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1. Introduction

An ontology is a description of conceptual knowledge organized in a computer-based
representation while information extraction (IE) is a method for analyzing texts express-
ing facts in natural language and extracting relevant pieces of information from these
texts.

IE and ontologies are involved in two main and related tasks, which are combined in
a cyclic process. IE needs ontologies as part of the understanding process for extracting
the relevant information and IE extracts new knowledge from the text, to be integrated
in an ontology. In this paper, we will argue that even in the simplest cases, IE is an
ontology-driven process and we will show in which respect IE can be used to populate
ontologies and structure ontological knowledge.

Extracting information from texts calls for lexical knowledge, grammars describing
the specific syntax of the texts to be analyzed, as well as semantic and ontological knowl-
edge. In this paper, we will not oppose the lexical and linguistic knowledge and the on-
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Document: Professor John Skvoretz, U. of South Carolina, Columbia, will present a
seminar entitled "Embedded commitment", on Thursday, May 4th from 4-5:30 in
PH 223D.

Form to fill (partial)
place: ? starting time: ?
title: ? speaker: ?
Filled form (partial)
place: PH 223D starting time: 4 pm
title: Embedded commitment speaker: Professor John Skvoretz

Figure 1. A seminar announcement event example.

tological one. We will rather consider ontologies as formal specifications of the domains
of interest augmented with some part of linguistic knowledge. The ontologies that can be
used for IE, and enriched by IE relate conceptual knowledge to its linguistic realizations
(e.g.a concept must be associated with the terms that express it in the text, possibly in
various languages).

This paper will be mainly illustrated in biology, a domain in which there are critical
needs for content-based exploration of the scientific literature and that becomes a major
application domain for IE. We will take here the example of the ExtraPloDocs project
[18] in which the authors are involved. This project aims at extracting gene-protein in-
teraction information from the bibliography in genomics.

2. Preliminaries

2.1. What is IE?

Developing intelligent tools and methods, which give access to document content and
extract relevant information, is more than ever a key issue for knowledge and information
management. IE is one of the main research fields that attempt to fulfill this need.

A typical IE task as defined the DARPA’s MUC program (Message Understand-
ing Conferences [43] is illustrated here by Fig. 1 from a CMU corpus of seminar an-
nouncements [22]). The IE process recognizes a name (John Skvoretz) and classifies it
as a person name. It also recognizes a seminar event and creates a seminar event form
(John Skvoretz is the seminar speaker whose presentation is entitled "Embedded com-
mitment").

Even in such a simple example, IE should not be considered as a mere keyword fil-
tering method. Filling a form with some extracted words and textual fragments involves a
part of interpretation. Any fragment must be interpreted with respect to its "context" (i.e.
domain knowledge or other pieces of information extracted from the same document). In
the document of Fig. 1, "4-5:30" is understood as a time interval and background knowl-
edge about seminars is necessary to interpret "4" as "4 pm" and as the seminar starting
time.

Operationally, IE relies on document preprocessing and extraction rules (or extrac-
tion patterns) to identify and interpret the information to be extracted. The extraction
rules specify the conditions that the preprocessed text must verify and how the relevant
textual fragments can be interpreted to fill the forms. In the simplest case, the textual
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fragment and the coded information are the same and there are neither text preprocessing
nor interpretation.

More precisely, in a typical IE system, three processing steps have been identified
[30,17]:

• Text preprocessing, whose levels range from mere text segmentation into sen-
tences and sentences into tokens to a full linguistic analysis;

• Rule selection: the extraction rules are associated with triggers (e.g.keywords),
the text is scanned to identify the triggering items and the corresponding rules are
selected;

• Rule applicationthat checks the conditions of the selected rules and fills the forms
according to the conclusions of the matching rules.

Experiments have been made with various kinds of rules, ranging from the simplest
ones [53] (e.g. the subject of the passive form of the verb "murder" is interpreted as a
victim) to sophisticated ones as in [64]. The more abstract (e.g.the more semantic and
conceptual) the IE rule, the more powerful, concise and understandable it is. However, it
requires the input text being syntactically parsed and semantically tagged in order to map
to the rule abstract conditions. As shown in Fig. 2, the condition part of the extraction
rules may check the presence of a given lexical item (e.g.the verbnamed), the syntactic
category of words and their syntactic dependencies (e.g.object and subject relations).
Different clues such as typographical characteristics, relative position of words, seman-
tic tags1 or even coreference relations can also be exploited. Most IE systems there-
fore involve linguistic text processing and knowledge: segmentation into words, morpho-
syntactic tagging (the part-of-speech categories of words are identified), syntactic anal-
ysis (sentence constituents such as noun or verb phrases are identified and the structure
of complex sentences is analyzed) and sometimes additional processing, such as lexical
disambiguation, semantic tagging or anaphora resolution.

