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Abstract. Recent challenges on machine learning application to named-entity 
recognition in biology trigger discussions on the manual annotation guidelines 
for annotating the learning corpora. Some sources of potential inconsistency 
have been identified by corpus annotators and challenge participants. We go 
one step further by proposing specific annotation guidelines for biology and 
evaluating their effect on performances of machine learning methods. We show 
that a significant improvement can be achieved by this way that is not due to 
the feature set neither to the ML methods. 

Keywords: Named-entity recognition, annotation guidelines, machine learning, 
biology. 

1. Introduction 

Named entities (NE) and terms represent the linguistic expressions that denote the 
objects and concepts in documents. As such their automatic annotation in document 
collections is a preliminary but crucial step for the semantic annotation and further 
document processing. Information Retrieval, Information Extraction (IE) and 
Question/Answering among others, rely on a proper identification of the objects and 
concepts in the documents. The NE dictionaries and terminologies that are needed for 
document annotation are available in some specific domains such as biology, but they 
often suffer from various limitations:  
− they are incomplete with respect to the information processing tasks,  
− additional disambiguation patterns are needed to handle the ambiguity and 

polysemy issue, 
− variants of canonical terms and named entities that are needed to handle the 

synonymy issue are missing. 
Automatic corpus-based acquisition of new NE and terms, disambiguation patterns, 
synonyms and variants has been considered as an attractive solution since the 
beginning of the nineties.  
More recently the recognition of biological entities in scientific papers has been 
popularized by challenges such as NLPBA [Kim et al., 2004 ; Collier et al., 2005] 



and BioCreative Task1a [Tanabe et al., 2005 ; Yeh et al., 2005]. As for MUC in the 
news wire domain, publicly available datasets and evaluation reports in biology have 
a very positive effect on research development in Machine Learning. However, as 
pointed out by [Tanabe et al., 2005], [Dingare et al., 2004] and [Alex et al., 2006], it 
is difficult to build a consistent annotation of the training corpus in biology and this 
negatively affects the reliability of the method evaluation and comparison. Available 
corpora suffer from various inconsistencies. They are revealed by the analysis of the 
errors done by the learned NE recognition (NER) patterns when applied on test sets. 
The sources of potential errors are mainly the fuzzy frontier between entities denoted 
by proper nouns and entities denoted by terms (compound nouns), the lack of 
specification of the generality level of the objects to be recognized (entities vs. 
concepts) and the well-known problem of name boundaries. We have thus specified 
strict guidelines that make the manual annotations easier and more consistent and the 
NER patterns more learnable. Our strategy consists of splitting the NER task into two 
separate recognition subtasks, the recognition of the entities themselves and the 
recognition of their types (e.g. GerE and protein in GerE protein). The experiments 
reported here have been done on the classical problem of the recognition of new gene 
and protein names in the microbiology domain. We get much better results on the first 
subtask (i.e. entity recognition) than similar methods applied on biology corpora 
where the distinction between the annotation of entities and types is not so clear.  
Section 2 motivates our annotation strategy as derived from the analysis of 
annotations inconsistencies in available corpora and from previous work on 
annotation guidelines. Section 3 reports on the experimental results and discuss them 
with respect to previous results in biology. 

2. Annotation guidelines 

2.1 NE versus terms 

The distinction between entities and terms is recent and not fully linguistically 
relevant but it is operationally useful in IE where NER is one of the main tasks. The 
acquisition methods differ because of their morphological differences. Named-entities 
are proper nouns that often have upper case initials. Their variations are mainly 
typographic (e.g. sigma K/ sigma(K)). Terms are common nouns, often compound 
nouns, which follow traditional inflexion rules and their variations are mainly 
morpho-syntactic. The following four biological terms illustrate this:  

ResD protein, either phosphorylated or unphosphorylated /  
both unphosphorylated and phosphorylated ResD /  
the phosphorylated form of ResD /  
ResD~P.  

