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1. Introduction 
The considerable development of multimedia communication goes along with an exponentially increasing volume of 
textual information. Information Retrieval (IR) technology provides information at a document collection level and 
thus it is not able to answer requests for specific pieces of information when needed. The development of intelligent 
tools and methods that give access to document content and extract relevant information, is more than ever a key 
issue for knowledge and information management. Information Extraction is one of the main research fields that 
attempt to fulfill this need. The IE field has been initiated by the DARPA's MUC program (Message Understanding 
Conference in 1987 (MUC Proceedings). MUC has originally defined IE as the task of (1) extracting specific, well-
defined pieces of information from homogeneous sets of textual documents in restricted domains (2) in order to fill 
the slots of pre-defined form or templates. MUC has also brought about a new evaluation paradigm: the comparison 
of machine-extracted information to human-produced results. MUC inspired a large amount of work in IE and has 
become a major reference in the text-mining field. Even in the above restrictive definition, the design of an efficient 
IE system with good recall (coverage) and precision (correctness) rates remains a challenging task. 
Building IE systems is time-consuming because even in the simplest case, they rely on manually encoded 
vocabularies and on extraction rules or patterns that are specific to the domains and the tasks at hand and therefore 
not easily reusable. In the more complex cases, they require linguistic analysis that involves lexical, syntactic and 
semantic resources proper to the domain. Therefore, the automated learning of resources and extraction rules for IE 
has appeared as very attractive since the early nineties (Riloff, 1993). In this area, the main research effort in 
machine learning (ML) has been devoted to named entity recognition and IE rules. 
In biomedical domains as well as in many technical and scientific domains, researchers are looking to IE for tools 
that will enable them to deal with information overflow. In genomics, the demand for automating the access to the 
content of texts in electronic form, and for automated identification and interpretation of the relevant information in 
these texts, grew with the evolution of the research scope. Earlier approaches focused on a given specie metabolism 
and a limited set of genes; recent genome research applies experimental approaches, such as DNA chips, at the level 
of whole organisms. Access to many previous results in the form of textual information is essential to select 
promising subjects of study and to interpret the experimental results. 
After sequencing, one of the next main challenges in genomics, is to identify the role of genes and proteins in 
regulation networks and metabolism. Unfortunately, most of the knowledge in functional genomics is not directly 
and easily retrievable from databanks; it is only available in scientific abstracts and articles written in natural 
language. However, most of the literature is available in large, open, online datatbases. For instance, the main 
generalist bibliographic database, MedLine, contains approximately 12 millions entries. Therefore, the capability to 
explor bibliographies and to extract useful knowledge from the literature would be a major advance toward 
developing functional models. Most of the few applications of IE to genomics are devoted to gene interaction, 
protein localization and function discovery. They have met with considerable interest in the bioinformatics 
community as demonstrated by the success of the text sessions at PSB and ISMB, the main bioinformatics 
conferences. Up to now, most of the IE methods applied to genomics rely on manually encoded resources. ML is 
mainly applied to named entity recognition. Some isolated but encouraging results have been obtained in learning 
lexical, syntactic and ontological knowledge for semantic labeling and in IE rule learning. 
The specificity of the sublanguages of genomics makes existing dictionaries and lexicons of little use. However, as 
shown by (Harris et al., 1989) in immunology, the variability of the sublanguages in specific research domains is 
limited: the vocabulary, the polysemy, the syntactic forms, the variety of concepts represented are restricted 
compared to wider domains. Therefore, the acquisition of linguistic resources and IE rules can be usefully based on 
the observation of lexical and linguistic regularities in selected documents from a specific domain. This idea is now 
being popularized in Machine Learning (ML) papers in the IE field and its application to genomics is starting. 



The future directions of the domain are difficult to foresee, the domain being very new - the first papers were 
published in 1998; the research competencies required for developing such applications are diverse and the IE tasks 
require much more investment and expertise to be fruitful in this application domain than in MUC competitions.  
The trend in current projects is towards the involvement of linguistic text processing and semantic knowledge, rather 
than shallow processing and simple IE patterns: segmentation into words, morpho-syntactic tagging (the part-of-
speech categories of words are identified), syntactic analysis (sentence constituents such as noun or verb phrases are 
identified and the structure of complex sentences is analyzed) and sometimes additional processing such as lexical 
disambiguation, semantic tagging and anaphora resolution. 
As in MUC, statistics provide good methods for low level tasks such as named entity recognition while more 
knowledge-intensive ML systems are applied to higher level tasks such as IE rule learning where more expressive 
representations and background knowledge are needed. 
The field of  genomics, like all quickly evolving research domains, raises problems that did not appear so crucial in 
MUC domains, such as the problem of feature selection and combination among the huge amount of candidate text 
features, the integration of existing resources with learned knowledge and the lack of standard corpora and expertise. 

2. Information Extraction 
A typical IE task is illustrated by Fig. 1 from a CMU corpus of seminar announcements (Freitag, 1998). IE process 
recognizes a name (John Skvoretz) and classifies it as a person name. It also recognizes a seminar event and creates a 
seminar event form (John Skvoretz is the seminar speaker whose presentation is entitled “Embedded commitment”).  
Even in such a simple example, IE should not be considered as a mere keyword filtering method. Filling a form with 
some extracted words and textual fragments involves a part of interpretation with respect to the “context” (i.e. 
domain knowledge or other pieces of information extracted from the same document) and according to its “type” (i.e. 
the information is the value of an attribute / feature / role represented by a slot of the form). In the document of 
Fig. 1, “4-5:30” is understood as a time interval and background knowledge about seminars is necessary to interpret 
“4” as “4 pm” and as the seminar starting time.  

Document: Professor John Skvoretz, U. of South Carolina, Columbia, will present a seminar entitled "Embedded 
commitment", on Thursday, May 4th from 4-5:30 in PH 223D. 

Filled form (partial) 
 place: PH 223D 
 starting time: 4 pm 
 title: Embedded commitment 
 speaker: Professor John Skvoretz […] 

Fig 1. A seminar announcement event example. 
IE overall process  
Operationally, IE relies on document preprocessing and extraction rules (or equivalently extraction patterns) to 
identify and interpret the information to be extracted. The rules specify the conditions that the preprocessed text must 
verify and how the relevant textual fragments can be interpreted to fill the forms. In the simplest case, the textual 
fragment and the coded information are the same and there are neither text preprocessing nor interpretation.  
More precisely, in a typical IE system, three processing steps can be identified (Hobbs et al. 1997; Cowie and Wilks, 
2000):  

1. text preprocessing, whose level ranges from mere text segmentation into sentences and sentences into 
tokens to a full linguistic analysis;  

2. rule selection: the extraction rules are associated with triggers (e.g. keywords), the text is scanned to 
identify the triggering items and the corresponding rules are selected;  

3. rule application, which checks the conditions of the selected rules and fills the forms according to the 
conclusions of the matching rules. 

