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Abstract.*  Over-generalization is a well-known 

problem in empirical learning. Incremental and cautious 
generalization may limit it, but the concept description 
language may be incomplete or incorrect. In this case, over-
generalization may indicate that the language must be 
improved. This paper presents an interactive incremental 
learning method with a "smallest generalization steps" 
strategy such that whenever a learned concept is over-
general, the method specializes it and efficiently helps a 
user to identify the insufficiencies of the concept language 
and in improving it if necessary. 

1 Introduction 
Learning concept definitions empirically requires the 

ability to control the degree of generalization.  As the aim 
of ML is to increase the prediction capability, the learned 
concept usually verifies additional examples. If some of the 
covered examples are negative examples, the learned 
concept is over general. 

The method described in this paper uses incremental 
and cautious generalization as a way to reduce the risk of 
uncontrolled over-generalization. However, over 
generalization may nevertheless occur. The training 
examples may be incomplete and not specific enough 
and/or the concept description language may be 
insufficient, so that there is no way to conjunctively express 
a concept definition that covers all the positive examples 
and no negative one. As a matter of fact, it is a critical 
aspect of knowledge acquisition (KA) to design a 
description language free from such insufficiencies 
[Shapiro, 83]. 

In such cases, the learner has no means of detecting the 
problem, since the learned concept is consistent with 
everything the learner knows (e.g. the examples and the 
concept description language).  This classical problem in 
knowledge refinement accepts two main types of solutions. 
What is learned may be tested and improved through many 
examples with learning in the limit methods such as CLINT 
[Bruynooghe et al., 89] or an expert of the domain can 
directly validate and correct the learned concepts [Sammut 
& Banerji 86]. In this paper we are interested in the latter 
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approach. On the one hand, it allows to reduce the number 
of examples required and to simplify the validation phase. 
But on the other hand the evaluation of the learned 
concepts may be less reliable than the example evaluation, 
depending on the domain and the task. This evaluation 
problem may be partially overcome by KA techniques. It 
would be also a difficult task for an expert to correct the 
causes of over generalization without further information 
than the learned concept and the examples. We propose a 
method to tackle this problem of evaluation and correction. 
Its cautious generalization strategy provides the capability 
to efficiently help an expert whenever an over-
generalization occurs by restricting the range of the search 
for the causes of the over generalization to a delimited sub-
part of the vocabulary, and by guiding the expert in the 
identification of the missing knowledge. 

2 APT  
2.1 The APT Architecture 

This method is supported by implementation and 
experimentation in the learning module of the APT system 
[Nédellec, 91]. APT architecture is that of DISCIPLE 
[Tecuci, 90].  

APT uses a domain theory in order to generalize 
problem-solving rules provided by an expert. It is 
represented by a semantic network where the hierarchies 
completely determine the generality relation and the 
property inheritance between the literals of the theory. The 
concept definitions and the examples are described in the 
same language that is restricted to conjunctions of the 
literals defined in the theory. Consequently, the 
improvement of the concept description language leads to 
the refinement and the completion of the theory. 

2.2 Learning method  

Initially the expert provides a specific rule. Its 
application condition is considered as a positive example.  
It is completed by explanations generated or acquired from 
the expert [Nédellec, 92a]. Next, an example set is 
automatically generated by analogy with the completed 
example. The initial search space of the target concept 
definition is limited by a lower bound (noted LB) equal to 
the expert's example and an upper bound (noted UB) equal 



to the same formula where all the predicates are replaced 
by the most general predicates in the corresponding 
hierarchies of the theory. 

Next, the generated examples are successively 
submitted to the expert. As in [Mitchell, 1978] each 
negative example leads to a specialization of the UB so that 
the resulting UB is the most general one that does not cover 
the negative examples. Each accepted example leads to a 
generalization of the LB so that the resulting LB is the most 
specific one that covers all the accepted examples. No 
dropping rule is applied, but only climbing in the 
hierarchies of predicates and the problem of the matching 
choice between literals is supposed being solved. 
Therefore, the search space converges incrementally on the 
target concept.  