In NER, the morphology usually determines the conditions that a given name should 
verify to be recognized as a NE rather than a term: NE recognition is mainly based on 
typographic criteria. Syntactic criteria have few effects on the NER performance. In 
biology, this usual morphology-based distinction does not apply. Terms often include 
proper nouns (Figure 1). Their role is generally to specialize the term meaning by 



denoting specific identifiers as in Streptococcus agalactiae NEM318 serotype III 
where NEM318 and III denote the reference to a Streptococcus agalactiae strain. 
Moreover, the morphology-based distinction does not always fit the semantics; NE as 
proper nouns can denote concepts or types as well as instances of the concepts. Proper 
nouns and common terms can even be synonymous and then occur in similar contexts 
in corpus. Sense disambiguation (attaching the correct type to a given name) and new 
name recognition cannot rely on the morphology only but also on the context analysis 
in corpus. Therefore, NE (proper nouns) and term recognition patterns share similar 
contextual conditions. The example of acronyms and abbreviations clearly falls into 
this category. glucose-specific enzyme II (EIIGlc) where glucose-specific enzyme II is 
a term and EIIGl is its synonymous acronym is a representative example of this 
phenomenon. The NE and the term will be both recognized as enzymes. Typographic 
criteria are then not sufficient in biology for recognizing named entities. 

Proper Nouns
Terms

GerEEiffel
chloramphenicol

acetyl transferase
public

transport

Penicillin-binding

protein 2A

Genes/Proteins

 
Fig. 1. Named-entities, Terms or Proper nouns? 

In reality, the lexical frontier between the two kinds of knowledge is fuzzy and 
difficult to formalize. This affects the performances of the Machine Learning methods 
that are used for learning NER patterns because it is difficult to specify strict 
annotation guidelines so that the annotation can be reproducible and the NER patterns 
are learnable.  
On the one hand, from the domain expert point of view the guidelines should refer to 
a consistent semantic category, for instance, all company names or all gene/protein 
names independently of their morphology. Such guidelines can make the learning task 
difficult because the morphologic constraints to be learned are different for the two 
classes of positive examples, NE and terms.  
On the other hand, typographic conditions in recognition patterns are obviously much 
easier to learn if the guidelines are strict on the morphology - only proper nouns 
should be annotated as positive examples - but then, the contextual clues required for 
disambiguating the sense will be more difficult to learn, since terms considered as 
negative examples share the same contexts as positive examples. 
The first strategy has been chosen in previous challenges and evaluations. In 
BioCreative, for instance, SAA and serum response factor (respectively proper noun 
and term) are both annotated as NE proteins. In BioLNLP, PuB1 and purine-rich 
binding sites are both annotated as DNA (genes). It is natural from an application 
point of view: what one wants to acquire is a dictionary of a complete semantic 
category, independently of the morphology. However, the best scores in BioCreative 
are around 80% recall and precision and 76% recall and 69,4 % precision in NLPBA. 



These relatively low scores compared to NE task in MUC can be explained by the 
morphologic difference of the names to be recognized. 
We have thus explored the second strategy, i.e. learning proper noun recognition 
rules. Our hypothesis is that the different types of names, proper nouns and terms 
should be learned separately from different training corpus and with different 
methods. The target named entity dictionary would be then built by merging the 
results of the different learning tasks.  
Since some terms include proper nouns, we have specified detailed guidelines so that 
the annotators can take consistent decisions. Terms that include proper nouns are 
annotated as named entities, when they denote specific objects and not general 
categories or types as detailed in the next section. 

2.2 Entities versus concepts 

The lack of clear distinction between entities (instances) and concepts (types, 
categories) is another source of inconsistent annotation and machine learning errors. 
General categories of biological objects are denoted by terms that occur in different 
contexts than the terms denoting the entities. They are very often in a coreference 
relation, mainly apposition as pointed out  by [Vlachos et al., 2006]. For instance in  