The rules are usually declarative. The conditions are expressed in a Logics-based formalism (Fig. 2), in the form of 
regular expressions, patterns or transducers. The conclusion explains how to identify in the text the value that should 
fill a slot of the form. The result may be a filled form, as in Fig. 1, or equivalently, a labeled text as in Fig. 2. The 
more explicit (i.e. the more semantic and conceptual) the IE rule, the more powerful, concise and understandable it 
is. However, it requires the input text being parsed and semantically tagged. 
Extraction usually proceeds by filling forms of increasing complexity (Wilks, 1997): 
• Filling entity forms aims at identifying the items representing the domain referential entities. These items are 

called “named entities” (e.g. Analysis & Technology Inc.) and assimilated to proper names (company, person, 
gene names) but they can be any kind of word or expression that refers to a domain entity.  



• Filling domain event forms: The information about the events extracted by the rules is then encoded into forms 
in which a specific event of a given type and its role fillers are described. An entity form may fill an event role. 

• Merging forms that are issued from different parts of the text but provide information about a same entity or 
event. 

• Assembling scenario forms: Ideally, various event and entity forms can be further organized into a larger 
scenario form describing a temporal or logical sequence of actions/events. 

As shown in Fig. 2, the condition part of the extraction rules may check the presence of a given lexical item (e.g. the 
verb named), the syntactic category of words and their syntactic dependencies (e.g. object and subject relations). 
Different clues such as typographical characteristics, relative position of words, semantic types or even coreference 
relations can also be exploited.  

Sentence: "NORTH STONINGTON, Connecticut (Business Wire) - 12/2/94 - Joseph M. Marino and Richard P. Mitchell have 
been named senior vice president of Analysis & Technology Inc. (NASDAQ NMS: AATI), Gary P. Bennett, president and 
CEO, has announced." 
Rule 

Conditions: 
noun-phrase (PNP, head(isa(person-name))), noun-phrase (TNP, head(isa(title))), 
noun-phrase (CNP, head(isa(company-name))), verb-phrase (VP, type(passive),head(named or elected)), 
preposition (PREP, head(of or at or by)),  
subject (PNP, VP), object (VP, TNP), post_nominal_prep (TNG,PREP), prep_object (PREP, CNP)   

Conclusion: management_appointment (M, person(PNP), title (TNP), company (CNP)). 
Comment: 

IF there is a noun phrase (NP) whose head is a person name (PNP), an NP whose head is a title name (TNP), an NP 
whose head is a company name (CNP), a verb phrase whose head is a passive verb (named or elected or appointed), a 
preposition of, at or by. If PNP and TNP are respectively subject and object of the verb, and if CNP modifies TNP,  

THEN it can be stated that the person “PNP” is named "TNP" of the company “CNP”. 
Labeled document 

NORTH STONINGTON, Connecticut (Business Wire) - 12/2/94 - <Person>Joseph M. Marino and Richard P. 
Mitchell</Person> have been named <Title>senior vice president</Title> of <Company>Analysis & Technology 
Inc</Company>. (NASDAQ NMS: AATI), Gary P. Bennett, president and CEO, has announced.  

Fig. 2. Example from MUC-6, a newswire about management succession 

3. Machine Learning for Information Extraction 
Among all IE tasks, most of the effort in Machine Learning has been devoted to named entity recognition and IE rule 
acquisition. 
Named entity recognition (NER) 
Recognizing and classifying named entities in texts require knowledge on the domain entities. Specialized lexical or 
keyword lists are commonly used to identify the referential entities in documents. Usual manual approaches also 
combine pattern matching with manually constructed dictionary in order to associate abbreviations, typographic and 
morpholological variations to the appropriate references. Semantic tagging by the type of the entities (company 
name, place, date) is quite straightforward in this case. The patterns may include constraints on the context of the 
entity to disambiguate the type if needed. 
Hidden Markov Models (HMM) based on sequences of bigrams (pairs of tokens) has become a popular method for 
learning named entity recognition patterns from annotated corpora since Nymble (Bikel et al., 1997). Simple bigrams 
appear as sufficient for learning efficient rules.  In this framework, the learning problem comes to associate category 
tags, (i.e. the entity types and the other type) to the text words, according to the only previous word in the sentence. 
Named entities can be represented by compound nouns and not only simple nouns, then type categories can be 
associated to type "beginning" tag and type "in" tag while the rest of the words are tagged by the other tag. The 
HMMs differ in their ability to learn the model structure or not, in the way they estimate the transition probabilities 
(from training data or models built by hand) and in their reusability in different domains according to (Collier et al. 
2000).  
More recently, approaches based on the Maximum Entropy (ME) appear as very powerful and relevant (Mikheev et 
al., 1998; Borthwick, 1999; Chieu and Ng, 2002). As in HMM, the method computes the probability to output a 
given label, given the word to tag. In this model, dependencies between word labels are easier to represent and the 
role of useful text features (simple words, case, length, POS tags, semantic categories, numbers, specific symbols, 
prefix, suffix, context) is coded is a more explicit way and easier to take into account.  



Classical ML discriminant classification methods such as SVMs (Takeuchi and Collier, 2002; Isozaki and 
Kazawa, 2002), k-KNN, Neural Networks have also been applied. As for HMM, the learning task is coded as a 
classification problem where each term/word is associated to a tag. 
Manually encoded patterns are generally more efficient but also more time-consuming. Then depending on the tasks 
and the type of entities, SVMs, ME and HMM yield more or less similar results. 
Learning IE rules 
In the classical framework, a ML system is fed with pairs of filled forms and annotated texts, where substrings in the 
text are associated to the filled slots in the form.  
Learning can be then viewed either as a classification task (Freitag, 1998) (as illustrated by Fig. 3), where the 
extraction rules to be learned represent the conditions for filling a given slot, or equivalently, as pattern learning 
where the patterns are regular expression to be matched to text substrings. 
 