However, the role and the scope of the linguistic analysis differ from one IE system
to another. Text analysis can be performed either as preprocessing or during extraction
rule application. In the first IE systems [30], local and goal-driven analysis was preferred
to full text preanalysis to increase efficiency, and the text preprocessing step was kept
to minimum. Although costly, data-driven, full text analysis and normalization can im-
prove the IE process in various manners. (1) It improves further NL processing steps,
e.g.syntactic parsing improves attachment disambiguation [5] or coreference resolution.
(2) Full text analysis and normalization also facilitates the discovery of lexical and lin-
guistic regularities in specific documents. This idea, initially promoted by works on sub-
languages [27,59] for tuning NL processing to a given type of texts, is now popularized
by Machine Learning (ML) papers in the IE field for learning extraction rules. There are
two main reasons for that. First, annotating training data is costly and the quantity of data
to be annotated decreases with the normalization (the less variations in the data, the less
data annotation is needed). Next, ML systems tend to learn non-understandable rules by
picking details in training examples that do not seem to be related. Normalizing the text
by representing it in a more abstract way increases the understandability of the learned
rules. However, normalization also raises problems such as the biased choice of the right
representationbefore learning, that is not dealt within the IE literature.

1E.g. If the verbs "named", "appointed" and "elected" of Fig. 2 were all known as ’nomination’ verbs, the
fourth condition of the rule could have been generalized to their semantic category ’nomination’.
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Document: NORTH STONINGTON, Connecticut (Business Wire) - 12/2/94 -
Joseph M. Marino and Richard P. Mitchell have been named senior vice president of
Analysis & Technology Inc. (NASDAQ NMS: AATI), Gary P. Bennett, president and
CEO, has announced.
Rule
Conditions:
noun-phrase (PNP, head(isa(person-name))),
noun-phrase (TNP, head(isa(title))),
noun-phrase (CNP, head(isa(company-name))),
verb-phrase (VP, type(passive),head(named or elected or appointed)),
preposition (PREP, head(of or at or by)),
subject (PNP, VP),
object (VP, TNP),
post_nominal_prep (TNG,PREP),
prep_object (PREP, CNP)
Conclusion:
management_appointment (M, person(PNP), title (TNP), company (CNP)).
Comment:
if there is a noun phrase (NP) whose head is a person name (PNP), an NP whose head
is a title name (TNP), an NP whose head is a company name (CNP), a verb phrase
whose head is a passive verb (named or elected or appointed), a preposition of, at or by,
if PNP and TNP are respectively subject and object of the verb,
andif CNP modifies TNP,
then it can be stated that the person "PNP" is named "TNP" of the company "CNP".
Labeled document
NORTH STONINGTON, Connecticut (Business Wire) - 12/2/94 - <Person>Joseph
M. Marino and Richard P. Mitchell</Person> have been named <Title>senior
vice president</Title> of <Company>Analysis & Technology Inc</Company>.
(NASDAQ NMS: AATI), Gary P. Bennett, president and CEO, has announced.

Figure 2. Example from MUC-6, a newswire about management succession.

We will see in the following that these two approaches, in which text analysis is
respectively used for interpretation (goal-driven) and normalization (data-driven), are
very much tangled, as any normalization process involves a part of interpretation. One
of the difficulties in designing IE systems is to set the limit between local and global
analysis. Syntactic analysis or entity recognition can be performed on a local basis but are
improved by knowledge inferred at a global level, because ambiguous cases of syntactic
attachments or entity classification can be solved by comparison with non-ambiguous
similar cases of the same document.