[...] two alkaline phosphatases (APases) (PhoA and PhoB), an APase-
alkaline phosphodiesterase (PhoD), a glycerophosphoryl diester 
phosphodiesterase (GlpQ), and the lipoproteinYdhF were identified […] 

the entity name PhoA is in apposition relation with the concept name alkaline 
phosphatase, APase-alkaline phosphodiesterase with PhoD and glycerophosphoryl 
diester phosphodiesterase with GlpQ. 
Then learning relevant contextual conditions from mixed annotations of concepts and 
entities at different level of generality is difficult. Moreover, the frontier of the 
semantic category is much harder to specify in the annotation guidelines, if concepts 
are included. In biology, concepts are often denoted by general properties as it is in 
binding-protein-dependent transport systems and potentially not useful from an 
application point of view (e.g. DNA-binding protein). The decision to annotate a 
given term as a relevant concept or not is then difficult to take and very annotator-
dependent. What is the limit between entities and concepts in the list heat-shock 
sigma factor sigma 32, heat-shock sigma factor, heat-shock transcription factor, 
stress transcription factor, transcription factor, factor? The usual strategies in 
previous work include both objects and concepts (e.g. purine-rich binding sites in 
NLPBA and mouse synaptophysin gene in BioCreative1).  
We have followed another approach. Only specific objects are considered. For 
instance, penicillin-binding protein 2A is a positive example of protein while 
penicillin-binding protein is not, because it is too general and denotes a family of 
proteins. Following our guidelines, only the first element of the factor list above is 
considered as an entity (i.e. heat-shock sigma factor sigma 32). Note that this strategy 
partly resolves to the problem of the annotation of coordinated noun phrases pointed 
                                                
1 The task description mentions explicitly that human gene is too general. This illustrates how 
the limit is hard to specify. 



out by [Alex et al., 2006]. In anhRad54 and hRad54B proteins we annotate separately 
anhRad54 and hRad54B and not proteins. The problem of annotating intersecting and 
non-contiguous noun phrases is then overcome. Some coordination problems still 
remain unsolved as in interleukin 1 and 2. Correct annotation of both interleukin 1 
and interleukin 2 supposed that noncontiguous and intersecting annotations could be 
made. Note that it is not an inconsistency problem but a problem of specifying an 
appropriate syntax for the annotation. 
Moreover, we have experimentally observed that specific objects (genes, proteins and 
species) are usually not denoted by common terms but either by proper nouns or by 
mixed terms that include proper nouns as identifiers. The morphology distinction 
looks then consistent with the entity/concept distinction. 

2.3 Setting boundaries  

The determination of the boundaries is a well-known source of errors. The most 
prevailing problem in biology is due to the term that denotes the semantic category in 
the context of the name to be recognized. It can occur before, as a modifier, or after, 
as a head (e.g. GerE protein, protein GerE). In most of previous works including 
NLPBA, the category has been considered as part of the entity name when the name 
is not an apposition in parentheses, or preceded by a comma. cAMP regulatory 
element binding protein is annotated as a unique name, as well as a protein kinase A. 
The two names in apposition are distinctly annotated in monoclonal antibodies (mAb) 
and in GATA-1, an erythroid transcription factor. This results in inconsistent NER 
where the type of the named entity can belong or not to the recognized name, 
depending on the punctuation marks of its context. 
On the other hand, in BioCreative, the whole noun phrases are annotated even when 
commas or parentheses indicates chunk boundaries as in Varicella-zoster virus (VZV ) 
glycoprotein gI that is annotated as a single named-entity. [Yeh et al., 2005] 
hypothesized that the lower BioCreative results compared to similar tasks from MUC 
news wire domain could be explained by longer names in biology. The boundaries 
would be then more difficult to identify.  
To overcome this problem, we follow a different strategy. As stated in the previous 
section, the expert does not annotate the general terms in apposition relation, such as 
monoclonal antibodies in monoclonal antibodies (mAb) but just the entity mAb.  
Then two cases are considered, either the term denoting the semantic category is the 
head of the term containing the name, or it is a modifier. In the first case the head is 
not annotated as part of the entity name. For example, in cAMP regulatory element 
binding protein, only cAMP is annotated, as well as in,  Crp/Fnr family, the NtrB/C 
two-component system, P78 ABC transporter (the entity names are in yellow). The 
short name is considered here as sufficient for naming the object.  
In the second case where the semantic category is a modifier as in cytochrome P450 
102 and penicillin-binding protein 2A, the semantic category is annotated as part of 
the name only if it is required for the meaning, as it is the case in the second example 
but not in the first. 2A is indeed not sufficient for denoting the protein, while 
cytochrome is redundant. The decision is based on biology expertise: is the category 
part of the name or not? In fact, the category is usually needed when the name is local 