Text fragments

the GerE protein

inhibits

transcription

in vitro

the sigK gene

encoding sigmaK

transcription of the sigK gene

transcription of the sigK

gene encoding sigmaK

Slots

Type

Agent

Target

IE rule = classifierlinguistic normalization

and domain inference
other

the GerE protein

negative (derived from inhibits)

in vitro

the sigK gene

encoding sigmaK

transcription of the sigK gene

transcription of the sigK

gene encoding sigmaK

 
Fig. 3. IE rule learning viewed as a classification task 
The learning methods then differ in: 
The type of text: free, semi-structured, structured text, more or less domain restricted, (physician discharges, gene 
interactions, newswires about company joint ventures and terrorist attacks, job or seminar announcements). 
• The type of slots to fill, (symbolic / numeric, text substring or more abstract); 
• The role of the context of the relevant fragment in the text (size of the context); 
• The type of features for describing the documents, which can be relational (relative position of two words, word 

neighborhood, syntactic relation, thematic role) or not (exact word, lemma, word position, part-of-speech tag, 
semantic category, case information); 

• The use of additional lexicons (semantic categories, hyperonym links, thematic roles, case frames); 
• The role of the user for annotating the examples and validating the result, (the whole document is classified as 

relevant or not, the text fragment is labeled with the slot, the sentence is labeled with a central concept, tags are 
inserted, seed semantic categories or seed patterns are provided, intermediate learned patterns are validated); 

• The type of learning algorithm (case-based, naïve Bayes-based, grammatical inference, relational learning, ILP) 
and the learning steps (building a pool of good rules and then specializing them, refining the boundaries). 

4. Information need in Genomics 
Biologists can search bibliographic databases via the Internet using keyword queries that retrieve a large superset of 
relevant papers. Alternatively, they can navigate through hyperlinks between genome databanks and referenced 
papers. To extract the requisite knowledge from the retrieved papers, they must identify the relevant abstracts or 
paragraphs. Such manual processing is time consuming and repetitive, because of the bibliography size, the relevant 
data sparseness, and the database continuous updating. For example, the focused query “Bacillus subtilis and 
transcription” retrieves 2,209 abstracts. We chose this example because Bacillus subtilis is a model bacterium and 
transcription is a central phenomenon in functional genomics involved in genic interaction, a popular IE problem.  
"GerE stimulates cotD transcription and inhibits cotA transcription in vitro by sigma K RNA 
polymerase, as expected from in vivo studies, and, unexpectedly, profoundly inhibits in vitro 

transcription of the gene (sigK) that encode sigma K." 
Fig. 4. Example of sentence describing genic interactions. 
Once relevant abstracts have been retrieved, there is no operational IE tool available in genomics and forms such as 
the one of Fig. 5 should be filled by hand. 



Type: positive 
Agent: GerE 

 
Interaction 

Target: transcription of the gene sigK 
Fig. 5. Example of form describing a genic interaction. 
However, applying IE à la MUC to genomics and more generally to biology is not an easy task because IE systems 
require deep analysis methods for the relevant fragments. As shown in the example Fig. 4, retrieving that GerE is the 
agent of the inhibition of the transcription of the gene sigK requires at least syntactic dependency analysis and 
coordination processing. In most of the genomics IE tasks (function, localization, homology) the methods should 
then combine the semantic-conceptual analysis of text understanding methods with IE through pattern matching. 

5. State of the art in genomics 

5.1. Document filtering 

Information retrieval and more generally the management of document collections in biology are out of the scope of 
this paper. However, it is a prerequisite step to IE as the lack of robustness of the IE methods and their computational 
cost make them inapplicable to large corpora and to irrelevant documents. IR can then be viewed as a way to select 
the appropriate document subset for IE. In most of the applications, the target information is local to the sentence, or 
to the paragraph. Then, the next step consists of selecting the relevant text fragments within the set of retrieved 
documents. Classical ML- and statistics-based approach to document and sentence filtering have been applied to 
genomics. Among SVMs, naïve Bayes (NB) methods, Neural Networks, decision trees (Marcotte et al., 2001;  
Nedellec et al., 2001), NB methods coupled with feature selection seems to outperform the other sentence filtering 
approaches by yielding around 90 % precision and recall. No clear conclusion can be drawn from the linguistic-
based representation change such as the use of lemmatization, terminology and named entities, as also observed in 
other domains. 

5.2. Named entity recognition 

Most of the work in IE application to genomics is devoted to NER. The main reasons are that this field has been 
deeply explored in MUC competitions and some of the genomics problems can be solved by a quite direct 
application of known methods; NER is a prerequisite step for many document processing tasks and not only IE; 
existing genomics dictionaries can be used as a starting point; the NER task raises difficult research problems 
because of the high variability in the name spelling and the incredibly large rate of word homology and ambiguity. 
The entities to be recognized are mainly gene and protein names (Fukuda et al., 1998; Proux et al. 1998; Cohen et 
al., 2002; Franzen et al., 2002), receptors, promoters, binding-sites, organs, organisms, species, molecular functions, 
phenotypes, diseases (Rindflesh et al., 2000), syndroms, drugs, chemical compounds and experimental conditions. 
The limit between named entities and terms is often unclear. 
The variations are graphical (sigma K / sigma(K) / sigma-K), morphological (Down syndrom / Down's syndrom), 
syntactic including co ordinations (human cancer / cancers in human, human B- or T-cell lines / human B-cell lines) 
and semantic (rat somatotropin, rat growth hormon). Synonymy may be due to renaming. For instance, genes may 
be renamed once their function is known (SpoIIIG / sigma G). Segmentation may be not obvious because of frequent 
ellipsis (EPO mimetic peptide / EPO) and syntactic variations. Abbreviations (Bacillus subtilis / B. subtilis) and 
acronyms (chloramphenicol acetyltransferase / CAT) are often used. Imprecise references are frequent, including 
anaphoric references, references to families and groups (Rho family, protein kinases, globulins, eukaryotic RhoA-
binding kinases). 
Correctly typing or categorizing is a much more difficult task than simply recognizing that a given word sequence is 
a named entity because of the frequent homologies. (Cohen et al., 2002) observed for instance that the names 
produced by a simple typographic hyphenation variation refer to different entities in 85 % of the cases. This 
observation is based on LocusLink database and raises the question of the soundness of the source. Typing also 
includes finding the correct reference to the specie, which is often not trivial, as many gene and protein names are the 
same in different species. 
5.2.1 Hand-coded patterns 
Among the methods applied, only very few are ML- and statistics-based. While the pattern learning approach tends 
to use rather basic information from the text, the hand-coded pattern approach, on contrary, relies on multiple 
sources of information: on existing dictionaries and lexicon such as SWISSPROT, TREMBL, HUGO, UMLS among 