The MUC competition framework has gathered a large and stable IE community. It
has also drawn the research towards easy to develop and efficient methods rather than
strong and well-founded NLP theories. Semantic analysis is rather considered as a way to
disambiguate the syntactic tagging and analysis than as a way to build a conceptual inter-
pretation. Today, most of the IE systems that involve semantic analysis exploit the most
simple part of the whole spectrum of domain and task knowledge, that is to say, named
entities. However, the growing need for IE application to domains such as functional ge-
nomics that require more text understanding pushes towards more sophisticated seman-
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INTERACTION: Type: negative, positive
Agent: any protein
Target: any gene

Figure 3. An example of IE form in the genomics domain, as a part of the biological model of gene regulation
network, proteins interact positively or negatively with genes

tic knowledge resources and thus towards ontologies viewed as conceptual models, as it
will be shown in this paper. The ExtraPlodocs project is based on this assumption.

2.2. The role of ontologies in IE

Even though ontologies usually do not appear as an autonomous component or resource
in IE systems, we argue that IE relies on ontological knowledge.

An ontology identifies the entities that have a form of existence in a given domain
and specifies their essential properties. It does not describe the spurious properties of
these entities. On the contrary, the goal of IE is to extract factual knowledge to instantiate
one or several predefined forms. Thestructureof the form (e.g.the example of genic in-
teraction in Fig. 3) is a matter of ontology whereas thevaluesof the filled template usu-
ally reflect factual knowledge (as shown in Fig. 1 above) that is not part of an ontology.
In Sect. 3.4, we will show that IE is ontology-driven in that respect.

The status of the named entities is a pending question. Do they belong to an ontol-
ogy or are they factual knowledge? In this paper, we will consider that entities, being
referentialentities, contribute to populate an ontology and, as such, are part of a domain
ontology.

Whether one wants to use ontological knowledge to interpret natural language or to
exploit written documents to create or update ontologies, in any case, an ontology has
to be connected to linguistic phenomena. An ontology must be linguistically anchored.
A large effort has been devoted in traditional IE systems based on local analysis to the
definition of extraction rules that achieve this anchoring. In numerous IE applications
the ontological knowledge is encoded as a keyword rule, which can be considered as a
kind of compiled knowledge. In more powerful IE systems, the ontological knowledge
is more explicitly stated in the rules that bridge the gap between the word level and
text interpretation. As such, an ontology is not a purely conceptual model, it is a model
associated to a domain-specific vocabulary and grammar. For instance, the rule of Fig. 2
above, states that a management appointment event can be expressed through three verbs
(named, elected or appointed). In the IE framework, we consider that this vocabulary
and grammar are part of an ontology, even when they are embodied in extraction rules.

The complexity of the linguistic anchoring of ontological knowledge is well known
and should not be underestimated. A concept can be expressed by different terms and
many words are ambiguous. Rhetorical phenomena, such as lexicalized metonymies or
elisions, introduce conceptual shortcuts at the linguistic level that must be clarified to be
interpreted into domain knowledge. A noun phrase (e.g."the citizen") may refer to an
instance (a previously mentioned specific citizen) or to the class (the set of all the citi-
zens), thus leading to a very different interpretation. These phenomena, which illustrate
the gap between the linguistic and the ontological levels, strongly affect IE performance.
This explains why IE rules are so difficult to design.
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IE is a targeted textual analysis process. The target information is described in the
structure of the forms to fill. MUC has identified various types of forms describing el-
ements or entities, events and scenarios. However, IE does not require a whole formal
ontological system but only parts of it. We consider that the ontological knowledge in-
volved in IE can be viewed as a set of interconnected and concept-centered descriptions,
or "conceptual nodes"2. In conceptual nodes the concept properties and the relations be-
tween concepts are explicit. These conceptual nodes should be understood as chunks of
a global knowledge model of the domain. The use of this type of knowledge in NLP
systems is traditional [61] and is illustrated by MUC tasks.

Ontologies and IE are closely connected by a mutual contribution. An ontology is
required for the IE interpreting process and IE provides methods for ontological knowl-
edge acquisition. Even if using IE for extracting ontological knowledge is still rather
marginal, it is gaining in importance. We distinguish both aspects respectively in the fol-
lowing sections, although we consider the whole process as a cyclic one. For instance,
in the ExtraPloDocs approach, a first level of ontological knowledge (e.g.entities) helps
to extract new pieces of knowledge from which more elaborated abstract ontological
knowledge is designed, which in turn helps to extract new pieces of information in an
iterative process.