to the abstract (as 2A). Then the name is generally very short and either a simple 
acronym or mostly composed of digits. Typographic criterion can then help in their 
identification. To summarize, the name denoting the entity should be annotated 
without its semantic type except when it is needed for comprehensibility reason. This 
guideline simplifies the annotation boundary problem and appears as intuitive for 
most of the biologist annotators in our experiments. 

2.4 Semantic type 

The last source of error is domain-dependent. The frontier of the semantic category to 
be annotated is often fuzzy as gene and protein categories are. We have decided to 
annotate the gene and protein category in their broad sense, including the following 
objects:  
− the objects composed of protein and genes: loci, alelles, operons, gene families, 

regulons, clusters, group, regions and fusion 
− the subpart of protein and genes: promoters, ORFs, terminators,residues,  motifs, 

boxes, and domains 
− part of the experimental material: reporter genes, restriction enzymes, restriction 

sites, insertion elements 
A more detailed subtyping is left to further tasks. 
The complete guidelines are available at genome.jouy.inra.fr/texte with more 
examples. The application of these guidelines to a corpus in microbiology is 
described in section 4. Section 3 presents the machine learning approach and the 
example representation language.  

3. Machine-learning for NER 

Our purpose is not to improve ML methods but to measure the effect of the guidelines 
on the NER performances. In our experiments, we have then selected the most 
successful approaches as reported in the related work. Previous works differ by the 
example feature sets, the use of external resources (dictionaries) and the ML method. 

3.1 Related work in NER in biology 

The main approach in NER in biology until the recent Machine Learning challenges 
was based on hand-coded pattern design. It relies on multiple sources of information: 
existing dictionaries and lexica such as UNIPROT, TREMBL, HUGO, UMLS among 
others [Rindflesh et al., 2000; Cohen et al., 2002; Leonard et al., 2002], character and 
word-based approaches, linguistic processing [Proux et al. 1998], contextual 
disambiguation and domain knowledge [Humphreys et al. 2000; Fukuda et al. 1998; 
Hishiki et al. 1998; Franzen, 2002; Narayanaswamy et al., 2003].  
Until recently, the ML approach tended to use the linguistic information from the text 
but only few external resources. It was mainly achieved by the group of the GENIA 
project [Collier et al., 2000; Nobata et al., 1999; Takeuchi and Collier, 2002; Kazawa 



et al., 2002]. Recent work agrees on the importance of example representation 
richness and the central role of the typographic features (see NLPBA and BioCreative 
conclusions). Among the most relevant features, the case and the non-alphabetic 
characters (e.g. hyphen, digits, symbols) and to a lesser extent, the neighborhood are 
determinant compared to syntactic categories [Collier and Takeuchi, 2004]. Syntactic 
dependencies are useful when semantic relations can be derived from them as 
described in [Wattarujeekrit and Collier, 2005]. 
Various ML and statistics-based methods have been tested, mainly Markov models, 
SVM, Maximum Entropy, naïve Bayes and decision tree algorithms. The best scores 
of the NLPBA challenge [Kim et al., 2004] on the GENIA corpus have been obtained 
by  [Zhou et al., 2004a]. The method reaches 76,0 precision and 69,4 recall. It uses a 
rich example representation feature set and combines successively HMM and SVM. 
The best scores of Task1a at BioCreative were obtained by [Zhou et al., 2004b] with 
a combined approach of HMM and SVM and by [Dingare et al., 2004] with a 
conditional Markov Model. Both yield around 82-83% recall and precision.  
We have designed a similar feature set and selected SVM, C4.5 decision tree method 
and naïve Bayes (NB) as ML algorithms. We have applied the versions available in 
the WEKA library with the default parameters. 