others (Rindflesh et al., 2000; Cohen et al., 2002; Leonard et al., 2002), character and word-based approaches, 
linguistic processing (Proux et al. 1998), contextual disambiguation and domain knowledge (Humphreys et al. 2000; 
Fukuda et al. 1998; Hishiki et al. 1998; Franzen, 2002 ; Narayanaswamy et al., 2003). The experimental results are 
difficult to compare because of the lack of standard annotated corpora and share tasks apart the recent GENIA corpus 
(Ohta et al., 2002). 
Combination of letters, digits and symbols (including Greek letters for instance) are representative of named entities 
(Franzen et al., 2002) but also source of ambiguity. Specific patterns must be designed for excluding bibliographic 
references, chemical or arithmetic formula or sequences. Typographic variations (hyphenation, parenthesis, case) 
coded in patterns can be productive for named entity recognition from existing dictionaries although main cause of 
typing ambiguity (Cohen et al., 2002). The only application of a simple edit distance (Cohen et al., 2002) or protein 
name alignment algorithm such as BLAST (Krauthammer, 2000) for recognizing notational and typographic 
variations is not realistic without additional knowledge and constraints.  
Hand-encoded patterns also include knowledge of the domain. For instance, proteins are often designated by their 
function (growth hormon), their localization or cellular origin (HIV-1 envelop glycoprotein gp120), their physical 
properties (salivary acidic protein-1) or homologue proteins (Rho-like protein). (Narayanaswamy et al., 2003), 
among others, uses contextual semantic labeling of terms by domain knowledge to identify and disambiguate NE. 
As usually in NER, signal words are very helpful. Factor, receptor, enzyme, protein, particle, peptide, domain, 
terminal (Franzen et al., 2002), and cell, clone and line for cells as in the EDGAR system (Rindflesh et al., 2000) can 
be used for example. 
Morphological suffix and prefix can also be discriminant (e.g. -in, -ase for proteins). The linguistic processing, 
mainly morphological analysis, POS tagging and chunking must be adapted to the domain as shown by (Majoros  et 
al., 2003) that presents a HMM-based methods for POS-tagging of biomedical texts from an existing general trained 
HMM and training examples of the biomedical UMLS lexicon phrases. 1 % improvement only has been observed. 
Manual tuning of general POS taggers appears as more efficient and easier to implement. 
The association of acronyms or abbreviations and their definition or expansion can be also done by hand-built 
regular expression (Pustejovsky et al., 2001; Yoshida et al., 2000; Schwartz and Hearst, 2003; Nenadic et al., 2003) 
using external dictionaries, capitalization criteria, edit distance, parenthesis occurrence, distance between the 
acronym and its candidate expansion or syntactic information. See (Schwartz and Hearst, 2003) for a review of the 
methods and results. The homonymy problem is not correctly handled by this work. 
More generally than entities, terms are extracted, classified and semantically typed by methods that combine 
dictionaries, distributional semantics and lexico-syntactical patterns in the line of (Hearst, 1992). 
(Hishiki et al. 1998) gives examples of contextual regular expressions applied to term and entity recognition and 
categorization that rely, for instance, on: 
• Indefinite appositions: the pattern NP(X), a NP(Y) gives X as an instance of Y, if Y is a type. From the 

sentence "csbB, a putative membrane-bound glucosyl transferase", csbB is interpreted as an instance of 
transferase if transferase is defined as a type. 

• Exemplification of copula constructions: NP(X) be one of NP(Y) or NP(X) e.g. NP(Y). The fact that abrB is 
an instance of gene is extracted from "to repress certain genes, e.g. abrB". 

Coreference resolution has also been recognized by MUC as necessary part of an IE system. In genomics, (Castano 
et al., 2002) presents a hand-coded rule-based method for resolving anaphora in the specific cases of bio-entities 
represented by pronominal anaphors (The S210A Spo0A mutant exhibited no change from wild-type binding, 
although it was defective in [..]) and sortal anaphors (Both SigK and gerE were essential for ykvP expression, and 
this gene was transcribed [..]) but not event anaphora and cataphora, which are also frequent. The features include 
syntactic information (POS tag, number, person, definite/indefinite) and UMLS type as semantic information 
although the coverage of UMLS in genomics is quite loose. Resolution includes multiple antecedents (Both proteins 
could be involved [..]) and cascades of anaphors. The method weights the candidate antecedents according to 
classical constraints (same number and person), morphological preference (substring similarity) and semantic 
similarity according to the UMLS typing. The authors observe that surprisingly, syntactic dependencies such as 
subject-object badly affect the accuracy, while the type of arguments (subject and object) of some specific biological 
verbs used as constraints significantly improves it. As opposed to MUC, there is still no tentative in genomics for 
training such an algorithm.  
5.2.2. ML for named entity recognition 
Most of the ML- and statistics-based approach developed for the newswires of MUC competitions does not use 
sophisticated feature sets such as the ones required in genomics. Therefore few works only automates NER for 
genomics and the methods are more or less the same as presented in section 3 for the general case. The results are not 



