set of acceptable terms for
a given verb-grammatical relation by adding to it the terms of another similar set of

terms for another verb - grammatical relation. The two extended sets of terms are
equal and define a same new predicate (Section 3.3.1). New variabilized examples are
then generated so that they can be associated to the number of occurrences required
for computing distances in further generalization steps (3.3.3).

3.3.1 Generalization

All pairs of GR clauses which are separated by a distance less than a given
threshold, are generalized by applying the APT predicate invention operator defined
in (Nedellec, 92). As with Muggleton's and Buntine's (88), it is based on
intraconstruction but results in generalization instead of compression. It operates in
the following way.

Given a pair GRi and GRj of GR clauses, a new predicate is created, which is
substituted for the head term predicates in the clause pairs. This yields two new
clauses, GRi' and GRj'. The new predicate is defined in DT as the "mother" of the two
head terms of the clause pair. The initial two clauses cannot concern simultaneously
the same verb and the same grammatical relation and their head term differ. It is
because of the way the initial GR set of clauses has been built. The new clauses GRi'
and GRj' are thus respectively more general than the GR clauses GRi and GRj they
are built from (Figure 3).

G R

G R '

i

i

G R

G R '

j

jC
i

C
j

Fig. 3. APT's predicate invention

More formally,
Gri: verb(V_labeli,X) :-
 comp(Gram_reli,Y,X),prep
(Prep_labeli,X),head(Z,Y),npi(Z).

GRj: verb(V_labelj,X) :-
 comp(Gram_relj,Y,X),prep(Prep_labelj,X),head(Z,Y),npj(Z).

a new predicate np is defined in DT as,
Ci: np(X) :- npi(X). Cj: np(X) :- npj(X).

Two new clauses GRi' and GRj' are built by intraconstruction, respectively
substituting np for npi and npj in GRi and GRj by inverting two resolution steps.

GRi': verb(V_labeli,X) :-

 comp(Gram_reli,Y,X),prep(Prep_labeli,X),head(Z,Y),np(Z).

GRj': verb(V_labelj,X) :-

 comp(Gram_relj,Y,X),prep(Prep_labelj,X),head(Z,Y),np(Z).

The APT predicate invention operator applied here differs from the one described
in Section 3.2 as it performs generalization instead of compression as Muggleton’s
and Buntine’s (88) operator does. The parts of the two initial clause bodies which are
not replaced by the new predicate differ, and thus two parent clauses are built instead
of one and all that they have in common is the invented head term. They are thus
more general than the ones they have been built from.

The new clauses GRi' and GRj' are added to the GR set of clauses, however GRi
and GRj are not removed so that they can produce other generalizations than GRi'
and GRj'. DT then forms an acyclic graph and not a hierarchy.

Example. Suppose G1 and G2 , given below, considered as similar.

G1: verb(pour,X):- comp(dobj,Y,X),prep
(none,Y),head(Z,Y),np1(Z).
G2: verb(drop,X):-comp(padj,Y,X),prep(in,Y),head(Z,Y),np2(Z).

np1 and np2 are defined in DT by

np1(X) :- milk(X). np1(X) :- water(X). np1(X) :- wine(X).
np2(X) :- milk(X). np2(X) :- water(X). np2(X) :-
cream(X).

A new predicate np is invented and defined as
np(X) :- np1(X). np(X) :- np2(X).

and two new clauses G1' and G2' are built which generalize G1 and G2:
G1': verb(pour,X):-
comp(dobj,Y,X),prep(none,Y),head(Z,Y),np(Z).
G2': verb(drop,X):-comp(padj,Y,X),prep(in,Y),head(Z,Y),np(Z).


3.3.2 Heuristics, Distance computing and Threshold

Predicate invention results in generalizing the grammatical relation between verbs
and head terms: the set of valid head terms for one verb and grammatical function is
enriched by the addition of the valid head terms for another verb and grammatical
function. For instance, the set of liquid terms valid as direct object of "to pour" is
enriched by the set of liquid terms valid as place adjunct introduced by the preposition
"in", after the verb "to drop". The induction leap due to predicate invention is
controlled by a distance-based heuristic. GR clause pairs are considered as similar if
their distance is less than a given threshold set by the user.