3.2 Dataset 

Our training dataset is a subpart of an initial PubMed corpus on Bacillus subtilis (Bs) 
and transcription2. Bacillus subtilis is a model bacterium that has been extensively 
studied. The available knowledge on Bs genes, functions and metabolism can be 
usefully exploited for validating information extraction from text. We have chosen 
this domain because of our deep expertise on microbiology and on this specific Bs 
corpus. Therefore, we have been able to finely control the types of the biological 
objects to be annotated as well as the level of expert agreement on the annotation. The 
focus on the transcription issue increases the density of gene and protein names. With 
respect to the specific issue of transcription, we did not distinguish between genes and 
proteins as in BioCreative because they often cannot be automatically discriminated 
by their context because biologists consider the distinction as irrelevant and often use 
metonymies. A careful analysis did not reveal any obvious complexity difference 
between the names of our microbiology corpus and those of eukaryote corpora.  
431 abstracts have been randomly selected among the 22397 references of the 
Bacillus subtilis transcription corpus. Among them, nine have been manually 
removed because of their heterogeneity. Their main topic was not microbiology but 
eukaryotic biology (e.g. mycobacterium in tumor necrosis mice). The remaining 
training corpus then contained 422 abstracts. 

3.3 Corpus preparation 

For saving manual annotation time, the corpus was first automatically pre-annotated 

                                                
2 The query was "Bacillus subtillis AND (transcription OR promoter OR sigma factor)" 



by mapping a dictionary of gene and protein names. It was then manually corrected 
by biologist experts. This strategy is usual in NER. It globally improves the 
annotation quality but biases the annotation by preferring dictionary names which has 
a positive effect in our case. We have automatically designed the dictionary in order 
to limit the number of corrections to be done by the experts. The dictionary contains 
GenBank gene names of the only species mentioned in the corpus. We have assumed 
that no gene/protein name would occur in the corpus without a link to its species, 
except some experimental material such as lacZ. This limits the number of potential 
ambiguities and errors. As such, the dictionary still contained incorrect names 
because the format and guidelines for entering new references in GenBank are not 
strictly followed by the contributors. The dictionary was filtered by an anti-dictionary 
that contained the most frequent ambiguous names, such as the and has which are 
actually correct names but also highly ambiguous.  It has been completed by six 
regular expressions that exclude the names represented by one or two letters or digits 
and long compound terms. The direct mapping of the dictionary to the corpus was 
completed by typographic variations. The anti-dictionary plus the regular expressions 
matched 25 014 occurrences in the corpus while the filtered dictionary matches 9 051 
occurrences of species and gene/protein names. The number of potentially noisy 
occurrences was then more than twice the number of the potentially correct ones. 

Table 1. Dictionary size.  

Number of species names (including variations) 857 451 

Number of protein/gene names (including variations) 401 790 

Anti-dictionary size  289 

Number of names removed by pattern matching  433 
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Figure 2. Number of abstracts (Y) containing X gene/protein names. 



The annotation density varied among the abstracts. Figure 2 shows the distribution of 
the occurrences of the gene/protein names. Table 2 reports the number of protein/gene 
names automatically tagged in the corpus. 

Table 2. Number of gene/protein names in Bs transcription corpus. 

# protein/gene names occurrences 7 049 

# protein/gene distinct names 1286 

3.4 Manual annotation 
The manual annotation was done with the Cadixe XML editor3. At the first stage, the 
corpus has been split into ten disjoint subparts and ten expert biologists corrected the 
automatic annotation of the dictionary mapping. Then one expert biologist carefully 
checked the annotation. In case of disagreement, a group of three biologists took a 
final decision. This way, a full agreement on all annotations was reached. This 
protocol has been applied for practical reasons only. Independent annotations should 
be done for measuring the expert agreement. 
Three types of corrections of the automatic tagging were performed (Table 3): 
− The annotations of the irrelevant homonyms were removed (for instance, map) 
− The relevant anti-dictionary names (including regular expressions) were annotated 

(for instance, has gene). The length of most of them was one to two characters. 
The fourth column records those that are more than 2 characters long. 