as good as those of hand-coded patterns and at this stage, these methods should more be seen as a help than as a way 
to fully automates the NER task. All methods use training corpus and include entity typing. 
The work on NER in genomics is mainly by the group of the GENIA project (Collier et al., 2000; Nobata et al., 
2000; Takeuchi and Collier, 2002; Kazama et al., 2002). It makes comparison easier because the methods are 
generally applied to the GENIA corpus or a subset of it (http://www-tsujii.is.s.u-tokyo.ac.jp/GENIA). The current 
version of this corpus of 670 MedLine abstracts on transcription in human blood cells contains 23 793 entities from 
24 different semantic classes. 
HMM-based methods were the first machine learning methods applied to NE recognition in genomics (Collier et al., 
2000). The entities of the corpus of 100 MedLine abstracts from the GENIA corpus has been tagged by a domain 
expert. The 3500 entities identified belong to 10 categories (proteins, genes, cell line, location, etc.).  The HMM is 
trained by bigrams training examples. The features describing the words are mainly character-based (digit, symbol, 
punctuation mark, etc.) plus determiner, and conjunction part-of-speech. No domain knowledge and linguistic-based 
feature is used. HMM post-processing corrects tags by comparing the tags of the different occurrences of the same 
word through the corpus, increasing the accuracy of 2.3%. The experiment suffers of lack of training data. The best 
recognized categories (proteins 76%, genes 47%) are also the most frequent and they benefit from the text features as 
opposed to the other categories. On the same 100 abstract corpus (Nobata et al., 2000) compares a naïve Bayes (NB) 
based method using term lists and typed head nouns to a decision tree (DT) using chunking (shallow parsing). The 
NB method performs better on gene names (84%) while the DT method yields better results on protein names (85%) 
and on the other categories. This could be explained by the lack of data. No conclusion is drawn here on the role of 
chunking. Later work demonstrates the utility of larger word-window and more word-based and linguistic features 
such as morphology to the cost of generality. 
For example, (Kazama et al., 2002) presents an application of SVMs to the NE task in the GENIA corpus. The class 
of non-entity words of the corpus is split according to the POS tag information in order to make learning by SVMs 
tractable and it results in an accuracy improvement. SVM binary classification is extended to multi-class learning by 
a classical pair-wise with majority voting approach (Weston and Watkins, 1998). The examples are represented by 
vectors coding the following information for the preceding, current and following words: position of the word in lists 
of vocabulary, of POS tags, of suffixes, of prefixes, of substrings and of categories. The most informative features 
seem to be the class of the preceding words and the suffixes. Window of (-3, +3) size yields the best results. 
Compared with a Maximum Entropy method (ME), the SVM method with the polynomial kernel obtains slightly 
better results. It is noticed by the authors, that some of the useful character features (hyphens, numbers) used by the 
ME method (Kazama et al., 2001) have been abandoned in this experiment for comparison reasons. 
(Takeuchi and Collier, 2002) conclusions on SVMs are similar. They also noticed that SVMs seem to be sensitive to 
the problem of segmentation (dealing with complex expressions and hyphens). Compared to HMM, SVM obtain 
slightly better results that should be even improved by an adapted POS tagger and a better segmentation. 
(Hanish et al., 2003) proposes a hybrid approach including the use of dictionaries and hand-coded rules in 
combination with the optimization of the parameters of the score measure through a machine learning method, 
Robust linear programming (RLP). The results obtained for human are encouraging, but the problem of unspecific 
synonyms stays partially unsolved because of the lack of contextual linguistic analysis. 
Tagging training corpora is time-consuming and is an obstacle to the popularity of ML-based methods. 
(Hatzivassiloglou et al., 2001) proposes to use as positive examples the entity name recognized with the help of 
GeneBank database and that are directly followed by their types as cwlH gene. 2,65% of the entity occurrences are 
expressed in this way. Three ML methods have been applied, naïve Bayes-based, decision tree (C4.5) and rule-based 
(Ripper, by Cohen, 1996). They yield comparable results on the task of disambiguating protein, gene and RNA 
references. Text preprocessing consists of tokenization, stemming, stop-word removal, feature selection and POS-
tagging. The word features include nearby words, distance from the nearby words, case and POS. Position 
information and feature selection decrease the accuracy for data sparseness reasons, while capitalization, stop word 
removal and stemming has a little positive effect but notably reduce the feature space, POS slightly improve the 
accuracy (1%). The performance is difficult to evaluate since human experts are less reliable than for other tasks. 
This is probably due to the fact that in many cases, the distinction between genes, proteins and messengers is 
irrelevant, as for instance in The S210A Spo0A mutant exhibited no change from wild-type binding [..]. In genic 
interactions, it is not necessary to explicitly distinguish the gene that expresses the protein from the protein itself. 
Few works on IE only present hybrid approaches involving both hand-coded patterns and machine learning methods. 
However, (Tanabe and Wilbur, 2002) presents an interesting combination of the application of successive hand-
coded heuristics and training phases for identifying gene and protein names. The first step trains Brill POS tagger 
augmented by the UMLS SPECIALIST lexicon, then false positive names are filtered through an anti-list and false 
negative names are filtered through LocusLink and GeneOntology. Compound word names are recovered with the 



help of classical character and word-based criterion. Relevant trigger words and suffixes are identified by occurrence 
counting in UMLS. Bayesian learning is applied at a document level for discarding documents and then false 
positive names. Incorrect tagging of verbs as adjectives that yield to wrongly include verbs into terms is corrected by 
training a SVM as for instance in, inhibiting NF-kappaB. 
Some automatic methods have been designed for retrieving acronyms or abbreviations and their definition or 
expansion (Chang et al., 2002; Adar, 2002). According to (Schwartz and Hearst, 2003), they require time-consuming 
training data and the results are similar to those obtained by hand-designed algorithm and patterns. However, results 
are difficult to compare in genomics as the methods are applied on very different sets of data. No comparison has 
been done on a standard set. 
For identifying synonyms (Nenadic et al., 2002; Nenadic et al., 2003) method does not use patterns in isolation but 
in combination with a distributional semantics based approach because synonymy extraction patterns are not as 
reliable as for hyponymy. Extraction patterns capture syntagmatic information whereas synonymy is a paradigmatic 
relation1. Similarities between terms are computed on the base of contextual (POS tag), lexical (same head / 
modifier) and syntactical cooccurrence counting (with the help of lexico-syntactic patterns such as enumeration and 
coordination patterns). These similarities are then combined in a hybrid CLS measure that computes the semantic 
similarity between pairs of terms. 

5.3 Extraction rules 

In a very similar way to what has been presented in section 5.2.2 for NE recognition task, the methods currently 
applied to the event extraction task in genomics are mainly based either on manual patterns including more or less 
linguistic processing, lexicon and domain knowledge, or on statistics-based techniques applied to very shallow 
representations of the text. Some notable effort is done in research projects such as Caderige 
(http://caderige.imag.fr), or BioMint (http://cui.unige.ch/AI-group/biomint) to apply ML methods such as ILP to 
more complex representations of the text after a deep morpho-syntactic and semantic analysis based on lexical and 
semantic resources specific to the domain. 
The main attempts to information extraction in genomics aim at identifying the protein localization in the cell and at 
building enzymes and metabolic pathways, or regulation networks. Such networks are described by complex graphs 
of interactions between genes, proteins and environmental factors such as drugs or stress and can include phenotypic 
effects. The complete scenario should represent at least the entities, their reactions, their properties, their relations 
and, at a higher level, feedback cycles. In fact, single elementary and binary relations between entities are 
independently extracted by current IE methods. The integration of these elementary relations into a conceptual model 
highly depends on the other extracted facts  and on wider knowledge of the domain. Few works address this 
interpretation and integration question. IE mainly adds new instances of the interaction relation in most of the cases. 
For instance, from the sentence "SpoIIID represses spoVD transcription" the new event Agent(Repress, SpoIIID) and 
Target(Repress, spoVD) is extracted (Roux et al. 2000). 
We will first briefly sketch what has been done with hand-encoded patterns in order to give examples of the type of 
text feature that could be useful for automating the extraction. 
5.3.1 Hand-coded patterns 
Basically, hand-coded sets of patterns for genic interaction extraction are based on significant interaction verbs, 
entity names (protein and genes), POS-tagging, and possibly syntactic dependencies (Sekimizu et al., 1998; Blaschke 
et al., 1999; Rindflesh et al., 2000; Thomas et al., 2000; Ono et al., 2001). Such patterns retrieve high-quality 
information but with a very poor recall. Our own experiments with such patterns —for example, [(Protein1/Gene1) 
*2 (interaction verb) * (Protein2/Gene2) *]—yield a precision around 98 percent with a recall between 0 and 20% if 
the distance between the verb and the entities is constraints, otherwise, both precision and recall are low. The reason 
is that, even in technical and scientific domains, there are many ways to express given biological knowledge in 
natural language. In our corpus, only very few of the genic interactions are expressed by verbs but rather by names or 
more complex forms. Even in the case where the interaction is expressed by a verb, all the correct information may 
not so easy to extract because it requires to correctly identifying syntactic dependencies in complex expressions 
including coordination and embedded clauses as illustrated by the example Fig. 6. 