3. Ontology for Information extraction

Since the template or form to be fulfilled by IE is a partial model of world knowledge,
any IE system is ontology-driven. The ontological knowledge is primarily used for text
interpretation. How poor the semantics underlying the form to fill may be, whether it is
explicit [24,19] or not [22], IE is always based on a knowledge model. In this section,
for exposition purposes, we distinguish different levels of ontological knowledge: the
referential domain entities, the conceptual hierarchy, chunks of a domain model (i.e.
conceptual nodes) and the domain model itself.

3.1. Sets of entities

Recognizing and classifying named entities in texts require knowledge on the domain en-
tities. Specialized lexical or key-word lists are commonly used to identify the referential
entities in documents. In the financial news of MUC-5, lists of company names have been
used. In the context of cancer treatment, [56] makes use of the concepts of the Metathe-
saurus of UMLS to identify and classify biological entities (mostly proteins, genes and
drugs). In different experiments, some lists of gene and protein names are exploited: [31]
makes use of SWISS PROT protein list, whereas [47] combines pattern matching with
a manually constructed dictionary. The machine learning based event extraction systems
also usually make use of list of entities to identify the referential entities in documents
[53,64,35,63,14]. The use of a lexicon and dictionaries is however controversial. Some
authors like [42] argue that entity named recognition can be done without it.

2We define a conceptual node as a piece of ontological model to which linguistic information can be attached.
It differs from the "conceptual nodes" of [64], which are extraction patterns describing a concept. We will see
below that several extraction rules may be associated to a unique conceptual node.
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At a first level, these lists of entities are used for semantic tagging. The entities (e.g.
Tony Bridge) are actually described by their types (herePERSON) and by the list of the
various textual forms that may refer to them3 (Mr. Bridge, Tony Bridge, T. Bridge). How-
ever, exact character strings are often not reliable enough for a precise entity identifica-
tion and semantic tagging4. In biology, for instance, some names like2CATmay have
more than 10 different meanings. Then as highlighted by [63], providing the system with
lists of entities does not help that much, "because too many of the relevant terms in the
domain undergo shifts of meaning depending on context for simple lists of words to be
useful". The connection between the ontological and the textual levels must then also rely
on contextual rules, which are associated to named entities to help their identification
and disambiguation.

As a by-effect, these resources are also used for naming normalization. For instance,
the various forms ofMr. Bridgewill be tagged asPERSONand associated with its canon-
ical name form: <PERSONid=Tony Bridge>. Specialized genomics systems are partic-
ularly concerned with the variation problem, which introduces typographical alterations
as well as very different synonyms when the naming nomenclature evolve. In Flybase5,
40% of the gene names are associated with such synonyms. A large part of the research
effort in IE to genomics has focused on the problem of identifying protein and gene
names [49,23,16] and more recently, BioCreative challenge [68] and the NLPBABioNLP
shared task [15]. In many cases, rules rely on shallow constraints rather than morpho-
syntactic dependencies as presented in [45].

Beyond typographical normalization, ExtraPloDocs uses the semantic tagging of en-
tities to normalize the sentences at a linguistic level. This tagging solves some syntactic
ambiguities, for example ifcotA is tagged as agenein the sentence "the stimulation of
cotA expression", knowing that a gene expresses proteins helps to understand that "cotA"
is the agent of the expression rather than its patient. Semantic tagging is also traditionally
used for anaphora resolution: [50] makes use of UMLS6 types to identify and order the
potential antecedents of an anaphoric pronoun (it) or noun phrase (these enzymes, both
genes).

3.1.1. Hierarchies

Beyond the lists of entities that populate it, an ontology is formerly structured as a hi-
erarchy of concepts. A hierarchy of semantic or word classes can be derived from this
conceptual structure. Traditionally, IE focuses on the use of word classes rather than
on the use of the hierarchical organization. For instance, in WordNet [39], the word
classes (synsets) are used for the semantic tagging and disambiguation of words but the
hyponymy relation that structures the synsets into a hierarchy of semantic or concep-
tual classes is seldom exploited for ontological generalization inference. The hierarchy
should however help to design extraction rules with the proper level of abstraction.