The distance Dist (Table 3), between two clauses Gi and Gj of the GR set
depends on the proportion of the number of occurrences of similar variabilized
examples covered by both clauses, and of the total occurrence number of examples in
V.

• Similarity between examples

Two examples of V are similar if their head terms are the same. For example, V1
and V2 are similar.

V1: verb(pour,X) :-
 comp(dobj,Y,X), prep(none,Y), head(Z,Y), milk(Z).

V2: verb(drop,X) :-
 comp(padj,Y,X), prep(in,Y), head(Z,Y), milk(Z).

The set of variabilized examples covered by a GR clause G is denoted Cov(G). The
set SimGj(Gi) is the set of examples of Cov(Gi) such that there exists a similar
example in Cov(Gj). Notice that SimGj(Gi)  = SimGi(Gj) . occ(VE)
denotes the number of occurrences for the example VE.

• Definition of the Distance, Dist

The distance between two GR clauses Gi and Gj is defined as follows (Table 3).

Table 3. Asium distance.

ifSimGj
(Gi) ! ",Dist(Gi ,Gj) = 1 #

log Occ(v) + log Occ(v)
v$SimG j

(Gi)

%
v$SimGi

(Gj)

%

log Occ(v) + log Occ(v)
v$Cov(Gj)

%
v$Cov(Gi)

%

Dist(Gi ,Gj) = 1,otherwise.

The only criterion used for choosing the clause pairs is distance. It is possible for
members of a candidate pair to have been built at different generalization steps.

3.3.3 Example Generation

The distance between two GR clauses is computed on the basis of the occurrence
number of the examples covered. Thus we want to easily associate each new GR
clause Gi' with the variabilized examples it potentially covers and not only with the
training examples it actually covers (the ones covered by Gi). We also want to
associate a number of occurrences to the new examples. Asium generates all these
new examples by a partial evaluation of Gi', (Van Harmelen and Bundy, 88), with
respect to DT. New examples are then added to V extending Cov(Gi'). This
amounts to generating one new variabilized example Vinew per example Vjold of
Cov(Gj) that is not in SimGi(Gj) so that Vinew is similar to Vjold and vice et
versa.

Thus Cov(Gi') and SimGj’(Gi') become equal. The number Occ(Vinew)
associated to the example Vinew is equal to Occ(Vjold).

Example. Consider G1' and G2'.

G1': verb(pour,X) :-
 comp(dobj,Y,X), prep(none,Y),head(Z,Y),np(Z).

G2': verb(drop,X) :-
 comp(padj,Y,X), prep(in,Y), head(Z,Y), np(Z).

np, np1 and np2 are defined in DT by, np(X) :- np1(X). np(X) :-
np2(X).

np1(X) :- milk(X). np1(X) :- water(X). np1(X) :- wine(X).
np2(X) :- milk(X). np2(X) :- water(X). np2(X) :- cream(X).

For Cov(G1') = SimG2’ Cov(G1') the following new examples have to be
generated:
verb(drop,X) :-
 comp(padj,Y,X), prep(in,Y), head(Z,Y), wine(Z).

verb(pour,X) :-
 comp(dobj,Y,X), prep(none,Y), head(Z,Y), cream(Z).

since "wine" is the only predicate that is less general than np1 and not less general
than np2 and "cream" is the only predicate that is less general than np2 and not less
general than np1. 

3.3.4 Learning Result

Generalization ends when no GR clause can be generalized further: when there is
no pair that is similar enough with respect to the threshold.

The learned ontology is the set of DT clauses that are not basic clauses. The
subcategorization frame SubCatVerb_Id of a given verb verb_Id, is the set of the
most general GR clauses concluding with verb(Verb_Id,X). There is one such
clause per valid concept for a given verb - grammatical relation. As DT is not
hierarchical, learning can results in more than one most general clause for a given
verb - grammatical relation.