GerE stimulates cotD transcription and inhibits cotA transcription in vitro by sigma K RNA polymerase, as expected 
from in vivo studies, and, unexpectedly, profoundly inhibits in vitro transcription of the gene (sigK) that encode sigma K..  

Fig. 6. An example of a complex genic interaction sentence. 
                                                             
1 Along the paradigmatic axis, the terms can substitute to each other; along the syntagmatic axis, terms rather tend to combine. 
2 * matches any string of any length (including zero). 



The sentence describes five interactions, sigma K with cotA and cotD and GerE with cotD, cotA and 
sigK. GerE is the subject of the three interaction verbs although it occurs only once at the beginning of the sentence. 
Patterns able to handle such cases must include conditions on syntactic dependencies that are difficult to parse 
correctly. Some of the recent of works are based on predicate-argument structures (P-A structures), also referred as 
subcategorization frames that describe the number, the type and the syntactic construction of the predicate arguments 
(Yakushiji et al. 2001; Pustejovsky et al., 2002). The P-A structures are used for extracting gene and protein 
interactions as shown in Fig. 7. The mapping between P-A structures and IE event frames is explicit and different P-
A structures can be associated to a same event frame. For instance, the extraction of gene/protein interactions is 
viewed as the search for the subject and the object of an interaction verb that are interpreted as the agent and the 
target of the interaction. In these works, parsing is done by shallow, robust or full parsers, which handle or not 
coordinates, anaphora, passive mood and nominalization (Sekimizu et al. 1998; Thomas et al. 2000; Roux et al. 
2000; Park et al. 2001; Leroy and Chen 2002). Additional semantic constraints may be added as selectional 
restrictions3 for disambiguation purposes.  

activate is an interaction verb 
P-A structure of activate:  
Predicate activate Frame: activate 
 args: subject (1)  slot: agent (1) 
  object (2)  slot: target (2) 

Fig 7. Example of a predicate-argument driven rule in functional genomics. 
These approaches rely on the assumption that semantic relations (e.g. agent, target) are fully determined by the 
verb/noun predicate, its syntactic dependencies and optionally the semantic categories of its arguments, (Pustejovsky 
et al. 1993; Gildea and Jurafsky, 2002). 
5.3.2 Statistics-based approach and shallow representation 
In many cases, the genomic information is very redundant because papers will mention explicitely previous results 
that they complement or extend. Hopefully, the expression form changes from one occurrence to another, and one 
may expect that some of the forms are simple to handle. Thus, an attractive alternative to hand-coded patterns and 
deep syntactic analysis consists on applying robust statistics-based methods searching for relevant word co-
occurrences in texts represented as bags of words (Blaschke et al., 1999). For instance, if pairs of gene/protein names 
are encountered enough frequently in different sentences, one may conclude that they interact at a molecular level. 
Unfortunately such cooccurrence may reflect other relations than genic interaction, such as sequence or structure 
homology or co-localization. Moreover newly discovered interactions may not be retrieved because of the lack of 
citations, although they are the most interesting for the biologist. The nature of the genic interaction, positive or 
negative, direct or indirect is not easily identified once a significant level of cooccurrence is pointed out. Such an 
approach usually yields a rather high recall but a poor precision. 
5.3.3 ML-based approach 
The ML-based approach appears as an attractive alternative to hand-coded patterns and statistics-based learning 
because it should be able to be more exhaustive than hand-coded patterns under the assumption of useful training 
example availability and it should be able to handle the complex text features that are needed for high precision. 
However, the cost of precisely annotating training examples is very high in the general case. There are very few 
publications on such attempts although some running projects explicitly include ML-IE based approach in the 
objectives. The training example annotation problem can be usefully overcome in the case where a subset of the 
target information is already available in a structured database. (Craven and Kumlien, 1999) illustrates this strategy 
on protein localization. Training examples are tagged with the help of the YPD database that describes protein 
localization and refers to the relevant bibliography. The sentences that include both a pair of protein name and a 
subcellular localization are tagged as positive. Examples are represented as bags of words. The classification 
algorithm is based on a NB method. Inter-corpus validation yields disappointing results because of YPD bias that 
focuses on yeast specie. Other experiments with an ILP-based method on parsed (POS, dependencies) and hand-
annotated training examples result in more understandable IE rules with a better precision but a lower recall. The 
best compromise is obtained with the NB method. 

6. Linguistics- and ML-based approach of IE in future genomics  
Recent developments in IE involve more and more morpho-syntactic and semantic linguistic preprocessing and 
interpretation of text understanding methods (Yakushiji et al. 2001; Pustejovsky et al., 2002, Tanabe and Wilbur 
                                                             
3 A selectional restriction is a semantic type constraint that a given predicate enforces on its arguments.  



2002, Franzen et al., 2002; Nenadic et al., 2003). In parallel, in NE recognition, as well as in IE rule, the applied 
ML-methods such as ILP, ME and SVMs tend to take into account more and more text features compared to the 
early works (Collier et al., 2000; Craven and Kumilien, 1999). One of the main reasons is the lack of annotated 
training examples. The normalization of training examples using successive interpretation operations based on 
morpho-syntactic and semantic lexicon and processing, augments the regularities, reduces the need for training 
examples and makes learning easier. Fig. 8 shows the result of such a normalization on an example. This step can 
involve terminology, ontologies, and predicate argument structures to label the relevant terms and syntactic 
dependencies with the appropriate concepts. It relies on the fact that, in given specific domain languages, strong 
syntactic regularities make it possible to build a useful semantic structure. 
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agent(Ger_protein, inhibit), target(transcription, inhibit), … 
concept(Ger_protein,protein),concept(inibit,negative_interaction), … 
subject(Ger_protein, inhibit), DObj(transcription, inhibit), … 
token(the), token (Ger_protein), token (inhibit), … 
cat(the, det), cat(Ger_protein, term), cat(inhibit, verb), … 