Some ML-based experiments have been done to exploit hierarchies of WordNet and
of specialized lexicons, such as UMLS [64,10,22]. The ML systems learn extraction rules
by generalizing from annotated training examples. The difficult choice of the correct
level in the hierarchy is left to the systems. Chai et al.’s system automatically learns for

3These various forms may be listed extensionally or intentionally by variation rules.
4In the above example, the string "Bridge" could also refer to a bridge named "Tony".
5http://flybase.bio.indiana.edu
6http://www.nlm.nih.gov/research/umls/
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P-A structure ofactivate
Pred: activate Frame: ACTIVATE

args: subject (1)
object (2)

slot: agent (1)
slot: target (2)

Figure 4. Example of a conceptual-node driven rule in functional genomics.

each relevant NP in the rule, the optimal level of semantic generalization on the WordNet
hyperonym path by climbing WordNet hierarchies. For ambiguous words, which have
several hyperonyms, the choice of the right hierarchy to climb is based on the user se-
lection of the headword senses in a training corpus. Chai et al. argue that generalization
along WordNet hierarchy brings a significant benefit to IE but that the incompleteness
of WordNet in specific domains and the word sense ambiguity are important hindrances.
The IE learning system, SRV, also uses semantic class information such as synsets and
hyperonym links from WordNet lexicon to constrain the application of the IE rules, but
[22] concludes that the improvement is not clear.

In specific domain such as genomics, the main problem is therefore the acquisition
of domain dependent hierarchies. A lot of work has been devoted to their manual or
automatic acquisition for a wide range of NL processing tasks in order to overcome the
general ontologies limitations.

3.1.2. Conceptual nodes

The ontological knowledge is not always explicitly stated as it is in [24], which rep-
resents an ontology as a hierarchy of concepts, each concept being associated with an
attribute-value structure, or in [19], which describes an ontology as database relational
schema. However, ontological knowledge is reflected by the target form that IE must
fill and which represents theconceptual nodesto be instantiated. Extraction rules ensure
the mapping between a conceptual node and the potentially various linguistic phrasing
expressing the relevant elements of information.

Most of the works aiming at extracting gene/protein interactions are based on such
event conceptual nodes. In [69], predicate-argument structures (P-A structures), also re-
ferred as subcategorization frames, describe the number, type and syntactic construction
of the predicate arguments. The P-A structures are used for extracting gene and protein
interactions (see Fig. 4). The mapping between P-A structures and event frames (event
conceptual nodes) is explicit and different P-A structures can be associated to a same
event frame. For instance, the extraction of gene/protein interactions is viewed as the
search for the subject and the object of an interaction verb, which are interpreted as
the agent and the target of the interaction. These works rely on shallow, robust or full
parsers, which do, or do not handle coordinates, anaphora, passive mood and nominal-
ization [62,66,57,48,36,52]. Additional semantic constraints may be added as selectional
restrictions7 for disambiguation purposes. activate is an interaction verb

Considerable effort has been made towards designing automatic methods for learn-
ing extraction rules that map the syntactic categories, dependencies and semantic types
into a conceptual node. An interesting example is the system RHB+ [60], which learns
this mapping with the help of case-frames in Fillmore’s sense [21]. RHB+ is able to com-

7A selectional restriction is a semantic type constraint that a given predicate enforces on its arguments.
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bine multiple case-frames to map a unique conceptual node. The main difficulty arises
from the complexity of the text representation once enriched by the multiple linguis-
tic and conceptual levels. The more expressive the text representation, the larger is the
search space for the IE rule and the more difficult the learning. The extreme alternative
consists in either selecting the potentially relevant features before learning with the risk
of excluding the solution from the search space, or leaving the system the entire choice,
provided that there is enough representative and annotated data to find the relevant reg-
ularities. For instance, the former consists in normalizing by replacing names by cate-
gory labels when the latter consists in tagging without removing the names. The learning
complexity can even be increased when the conceptual or semantic classes are learned
together with the conceptual node information as in [55,70].

3.1.3. Domain conceptual model

The link between the syntactic level and the event and scenario description is not always
so straightforward. Beyond linguistic analysis [32,12], the text interpretation may require
inference reasoning with domain knowledge. For instance, to be able to extract :

INTERACTION: Type: negative
Agent: sigma K
Target: spoIIID

from, "[...], such that production of sigma K leads to a decrease in the level of spoIIID.",
more biological knowledge is necessary to interpret the protein level changes in term of
interaction. P-A structures as those above will be useful at the lower level for interpreting
the text and build a semantic structure but a causal model stating that correlation in
protein quantity variations can be interpreted as an interaction is needed to connect and
interpret the instantiated syntactic structures at a conceptual level.