4. Applications

To illustrate the potential applications of the proposed approach we present how
learning results contribute to solving the semantic tagging, parsing disambiguation
and language control problems. These components have been implemented in Asium
for measuring performance with respect to the three tasks.
• Semantic tagging tags verb complement heads in the test corpus by the ontology

concepts according to the verb subcategorization frames. Semantic tagging is a way
to extend documents or user queries for Information Retrieval by enriching texts by
synonyms or more abstract concepts than those actually occurring.

• The ontology and verb subcategorization frames help disambiguate parsing in two
ways: by determining if a given noun phrase should be attached to a verb or to a

noun; and by determining the type of attachment to a verb (argument, adjunct and
the type of the argument or adjunct).

• Language control checks the semantic validity of the heads of verb complements in
the corpus according to the ontology and verb subcategorization frame.

These three tasks are based on the same logical operation: given a parsed clause, show
that the verb subcategorization frame covers the parsed clause according to
generalized subsumption with DT. Examples to be handled (disambiguated,
controlled or tagged) should be pre-processed as described in Section 3.1, that is,
parsed and split. Given an example E,
E: verbe(v_labele,clause_id) :-

 comp(gram_rele,phrase_id,clause_id),

 prep(prep_label,phrase_id),
 head(head_id,phrase_id), head_terme(head_id).

The subcategorization frame Fr of the verb v_label, covers E iff there exists a
clause G of Fr,
G : VerbG(v_labelG,X) :-
 comp(gram_relG,Y,X), prep(prep_labelG,Y), head(Z,Y),
 head_termG(Z).

that is more general than E according to SLD resolution with DT: G and E must have
the same verb, they also must have the same grammatical relation (preposition plus
type of argument), and the head term of G, head_termG, must be more general than
head_terme with respect to DT.

4.1 Semantic Tagging

 Semantic tagging consists of listing all intermediate goals when proving
head_termG(Z), that is to say, listing the concepts of the ontology, the definition of
which is needed for proving head_termG(Z) given head_terme(head_id).

Example. G covers the example E,
E: verb(drop,c1) :-
 comp(padj,p11,c1),prep(in,p11),head(h11,p11),wine(h11).

G: verb(drop,X) :-
 comp(padj,Y,X), prep(in,Y),head(Z,Y), liquid(Z).

since DT says,
 liquid(X) :- alcoholic_beverages(X).
 alcoholic_beverages(X) :- wine(X).

and E is tagged as,
E: verb(drop,c1) :-
 comp(padj,p11,c1), prep(in,p11), head(h11,p11),
 wine(h11), Alcoholic_beverages(h11), liquid(h11). 

Notice that tagging an example differs from saturation: we do not want to add all
concepts that are more general than wine, but only the ones that are relevant here.
Relevancy depends on the syntactic and semantic context given by the
subcategorization frame as highlighted in (Riloff, 93). Learning simple classes from
co-occurrences in text-windows cannot provide a way to disambiguate the role of a
term, but learning subcategorization frames can.

4.2 Parsing Disambiguation

 Parsing disambiguation simply selects the parsing interpretation that is covered by
the subcategorization frames and removes the others. When no interpretation is left, a
possible parsing can be suggested by abduction as in (Duval, 91).

Example. Of the two possible interpretations
E: verb(cook,c1) :-
 comp(dobj,p11,c1),prep(none,p11),head(h11,p11),3_minutes(h
11).

E': verb(cook,c1) :
 comp(dadj,p11,c1),prep(none,p11),head((h11,p11),3_minutes(h
11).

the second one is correct, according to C and DT, saying that 3_minutes is a
duration, where C is given below.
C: verb(cook,X) :-
 comp(dadj,Y,X), prep(none,Y), head(Z,Y), duration(Z).
 