− The relevant names that were not in the dictionary were annotated (referred to as 
new names). 

− The boundaries of the names have been modified. 
Table 3 reports the number of manual corrections performed by category of error. 
These numbers are particularly important since they represent the goal of the learning 
approach: learning rules able to correct as much as possible the annotation done by a 
direct dictionary mapping.  

Table 3. Manual corrections. 

 Remove of 
irrelevant 

homonyms 

Total 
additions 

Addition of 
anti 

dictionary 
names 

Addition of 
anti-

dictionary 
names > 2 

char. 

Fully new 
names 

Incorrect 
boundaries 

# occ.  
( 1st stage) 

1057 1065 123 5 942 714 

# occ.  
(2nd stage) 

95 390 177 15 213 154 

Total # 
occ.  

956 1276 186 13 1090 781 

                                                
3 http://caderige.imag.fr/Cadixe 



The number of ambiguities (false positives) was rather high (first column): 13 % 
(956/7049) of the annotations despite of the use of the anti-dictionary, which has been 
designed for reducing the ambiguities. The missing annotations were also close to 
17 % of the total number of annotations and only a few of them (3 %) were present in 
the original dictionary and filtered by error. The other errors were due to fully new 
names, not present in the dictionary. This suggests that the anti-dictionary was not too 
strict. Incorrect boundaries represented a large part of the errors, around one quarter.  
Table 4 reports the final numbers after manual correction. The figures in parentheses 
represent the name additions compared to automatic annotation. Additions represent 
the total of the name additions minus the deletions. 

Table 4. Manual annotations of the Bs transcription corpus. 

Total # protein/gene names occurrences  7 185 (+ 137) 

Total # protein/gene distinct names  1647 (+ 361)  

Total # species names occurrences  2 219 (+ 217) 

Total # species distinct names 442 (+139) 

Total number of occurrences of NE 9405 (+354) 

Table 5 gives the recall and precision measures for the automatic filtered dictionary 
mapping compared to the manually annotated corpus. The measures were computed 
as a baseline for further comparison with the ML approach. We counted incorrect 
boundaries as two errors when an automatic annotation was replaced by one (one 
false positive, one false negative), three errors when the automatic annotation was 
replaced by two manual annotations (one false positive, two false negatives) and three 
errors when two automatic annotations were replaced by one manual annotations (two 
false positives and one false negative).  

Table 5. Precision and recall of the filtered dictionary mapping. 

Precision Recall 

76,1 78,1 

The performances were surprisingly good compared to previous results by other 
authors, including the results obtained by hand-coded patterns. The way the 
dictionary has been filtered by choosing the names related to the relevant species and 
then filtered by the anti-dictionary was clearly very efficient.  
The role of Machine Learning at this point is then double: disambiguating the 
homonyms and improving the coverage by recognizing new names. 



3.5 Example representation 

As other authors before, we hypothesized that typographic, linguistic and domain-
specific features of the NE and their neighborhood are relevant for designing 
discriminant NER patterns. Table 6 describes the feature set. 

Table 6. Features set 

Features 
Document structure 
− In_title: the example belongs to the title. 
Typographic features (boolean except length) 
− First_upper: the example is capitalized (^[A-Z]) 
− Middle_upper: the example contains a non-initial uppercase letter (^.+[A-Z]) 
− Only_upper: all letters of the example are uppercase? (^[A-Z]*$) 
− Last_digit: the last character of the example is a digit? ([0-9]$) 
− First_dash: the example starts with an hyphen ('-')? (^-) 
− Middle_dash: the example contains a non-initial hyphen? (^.+-) 
− Paren: the example contains a paired set of parentheses? (\(.*\)) 
− Space: the example contains a space character (ie is the example is compound? ([ ]) 
− Length: number of characters of the example 
− Between_paren: the example is enclosed between parentheses without any other word (not 

a regexp) 
Dictionary features (boolean) 
− Eq_dict: the example is a dictionary entry 
− In_dict: the example is a strict subword of a dictionary entry 
− Eq_anti: the example is an anti-dictionary entry? 
− In_anti: the example is a strict subword of an anti-dictionary entry. 
Linguistic features 
− Pos_following_X: morpho-syntactic category of the Xth word following the example. X ∈ 

[1 .. 5]. Possible values: J (adjective), N (noun), PP (pronoun), RB (adverb), V (verb), O 
(other). 