3.1.4. ExtraPloDocs approach for extracting gene-protein interactions

The ExtraPloDocs project follows theses tracks and is heavily ontology-driven [2]. Ex-
tracting gene-protein interactions from the bibliography is a popular but challenging IE
task since the bibliographic style is a complex one as shown in the following example:

GerE stimulatescotD transcription andinhibits cotA transcription in vitro by sigmaK RNA
polymerase, as expected from in vivo studies, and, unexpectedly, profoundlyinhibits in vitro
transcription of the gene (sigK) that encodesigma K.

As the work mentioned above, we argued that extracting genic relations requires rich
extraction rules [6] based at least on syntactic and semantic categories (e.g. stimulatesis
an interaction verb), on syntactic dependencies (GerE is the subject ofinhibits) and the
recognition of named entities (in bold in the example above). The originality here relies
in the role of Machine Learning for acquiring the needed resources and the development
of a whole Natural Language Pocessing line to normalize the original data, i.e. MedLine
abstracts. The integration of these various processing steps raises new research problems
that are not apparent otherwise.

As said above, in ExtraPloDocs, the recognition and normalization of named enti-
ties are based on genomic existing resources (GenBank, SwissProt) and state of the art
methods (typographical variation and contextual pattern matching). A specialized hierar-
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chy of semantic classes is used for disambiguating syntactic parsing and typing entities
(GerEis-aGENE, RNA polymeraseis-anENZYME) and actions (stimulatesis_anINTER-
ACTION). The Asium software [20] is used to semi-automatically acquire these relevant
semantic categories. It is based on an original ascendant hierarchical clustering method
that builds a hierarchy of semantic classes from the syntactic dependencies parsed in the
training corpus.

The extraction rules are thus applied on texts enriched with a lot of linguistic and
ontological knowledge. They are themselves learned from a training corpus in which the
interactions have been annotated. Learning IE rules is seen as usual a classification task,
where the concept to learn is an n-ary relation between arguments, which correspond to
the template fields. The learning algorithm is provided with a set of positive and nega-
tive examples of genic interactions built from the sentences annotated and linguistically
normalized (which includes lemmatization, term recognition and syntactic dependency
parsing). We use the relational learning algorithm, Propal [1]. On preliminary experi-
ments, the performance of the learner evaluated by ten-fold cross-validation is 69 (6.5 %)
of recall and 86 (3.2 %) of precision. This result is encouraging, showing that the nor-
malization process provides a good representation for learning IE rules with both high
recall and high precision8. For instance, the following learned IE rule:

genic-interaction (X, Z ):- protein(X), gene(Z), interaction(X,V), subject(X,V),
obj(U,V), NprepN(of)(Z,U).

states that if X is the subject of an interaction verb V and a protein name and if the object
of the verb is the expression of a gene Z, then X is the agent and Z the target of the
interaction.

4. Information extraction for ontology design

Acquisition of ontological knowledge is a well-known bottleneck for many AI applica-
tions and a large amount of work has been devoted to knowledge acquisition from text.
The underlying idea, inherited from Harris’ work on the immunology sublanguage [28],
is that, in specific domains, the linguistics reflects the domain conceptual organization.
Even if the linguistic representation of the conceptual domain is biased, it remains one of
the most promising approaches to knowledge acquisition. Following [38], a large amount
of work has been devoted to term extraction [9,34] as a means to identify the concepts
of a given domain and thus to bootstrap ontology design [26,44,4] (see also Ryu and
Choi in this volume). Identifying how these terms relate to each other in texts helps to
understand the properties and relationships of the underlying concepts.

Various methods are applied to corpora to achieve this acquisition process: endoge-
nous distributional or cooccurrence analysis and rule-based extraction are complemen-
tary in this respect. We focus here on the latter approach, which pertains to IE. Rein-
berger and Spyns’ chapter (in this volume) illustrates the former. We show that it can
indeed contribute to the ontology acquisition and enrichment process. Rule-based ex-
traction produces elementary results that are interpreted in terms of chunks of ontologi-

8The description of the IE task and the data including some linguistic information are available on the web
page of the LLL’05 challenge [37].
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cal knowledge: the referential entities and their interrelationships. Once extracted, these
chunks have to be integrated into an ontology. We do not deal with that point here, as it
goes beyond IE.