If the parser would not have built the second and correct interpretation, but only the
first one, the Asium disambiguating component would have suggested it by abducing
comp(dadj,p11,c1). When only one literal lacks among the four needed, it is
abduced in order to complete the proof.

4.3 Language Control

Language control checks the syntactic validity of the verbal grammatical relations,
and the semantic validity of the heads. If there is no clause in the subcategorization
frame covering the example to be tested, the example is considered as invalid. In
particular, it allows one to detect metonymies. A possible replacement of the invalid
head can be suggested by abduction in a similar way as when disambiguating.

For example, C does not cover the example E, as "glass" is not defined as a
"liquid" in DT. "liquid" can be suggested for replacing "glass".
E: verb(drink,c1) :-
 comp(dobj,p11,c1),prep(none,p11),head(h11,p11),glass(h11
).
C: verb(drink,X) :-
 comp(dobj,Y,X), prep(none,Y), head(Z,Y),liquid(Z).

5. Future work

The training example set ranges from large to very large. Asium, like other similar
methods, learns grammatical relations for a given verb independently of one another
for reasons of efficiency. As a consequence, concepts filling the selection restrictions
can be overgeneral for some tasks like query extension in information retrieval where
computational efficiency is crucial.

For instance, the learned subcategorization frame of "to cook" will be,
C1: verb(cook,X) :-

 comp(dobj,Y,X), prep(none,Y), head(Z,Y), cake(Z).

C2: verb(cook,X) :-

 comp(dobj,Y,X), prep(none,Y), head(Z,Y), eggs(Z).

C3: verb(cook,X) :-

 comp(tadj,Y,X), prep(for,Y), head(Z,Y), duration(Z).

It says that cakes and eggs can be cooked in any duration, although eggs should not
be cooked more than 12 minutes. A user query "how long should eggs be cooked? "
would trigger a search through the cooking recipe base for all combinations of "eggs"
and "duration" defined in the ontology instead of only the relevant ones. Learning
grammatical relations independently has another consequence: the properties of the
grammatical relations of a given verb such as mutual exclusion, optionality or
requirement are not learned. For instance in the cooking recipe corpus, the time
adjuncts of "to cook", "for - duration" and "duration" are mutually exclusive and the
preposition "for" is omitted when the direct object is present. We are developing a
post-processing method based on the method HAIKU (Nedellec et al., 96) and the
language CARIN (Levy & Rousset, 98) in order to learn such dependencies. It will
both specialize the overgeneral selection restrictions and learn dependencies between
verb complements.

Clustering based on FOL distances (such as the ones of (Esposito et al., 91),
(Bisson, 92), (Kirsten & Wrobel, 98)) instead of the Asium distance could help to
control the generalization of dependent selection restrictions. They are not applicable
here for reasons of complexity. For instance, the cooking recipe corpus contains
90,000 examples. Up to 800 concepts and 1000 verb subcategorization frames have to
be learned in parallel. However such distances could be successfully applied to
learning predicate schemata from verb subcategorization frames and noun frames.

6. Related work

In this paper, we have presented the ILP method Asium which learns ontologies
and verb subcategorization frames from a parsed corpus in an unsupervised way.

As proposed by the work reported in (Hindle, 90), (Pereira et al., 93), (Grishman &
Sterling, 94) and (Grefenstette, 92), among others, Asium clusters terms on the basis
of syntactic regularities observed in a parsed corpus. The clustered terms are heads of

verb complements, arguments and adjuncts. Asium differs from both Hindle's (90)
and Grefenstette's (92) methods where adjuncts are not considered for learning.
Instead, Hindle's method only considers arguments while Grefenstette's method
considers arguments and noun relations (adjectival and prepositional). Experiments
with the cooking recipe corpus and the Pascal corpus of INIST2 have shown that
considering not only arguments but also adjuncts yields better results in terms of
precision and recall. Further experiments are performed with the Mo’K system
(Bisson et al.) for comparing the results when learning from noun relations as
proposed by Grefenstette (92), and Grishman and Sterling (94).