− pos_preceding_X: morph-syntactic category of the Xth word preceding the example. 
Domain specific feature 
− Signal_in_following context: word X from the signal list belongs to the following context 

of the example (window [+1 .. +5]) 
− Signal_in_preceeding context: word X from the signal list belongs to the preceding 

context of the example (window [-1 .. -5]) 
 
The role of the signal feature was to represent relevant signal words in the close 
context of the candidate named-entity. In order to define its value domain from the 
training corpus, we applied feature selection (based on information gain as 
implemented in WEKA) to the lemma of the predecessor and successor nouns, 
adjective and verbs of the positive and negative examples. The negative examples for 
computing feature selection were all nouns, non positive examples, and followed by a 
word from the signal list (Table 7), manually built for bootstrapping the process. 

Table 7. Bootstrapping signal words acquisition. 

activation box dependent enzyme expression fusion gene operon polymerase protease protein 
regulator regulon replication transcription 



The size of the window varies from [-1 .. +1] to [-5 .. +5]. We retained the top 50 
words for each window size. The most discriminant words differ depending on the 
position. For preliminary experiments, we did not want to consider exact position of 
signal words but an unordered set. In order to select the most popular words among 
the five lists, we retained the words that belonged to at least 2 lists (e.g. it must be top 
50 in 2-words window AND top 50 in 3-words window). The lists were then 
manually filtered by two ways: removing the spurious words such as auxiliary verbs 
(be, do, have) the semantics of which is not clear and removing too specific named 
entities with the exception of "lacZ" and "Pho" which are known to be within near 
context of gene names because they are part of the experiment material. The resulting 
filtered lists of signal words are given in Tables 8 and 9. 

Table 8. List of signal words preceding the NE. 

RNAse  accumulate  bacterial  call  collision  contrary  electrophoretic  enable  enzyme  
estimate  expression  genome  include  intracellular  likely  phosphorylation  probe  protein-
mediated  quantitative  relative  release  respond  result  role  second  sequence-selective  site-
directed  summary  technique  three-dimensional  variety 
Pho  activate  activation  analysis  bind  box  dependent  domain  electrophoresis  encode  
enzyme  expression  factor  fusion  homologue  hybridization  inhibit  lacZ  leader  mRNA  
mutagenesis  null  phosphatase  phosphorylated  play  polymerase  protease  protein  regulator  
regulons  replication  reporter  repress  require  responsible  site  strain  substitution  subunit  
synthetase  transcript  transcription  transcriptional  two-component  

Table 9. List of signal words following the NE. 

Pho  activate  activation  analysis  bind  box  dependent  domain  electrophoresis  encode  
enzyme  expression  factor  fusion  homologue  hybridization  inhibit  lacZ  leader  mRNA  
mutagenesis  null  phosphatase  phosphorylated  play  polymerase  protease  protein  regulator  
regulons  replication  reporter  repress  require  responsible  site  strain  substitution  subunit  
synthetase  transcript  transcription  transcriptional  two-component  

Most of the terms looked relevant as belonging to the candidate named-entity context 
while some others like null or likely looked more suspicious. 
The positive examples were the examples of NE as tagged in the training corpus. 
Their description was based on their local context. We have considered fixed size 
windows within sentences boundaries. The negative examples were automatically 
derived from the annotated corpus as all noun phrases of one, two or three words in 
the corpus as analyzed by a basic chunker and non positive examples.  