4.1. Entity name extraction

As explained in Sect. 2.2, we consider here that the referential entities (e.g.persons, dates
or genes), which are usually represented as instances of concepts, are part of the ontol-
ogy. In this perspective, there is a need for "populating" ontologies with the referential
entities of the domain of interest by automatic ways; IE has also been widely used for the
acquisition of this type knowledge. Extraction patterns are used to recognize and catego-
rize previously unknown names of entities in documents, either specialized texts or web
pages. The extraction methods differ regarding their pattern design technique, which is
either automatic or manual.

Various methods have been tested to achieve automatic pattern learning. Hidden
Markov Models (HMM) based on sequences of bigrammes (pairs of tokens) has become
a popular method for learning named entity recognition patterns from annotated corpora
[7] because simple bigrammes appear as sufficient for learning efficient rules. For in-
stance, for the recognition of biological entity names, [16] relies on an HMM trained on
100 MedLine abstracts using only character features and lexical information. The results
(F-score 73 % ) are much better than those obtained by previous hand-coded patterns
as reported by [23]. More recently, approaches based on the Maximum Entropy (ME)
appear as very powerful and relevant [41,8,11]. As in HMM, the method computes the
probability to output a given label, given the word to tag. In this model, dependencies
between word labels are easier to represent and the role of useful text features9 is more
explicit and easier to take into account. Classical ML discriminant classification methods
such as SVMs [65,33], k-KNN, Neural Networks have also been applied [71]. However,
depending on the tasks and the type of entities, SVMs, ME and HMM yield more or less
similar results.

While the pattern learning approach tends to use very basic information from the
text, the hand-coded pattern approach relies more heavily on linguistics, external ontolo-
gies and context. The EDGAR system [56] identifies unknown gene names and cell lines
by two ways: the concepts of UMLS and hand-coded contextual patterns, such as appos-
itives, filtered through UMLS and an English dictionary and occurring after some signal
words, (e.g.cell, clone and line for cells). A second phase identifies cell features, (e.g.or-
gan type, cancer type and organism) by a similar mechanism. In [49] and [31], the recog-
nition of gene and biological entity names relies on a combination of cues: grammatical
tagging, contextual hand-coded patterns, specific lexicon (e.g.SWISS-PROT keyword
list) and word morphological. The results obtained by [49] on a FlyBase corpus are of
high quality, (94,4 % recall and 91,4 % precision). Populating ontologies with the help
of entity name recognition from textual data can therefore be considered as operational
for specific domains.

9Simple words, case, length, POS tags, semantic categories, numbers, specific symbols, prefix, suffix, con-
text.
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4.2. Relation extraction

In a structured ontology, the concepts are related to each other according to a variety of
relations. Three main approaches acquire ontological relations from texts:

• The cooccurrence-based method identifies couples of cooccurring terms. When
applied to large corpora, this method is robust but further interpretation is required
to type the relation underlying the collocation.

• The knowledge-based method makes use of a bootstrapping dictionary, a the-
saurus or an ontology and tunes it to adapt it to the specific domain at hand ac-
cording to a representative "tuning" corpus.

• The IE pattern-based method.

The IE approach has the advantage over the first one that the type of extracted relation is
known, since patterns are designed to characterize a given relation. It is complementary
to the second one: preexisting knowledge can help to design an extraction rule in an
acquisition iterative process. For instance, if the preexisting knowledge base states that
’X is-part-of Y’, identifying this relation in text helps to design a first is-part-of extraction
rule, which is used in turn to extracts new instances of that relation [29,40].

Two kinds of relations can roughly be distinguished: the generic ones, which can be
found in almost any ontology, and the model-specific ones.

The links that form the main structure of an ontology are the most popular relations:
the intra-concept relations (synonymy) and the hierarchicalis-a and part-of relations.
They can be considered either at the linguistic level (hyperonymy and meronymy are
traditional lexicographic relations) or at the ontological level (is-a and part-of). The ac-
quisition goal is to exploit the linguistic organization as it appears in texts to bootstrap
the ontology design, even if the ontological structure is only partially reflected in the
linguistic one. Various forms of extraction patterns have been designed to acquire such
relations. See for instance the article of Cimianoet al. in this volume for examples of the
application of such Hearst’s patterns.