The way Asium clusters terms for building hierarchies of concepts fundamentally
differs from the clustering methods described in (Pereira et al., 93), (Hogenhout &
Matsumoto, 97) and more generally, from those applied in conceptual clustering. As
the goal is to build classes of terms, terms are viewed as the examples, i.e. the objects
to cluster. The examples are described by their attributes; that is to say, their syntactic
context (verb plus grammatical relation) in the learning corpus. Notice that verbs are
viewed as the objects when learning verb classes as in (Basili & Pazienza, 97).
Bottom-up clustering usually computes the distances between pairs of objects
according to the attributes they have in common. The best pair is selected, the two
objects clustered, and clustering goes on until a tree is built with a single class
containing all objects at its top. This strategy builds deep trees with many
intermediate useless concepts and the concepts at the lowest levels contain very few
terms. The novel strategy proposed here is to compute distances between all pairs of
attributes and to cluster the two sets of objects which are described by the closest pair
of attributes. Thus the number of terms in the classes is much larger and the tree much
shallower. This improves the readability of the tree and the efficiency of its use. One
effect could be a lack of precision; however, preliminary experiments on the two
corpora cited above did not show major differences in precision but a notable
reduction of tree size. Further experiments would be needed in order to characterize
the properties of the corpora for which this strategy would be preferable.

The ILP approach proposed here remains applicable in all the four cases, clustering
terms versus clustering verbs, and clustering objects as usual, versus clustering
attributes as in Asium. It could thus be usefully used for modeling previous work on
clustering terms in an ILP framework.

Acknowledgement
This work has been partially supported by the CEC through the ESPRIT contract LTR
20237 (ILP 2).

References
1. Basili R. & Pazienza M. T., "Lexical acquisition for information extraction" in Information

Extraction: A Multidisciplinary Approach to an Emerging Information Technology, M. T.
Pazienza (Ed.), (pp.14-18), Lecture Notes in Artificial Intelligence Tutorial, Springer Verlag
(Pub.), Frascati, Italy, July 1997,

2. Bisson G., "Learning in FOL with a similarity measure", in Proceedings of the Tenth
National Conference en Artificial Intelligence, (pp. 82-87), San Jose, AAAI Press / The MIT
Press (Pub.), July, 1992.

2Pascal is a base of scientific paper abstracts on agriculture, maintained by INIST.

3. Bisson G., Nedellec C. & Canamero L., "Clustering methods for ontology learning: The
Mo’K workbench", in Proceedings of the European Conference on Artificial Intelligence
Workshop on Ontology Learning, Staab S. et al. (Eds), Berlin, 2000 (in press).

4. Buntine W., "Generalized subsumption and its application to induction and redundancy", in
Artificial Intelligence 36, (pp. 375-399), 1988.

5. Cohen W. W., "Cryptographic limitations on learning one-clause logic program" in
Proceedings of the Tenth National Conference on Artificial Intelligence, Washington D.C.,
1993.

6. Constant P., "L'analyseur linguistique SYLEX", Fifth CNET summer school, 1995.
7. Dagan I., Lee L., & Pereira F., "Similarity-based methods for word-sense disambiguation",

in Proceedings of the Annual Meeting of the Association for Computational Linguistics,
1996.

8. Duval B., "Abduction for explanation-based learning", in Proceedings of the European
Working Session on Learning, (pp. 348-360), Lecture Notes in Artificial Intelligence, Y.
Kodratoff (Ed.), Springer Verlag (Pub.), March 1991.

9. Esposito F., Malerba D. & Semeraro G., "Flexible matching for noisy structural
descriptions.", in Proceedings of Twelfth International Joint Conference on Artificial
Intelligence, (pp. 658-664), Sydney, August, 1991.

10. Faure D. & Nedellec C.,"Knowledge acquisition of predicate-argument structures from
technichal texts using machine learning", in Proceedings of Current Developments in
Knowledge Acquisition, D. Fensel & R. Studer (Ed.), Springer Verlag (Pub.), Karlsruhe,
Germany, May 1999.