3.6 Experiments 

Various combinations of example features were evaluated with the three ML 
methods, C4.5, SVM and NB. We report here the most significant features namely the 
typography, the signal words, the syntactic category and the dictionary (Table 10). 
The first three lines report the results computed with the whole feature set. C4.5 
significatively yielded the best results. The most discriminant features of the resulting 
tree were typographic features (the root was the uppercase initial) and equality of a 
context word to a dictionary entry or inclusion. The rest of the table reports the results 



obtained by C4.5. As already pointed out in related work, the most discriminant 
features seemed to be the typographic ones (- 16 % precision and recall as shown in 
the last table line). The role of the features related to the dictionary was also important 
since their deletion yielded 5,5 % lack of precision and 2,1 % lack of recall. The POS 
tag of the neighbor words of the candidate NE seemed to have no effect on the 
performances. 

Table 10. Experiments with 3 ML algorithms and various feature sets. 

 Precision Recall 

C4.5  93,6 93,4 

SVM 86,2 89,9 

NB 82,8 88,1 

C4.5 no signal words 92 (-1,6) 93,3 (-0,1) 

C4.5 no dictionary 88,1 (-5,5) 91,5 (-2,1) 

C4.5 no POS tag 92,3 (-1,3) 93,9 (+0,5) 

C4.5 no typography 77,4  (-16,2) 77,0 (-16,4) 

The signal words lack of effect was surprising. Further experiments should be done 
with different sets of signal words on fixed position, since the lists obtained by the 
procedure of section 3 generated clearly different sets depending on the distance to 
the NE. At this stage our conclusion on the design of the feature set is very similar to 
those of previous works. The typography is very determinant while the POS tags 
seem to be useless. 
Apart from the feature set, we evaluated the effect on the performance of the way the 
negative examples were generated. As such, the two negative and positive example 
sets were very unbalanced, the negative set being ten times larger. In order to assess 
the effect of the negative set size on learning, we trained C4.5 with a subset of 
randomly selected negative examples, such that this subset was of the same size as the 
positive set. The results did not improve as opposed to what was expected. It strongly 
affected the precision (77,6) and increased the recall (98,5). Further experiments 
should be done on intermediate negative example set sizes in order to evaluate the 
optimal size according to the corpus redundancy. We did other experiments with 
various near miss generation strategies that did not yield better results.  

4. Discussion and conclusion 

As expected, our experiments yielded higher performances than those reported by 
other authors on a similar NER task and on other corpora. They improve the precision 
of NLPBA best result by 17,6 % while the recall is 24 % better. Compared to 
BioCreative, the improvement is more than 10 % precision and recall. The main 
difference is the domain of the corpora (bacteria vs. eukaryotes) and the manual 



annotation rules. The sets of features are very similar. The ML algorithms are WEKA 
versions with default parameters and they are less sophisticated than the methods 
applied by previous challenges winners. We hypothesize that such a performance 
improvement is mostly due to the respect of consistent and strict annotation 
guidelines by the biologist annotators. The corpora on bacteria and eukaryotes do not 
look so different with respect to the NER task that it would explain such different 
performances.  In fact, our results reach similar rates as MUC ones on NER of proper 
noun such as location and person where the guidelines are comparable to ours: only 
proper nouns are annotated as NE and not general categories (e.g. not town in town of 
Paris or not lake region in spring in lake region).  Further experiments with the same 
feature set and ML algorithm should be done on other corpora in order to confirm it. 
We defend here the opinion that different types of knowledge, NER patterns for 
entities and categories should be separately acquired from corpus. It makes the 
manual annotation easier and the recognition patterns more learnable. We have 
demonstrated it here for NER pattern learning in microbiology. We have proposed 
relevant annotation guidelines with respect to this hypothesis. They are specific to 
biology and remove most of the inconsistencies observed by previous authors, 
namely, related to boundaries and granularity.  
As specified, the NER learning task does not include more general category learning 
but only specific entities. We believe that it should be done by a separate learning task 
with more appropriate techniques that NER pattern learning, including ontology 
learning (Hearst's patterns and semantic distributional analysis) [Nedellec and 
Nazarenko, 2005] and term extraction methods that take into account morpho-
syntactic variations instead of typographic features. Additionally to these acquisition 
considerations, it is more relevant from a knowledge modeling point of view to isolate 
the two tasks so that the two different kinds of knowledge, entities and types are 
formally represented and linked.  
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