Fig. 8. Example of sentence morpho-syntactic and semantic normalization. 
High-level IE rules, with conditions that include abstract text features such as concepts, instead of a disjunction of 
specific words, can be learned from such representations. This eases learning, but also the readability, the revision 
and the maintenance of the rules. 
Such normalization requires fine-tuned parsing tools, specific lexicons and dictionaries. More and more promising 
results, as shown above, demonstrate that these resources can be acquired with semi-automatic methods at a low 
cost. In the near future, these attempts should extend. 
With respect to genomics, most of the work in IE has been done on human genic interaction. Human is a favorite 
specie because of the high expectation on short-term results for human therapies. However, there are more biological 
results in functional genomics available in databanks, today, about bacteria than about eucharyotes and these results 
could be usefully exploited for research in ML application to IE. Complementary to the bibliography, databanks are 
obviously useful sources of information at least for tagging the training examples.  
Genic interactions might seem easier to extract because one could believe that most of them are described by a 
limited number of interaction verbs. Unfortunately, it is not the case and limiting information extraction to verbal 
forms would greatly affect the coverage of the results. Other very useful pieces of information, such as sequence 
homologies, functions, localizations are not expressed in a more complex way than genic interactions, and could 
therefore be extracted using the same technology. 
MedLine is considered the main source of textual information for IE, although biologists view textual comments 
such as the ones of SwissProt database as important as well. Unfortunately, they seem to be more complex to process 
because they are in the form of short comments rather than well-formed sentences. Such sources should become 
more popular in IE in the future because of their high relevancy in genomics information discovery. 
To summarize, the trend observed in recent publications is for the technology to meet the needs of the biologists for 
more precise and broad coverage information extraction. The availability of standard corpora and the organization of 
scientific events in text and bioinformatics such as workshop and conference text sessions should popularized this 
research domain in the near future. 



References 
Adar E. (2002). S-RAD: A Simple and Robust Abbreviation Dictionary. HP Laboratories Technical Report, Sept. 
Bikel D. M., Miller S., Schwartz R., Weischedel R. (1997). Nymble: a High-Performance Learning Name-finder. Conference on 
Applied Natural Language Processing. 
Blaschke C., Andrade M. A., Ouzounis C. and Valencia A. (1999). Automatic Extraction of Biological Information from 
Scientific Text: Protein-Protein Interactions,” Proc. Int’l Symp. Molecular Biology (ISMB’99), AAAI Press, USA pp. 60-67. 
Borthwick A. (1999). A Maximum Entropy Approach to Named Entity Recognition. Ph.D. thesis, Computer Science Department, 
New York University. 
Collier N., Nobata C., Tsujii J. (2000). Extracting the Names of Genes and Gene Products with a Hidden Markov Model. 
Proceedings of  COLING-2000, Sarrebrück. 
Castaño J., Zhang J., Pustejovsky J. (2002). Anaphora Resolution in Biomedical Literature. International Symposium on 
Reference Resolution. Alicante, Spain. 
Chang J. T., Schutze H. and RB Altman (2002). "Creating an online dictionary of abbreviations from MEDLINE". J. Am. Med. 
Inform. Assoc. 9(6): 612-620. 
Chieu H. L.,  and Ng H. T. (2002). Named Entity Recognition: A Maximum Entropy Approach Using Global Information. 
Proceedings of the 19th International Conference on Computational Linguistics (COLING 2002). (pp. 190-196). Taiwan. 
Cohen K. B., Dolbey A. E., Acquaah-Mensah G. K. and Hunter L. (2002). Contrast and variability in gene names. Proceedings of 
the Workshop on Natural Language Processing in the Biomedical Domain. pp. 14-20. 
Cowie J., Wilks Y. (2000). Information Extraction. In R. Dale, H. Moisl and H. Somers (eds.) Handbook of Natural Language 
Processing. New York: Marcel Dekker. 
Craven M. and Kumlien J. (1999). Constructing Biological Knowledge Bases by Extracting Information from Text Sources,” 
Proc. 7th Int’l Conf. Intelligent Systems for Molecular Biology (ISMB-99), AAAI Press, USA, pp. 77-86, Heidelberg, Germany. 
Franzen K., Eriksson G., Olsson F., Asker L., Liden P. and Coster J. (2002). Protein names and how to find them. Int J Med Inf. 
67(1-3): pp 49-61. 
Freitag D. (1998). Toward General-Purpose Learning for Information Extraction. Proceedings of  COLING-ACL-98. 
Fukuda K., Tamura A., Tsunoda T., Takagi T. (1998). Toward information extraction: identifying protein names from biological 
papers. PSB'98. pp 707-18.  
Gildea D., Jurafsky D. (2002). Automatic Labeling of Semantic Roles. Computational Linguistics, 28(3):245-288. 
Hanisch D., Fluck J., Mevissen H. T.,  Zimmer R. (2003). Playing Biology's Name Game: Identifying Protein Names in Scientific 
Text Pacific Symposium on Biocomputing 8:403-414.  
Hatzivassiloglou V. and Duboue P. A .and Rzhetsky V. (2001). Disambiguating proteins, genes, and RNA in text: a machine 
learning approach. Bioinformatics. 17 Suppl 1: S97-S106. 
Harris Z., Gottfried M., Ryckman T., Mattick P., Daladier A., Harris T. N., Harris S. (1989). The Form of Information in Science: 
Analysis of an Immunology Sublanguage, Kluwer Academic Publishers, Dordrecht. 
Hearst M. A. (1992). Automatic Acquisition of Hyponyms from Large Text Corpora. Proceedings of COLING'92, pp. 539-545. 
Isozaki H., Kazawa H. (2002). Efficient Support Vector Classifiers for Named Entity Recognition. Proceedings of COLING-2002, 
pp. 390-396. 
Hishiki T., Collier N., Nobata C., Ohta T., Ogata N., Sekimizu T., Steiner R., Park H. S., Tsujii J. (1998). Developping NLP tools 
for Genome Informatics: An Information Extraction Perspective. Genome Informatics. Universal Academy Press Inc., Tokyo, 
Japan. 
Hobbs J. R., Appelt D., Bear J., Israel D., Kameyama M., Stickel M., Tyson M. (1997). FASTUS: A Cascaded Finite-State 
Transducer for Extraction Information from Natural Language Text. In E. Roche and Y. Schabes (eds.), Finite-State Language 
Processing, chapter 13, pp. 383-406. MIT Press.  
Humphreys K., Demetriou G., Gaizauskas R. (2000). Two Applications of Information Extraction to Biological Science Journal 
Articles: Enzyme Interactions and Protein Structures. PSB'2000, 5:502-513. 
Kazama J., Makino T., Ohta Y. and Tsujii Y. (2002). Tuning support vector machines for biomedical named entity recognition. In 
Proceedings of the Workshop of the Natural Language Processing in the Biomedical Domain in ACL '02, Philadelphia, PA, USA, 
July. 
Krauthammer M., Rzhetsky A., Morozov P. and Friedman C. (2000). Using BLAST for identifying gene and protein names in 
journal articles. Gene. 259(1-2):245-252. 
Leroy G., Chen H. (2002). Filling preposition-based templates to capture information for medical abstracts. PSB'2001, Kaua'i, 
January. 
Majoros W. H. and Subramanian G. M. and Yandell M. D. (2003). Identification of key concepts in biomedical literature using a 
modified Markov heuristic. Bioinformatics. 19(3): 402-407. 
Marcotte E. M., Xenarios I., and Eisenberg, D. (2001). Mining litterature for protein-protein interactions. In Bioinformatics, vo. 
17 n° 4, pp. 359-363. 
Mikheev A. (1998). Feature Lattices for Maximum Entropy Modelling. In proceedings of COLING-ACL, pp. 848-854. 
MUC Proceedings (1987-) Message Understanding conference.  
Narayanaswamy M., Ravikumar K. E., Vi jay-Shanker K. (2003). A Biological Named Entity Recognizer. Pacific Symposium on 
Biocomputing 8.  