11. Hindle D., "Noun classification from predicate-argument structures", in Proceedings of the
28st annual meeting of the Association for Computational Linguistics, (pp. 1268-1275),
Pittsburgh, PA, 1990.

12. Grefenstette G., "SEXTANT: exploring unexplored contexts for semantic extraction from
syntactic analysis", in Proceedings of the Thirtieth Annual Meeting of the Association of
Computational Linguistics, (pp. 14-18), 1992.

13. Grishman R. & Sterling J., "Generalizing automatically generated selectional patterns", in
Proceedings of the Sixteenth International Conference on Computational Linguistics, 1994.

14. Harris Z., Gottfried M., Ryckman T., Mattick Jr P., Daladier A., Harris T. & Harris S., The
form of information in science, analysis of immunology sublanguages, Kluwer Academic
(Pub.), Dordrecht, 1989.

15. Hogenhout W. R. & Matsumoto Y., "A preliminary study of word clustering based on
syntactic behavior", Proceedings of Thirty-fifth Annual Meeting of the Association of
Computational Linguistics, 1997.

16. Kirsten M. & Wrobel S., "Relational distance-based clustering", in Proceedings of the
Eighth workshop on Inductive Logic Programing, Page D. (ed.), (pp. 261-270(, Springer
Verlag (Pub.), Madison, 1998.

17. Levy A. & Rousset M. C. "Combining Horn rules and description Logics in CARIN", in
Artificial Intelligence Journal, vol 104, 165-210, September 1998.

18. Muggleton S. & Buntine W., "Machine invention of first order predicates by inverting
resolution", in Proceedings of the Fifth International Machine Learning Worksho, Morgan
Kaufman (Pub.), (pp. 339-352), 1988.

19. Nedellec C., "How to specialize by theory refinement", in Proceedings of the Tenth
European Conference on Artificial Intelligence, (pp. 474-478), Neuman B. (Ed.), John Wiley
& sons (Pub.), Vienna, August, 1992.

20. Nedellec C., Rouveirol C., Ade H., Bergadano F. & Tausend B.,"Declarative bias in
inductive logic programming" in Advances in Inductive Logic Programming, 82-103, de
Raedt L. (Ed.), IOS Press (Pub.), 1996.

21. Pereira F., Tishby N. & Lee L., "Distributional clustering of English words" in Proceedings
of the 31st annual meeting of the Association for Computational Linguistics, (pp. 183-190),
1993.

22. Resnik P. & Hearst M. A. "Structural ambiguity and conceptual relations", in Proceedings
of Workshop on Very Large Corpora: Academic and Industrial Perspectives, (pp. 58-64),
Ohio State University, 1993.

23. Resnik P., "Using information content to evaluate semantic similarity in a taxonomy.", in
Proceedings of the International Joint Conference on Artificial Intelligence, Montreal, 1995.

24. Rouveirol C., "Flattening and saturation: two representation changes for generalization", in
Machine Learning, 14, 219-232, Kluwer Academic (Pub.), Boston, 1994.

25. Riloff H., "Automatically constructing a dictionary for information extraction tasks", in
Proceedings of the 11th National Conference on Artificial Intelligence, (pp. 811-816), AAAI
Press / MIT Press (Pub.), 1993.

26. Sekine S., Caroll J. J., Ananiadou S. et Tsujii J., "Automatic learning for semantic
collocation" in Proceedings of the Third Conference on Applied Natural Language
Processing, (pp. 104-110), Trente, Italy, 1992.

27. Van Harmelen F. & Bundy A., «Explanation based generalization = partial evaluation», in
Artificial Intelligence 36, 401-412, 1988.

28. Yarowsky D., "Word-Sense disambiguation using statistical models of Roget's categories
trained on large corpora", in Proceedings of the International Conference on Computational
Linguistics, (pp. 454-460), Nantes, 1992.