A wide range of domain specific relations are examined in IE works. Elementary
relations can be interpreted as attributes of a given object class. The attributes age, name,
phone number, parent, birthplace can be associated to a person [19]. Various relations
can hold between objects or events: from semantic roles, such as agent or patient roles, to
more complex ones such as the symptom relation in the medical domain or the interaction
between biological entities in genomics.

Extracting relations between entities helps to populate a database. However, extract-
ing a relation in isolation is usually not sufficient for ontology design. The elementary
relation must be structured in more complex schemata [19,3]. For instance, in functional
genomics, one of the most popular IE task aims at building enzymes and metabolic path-
ways, or regulation networks that can be considered as specific ontologies. Such net-
works are described by complex graphs of interactions between genes, proteins and envi-
ronmental factors such as drugs or stress. The ontological result of the extraction should
represent at least the entities, their reactions, their properties and, at a higher level, feed-
back cycles. Single elementary and binary relations between entities are independently
extracted by IE methods. The integration of these elementary relations into the ontology
highly depends on the biological model represented in an ontology and on the other ex-
tracted facts. Few works address this integration question. The improvement of an on-
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tology by IE simply comes to add new instances of the interaction relation in most of
the cases. For instance, with the semantic roles associated torepress(Agent(Repress,
Protein) and Target(Repress, Gene)), the repress relation can be enriched by new in-
stances. "SpoIIID represses spoVD transcription" yields Agent(Repress, SpoIIID) and
Target(Repress, spoVD) [57]. Other works such as [46] aim at providing a user-friendly
interface to facilitate the interpretation of the elementary results by the biologist.

4.2.1. Discussion

On the whole, although useful, pattern-based acquisition of relations cannot be the main
knowledge source for ontology design. The best results in precision are obtained in hy-
ponymy and specific relation extractions. Some reasons can be invoked. The variation in
phrasing is difficult to capture and this affects the recall quality. General patterns must
rely on grammatical words or construct (like prepositions) which are semantically vague.
This affects the precision. More fundamentally, the linguistically based model cannot
be directly mapped onto an ontology (see also [25]. Hyponymy between polysemous
terms cannot be considered as a transitive relation; metonymy phenomena are concep-
tual shortcuts difficult to interpret; the language makes the confusion between the roles
and the entities that hold the roles; etc. The use of relation extraction techniques must
therefore be restricted to the complementation and tuning of an existing ontology and
any extracted information needs to be further interpreted in ontological terms.

In the ExtraPloDocs project, we are currently investigating a method to combine the
distributional analysis for learning synonymy and hyperonymy relations, which has a
good coverage but produces noisy results with pattern-based relation extraction, which is
more reliable but has a low productivity. As mentioned above, the distributional analysis
is implemented in the Asium system, which produces a hierarchy of semantic classes
of words. To improve the quality of the hierarchy produced by the Asium system and
alleviate the validation burden, we aim at bootstrapping the distributional analysis with
the various pieces of ontological knowledge which have been acquired by a pattern-based
technique.

5. Conclusion

As illustrated above, the IE research related to ontologies is abundant, multiple and
mainly applied. Many systems, approaches, algorithms and evaluations on quite basic
applications are reported. At this stage, the main goal is more to develop systems that get
a better precision and recall than making explicit and defending a given general approach
against others. The influence of statistics on NLP, the influence of MUC on IE and the
cost of ontological processing partially explain this. The simplest tasks are solved first
(e.g.named entity recognition). IE methods for interpreting the lowest text levels are now
well established. This maturity and the growing needs for real applications will draw the
field towards a stronger involvement of the ontological knowledge.

Difficult and unexplored questions dealing with the discrepancy between what the
text is about, the exogenous lexicon and a given ontology should be investigated. This
gap may not be only due to representation languages, to divergent generality levels and
incompleteness of the knowledge sources, which have been tackled by the revision field,
but also to divergent text genres, points of view and underlying problem-solving tasks.
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Ontology-driven IE and integration of the extracted knowledge in an ontology will not
be properly done without appropriate answers to these questions.
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