Nédellec, C., Ould Abdel Vetah, M. and Bessières, P. (2001). Sentence Filtering for Information Extraction in Genomics: A 
Classification Problem. In Proceedings of the International Conference on Practical Knowledge Discovery in Databases 
(PKDD’2001), pp. 326–338. Springer Verlag, LNAI 2167, Freiburg, Sept. 
Nenadic G., Mima H., Spasic I., Ananiadou S. and Tsujii J. (2002). Terminology-driven literature mining and knowledge 
acquisition in biomedicine. Int J Med Inf. 67(1-3): 33-48. 
Nenadic G., Spasic I. and Ananiadou S. (2003). Terminology-driven mining of biomedical literature. Bioinformatics. 19(8): 938-
943. 
Nobata C., Collier N. and Tsujii J. (1999). Automatic Term Identification and Classification in Biology Texts. In the Proceedings 
of the fifth Natural Language Processing Pacific Rim Symposium (NLPRS). Beijin, China. pp. 369-374. 
Ohta T., Tateisi Y., Mima H. and Tsujii J. (2002). GENIA Corpus: an Annotated Research Abstract Corpus in Molecular Biology 
Domain. Proceedings of the Human Language Technology Conference. 
Ono T., Hishigaki H., Tanigami A., Takagi T. (2001). Automated extraction of information on protein-protein interactions from 
the biological literature. Bioinformatics. 17(2): 155-161. 
Park J. C., Kim H. S., Kim J. J. (2001). Bidirectional incremental parsing for automatic pathway identification with combinatory 
categorial grammar. In proceedings of PSB'2001. 
Proux D., Rechenmann F., Julliard L., Pillet V. and Jacq B. (1998). Detecting Gene Symbols and Names in Biological Texts: A 
First Step toward Pertinent Information Extraction. Genome Informatics. 9:72-80.  
Pustejovsky J., Bergler S. and Anick P. (1993). Lexical Semantic Techniques for Corpus Analysis, in Computational Linguistics. 
Special Issue on Using Large Corpora: II, 19(2) pp. 331-358. 
Pustejovsky J., Castano J., Cochran B., Kotecki M., Morrell M. and Rumshisky A. (2001). Automatic extraction of acronym-
meaning pairs from MEDLINE databases. Medinfo. 10(Pt 1):371-5. 
Pustejovsky J., Castaño J., Zhang J., Kotecki M. and Cochran B. (2002). Robust Relational Parsing Over Biomedical Literature: 
Extracting Inhibit Relations. PSB'2002, 7:362-373.  
Riloff E. (1993). Automatically constructing a Dictionary for Information Extraction Tasks. Proceedings of  AAAI’93, 
Washington DC, pp 811-816. 
Rindflesch T. C., Tanabe L., Weinstein J. N., Hunter L. (2000). EDGAR: Extraction of Drugs, Genes and Relations from the 
Biomedical Literature. Proceedings of PSB'2000, vol 5:514-525. 
Schwartz A.S., Hearst M.A. (2003). A Simple Algorithm for Identifying Abbreviation Definitions in Biomedical Text. Pacific 
Symposium on Biocomputing 8:451-462.  
Roux C., Proux D., Rechenmann F., Julliard L. (2000) An Ontology Enrichment Method for a Pragmatic Information Extraction 
System gathering Data on Genetic Interactions. Proceedings of the ECAI'2000 Ontology Learning Workshop, S. Staab et al. 
(eds.). 
Sekimizu T., Park H. S., Tsujii J. (1998). Identifying the Interaction between Genes and Gene Products Based on Frequently Seen 
Verbs in MedLine Abstracts. In Genome Informatics. Universal Academy Press Inc., Tokyo, Japan. 
Takeuchi K. and Collier N. (2002). Use of Support Vector Machines in Extended Named Entity Recognition. Proceedings of the 
Sixth Conference on Natural Language Learning (CoNLL-2002), Taipei, Taiwan, August. 
Tanabe L. and Wilbur W. J. (2002). Tagging gene and protein names in biomedical text. Bioinformatics. 18(8): 1124-1132. 
Thomas J. et al.,  (2000). Automatic Extraction of Protein Interactions from Scientific Abstracts. Proc. Pacific Symp. 
Biocomputing (PSB’2000), vol. 5, pp. 502–513. 
Weston J. and Watkins C. (1998). Multi-class support vector machines. Technical Report CSD-TR-98-04, Dept. of Computer 
Science, Royal Holloway, University of London, Egham, Surrey TW20 0EX, England. 
Wilks Y. (1997): Information Extraction as a core language technology. In Information Extraction, M. T. Pazienza (ed), Springer, 
Berlin. 
Yakushiji A., Tateisi Y., Miyao Y. and Tsujii J.-I. (2001). Extraction from biomedical papers  using a full parser. Proceedings of  
PSB'2001. 