At the end of the generalization phase, the learned 
concept is evaluated by the expert. If it is over general, a 
search for the causes of the over-generalization begins. 
APT gives the expert the possibility to select the 
specialization  direction by pointing out the too general 
predicate of the learned concept definition in order to avoid 
an exhaustive search. Next, it specializes the learned 
concept by backtracking on the intermediate steps that it 
has performed in the course of the generalization and 
submits them to the expert until the expert accepts one.  
This way, APT identifies the most specific over general LB 
state (noted MSOG concept) that covers negative examples, 
when the previous states do not. Notice that the all previous 
states are over specific, since they do not cover the positive 
example that has led to the validation of the MSOG concept 

APT’s aim is now to correct the definition of the 
MSOG concept to exclude all the negative example from 
its scope without excluding positive ones. The inconsistent 
example subset that contain negative examples unduly 
covered is defined as the subset of examples that are newly  
covered by the MSOG concept and not covered by any 
previous state. Moreover the vocabulary of the theory that 
may have to be corrected in order to suppress the over 
generalization belong to the subpart of the language that is 
involved in this generalization step. So, the size of this 
subset is critical :  it is obvious that the smaller the 
inconsistent example subset is, the easier it will be to 
identify the negative examples to exclude from the concept 
definition. Reducing the size of the subset means reducing 
as much as possible the difference between two successive 
states because the size of this subset directly depends on the 
difference between two successive states. This may be done 
by applying the "smallest generalization steps strategy" 
(SGSS) while generalizing whenever there exists a risk of 
over generalization . 

2.3 Cautiously generalizing  

The SGSS consists at each step, in generalizing only 
one predicate of the current LB on one degree according to 

the generality relation of the theory, that is replacing a 
predicate by its "parent" in the corresponding theory 
hierarchy. As the SGSS determines a partial order of the 
successive states of the LB, it also determines the 
processing order of the examples. 

Formally, at a stage T, the current LB is a conjunction 
of literals, the predicates of which are (P1, P2, ... Pi, ... Pn). 
At the stage T+1, APT tries to validate one more general 
state LB' (P1, P2, ... Π i , ... Pn) where Πi is the direct parent 
of Pi in the corresponding hierarchy of the theory. APT 
submits one of the generated example (p1, p2, ... pi, ... pn) to 
the expert. All the example predicates (p1, p2, ... pi-1, pi+1... 
pn), except pi must be less general than the corresponding 
predicates in the current LB (P1, P2, ... Pi-1, Pi+1, ... Pn), and 
the predicate pi must be less general than Πi. 

If this example is accepted, it forms a "near success" 
(by analogy with “near miss”) and the consequent 
generalization of the LB is one of the most elementary 
ones, since just one predicate of the LB has to be 
generalized on only one degree to cover it. 

If the example is rejected by the expert, this near miss 
is excluded from the search space by the specialization of 
the UB as with the INBF algorithm [Smith, Rosenbloom, 
90], who shows the efficiency of pruning the search space 
in that way. Since the guilty predicate pi in the negative 
example is completely identified, (this is the only predicate 
that does not match the current LB), the corresponding 
predicate Pi' in the UB is specialized the most to the 
corresponding predicate Pi in the LB, without any risk of 
over specialization. 

Therefore, by the SGSS, the example subset that is 
newly covered by any LB state and no previous one is as 
small as possible. The consequences are of three types. 
First, disjunctive concepts are learned. The search space of 
the target concepts is represented by an oriented 
generalization lattice. By applying the SGSS, the search 
space converges through the lattice on the learned concepts 
which are represented by the disjunction of the most 
general nodes of the lattice that have been validated by the 
system. If some of them are over general, a reevaluation 
phase is executed for each of them. 

Second, as APT has performed as small as possible 
steps according to its generalization operator, it cannot 
build new intermediate concepts between the over general 
MSOG concept and the over specific previous states. So, 
the over generalization indicates that the theory is incorrect 
or incomplete or that the training examples where 
incomplete. The only solution in order to exclude all the 
negative examples from the inconsistent subset without 
excluding any positive ones is thus to acquire new 
knowledge in order to constrain  the definition of the 
MSOG concept. So, APT needs to interact with the expert 
to acquire the needed knowledge. 



Third, the characteristics of the inconsistent set are 
particularly useful because the examples are semantically 
close since their predicates have common direct parents in 
the theory. This permits the application of KA techniques 
based on the study and the comparison and the opposition 
of close examples, in order to find the missing constraints 
and vocabulary allowing to describe separately the negative 
and positive examples. This allows APT to interact with the 
expert is in a significantly more user friendly and helpful 
way than if only studying of abstract generalization steps.  

2.4 Refinement and revision 

At that stage, APT knows only one positive example 
from the inconsistent example subset, this is the example 
that had led to the validation of the MSOG concept during 
the generalization phase. In order to guide the expert in the 
correction of the MSOG concept APT needs to identify 
negative examples, then it submits to the expert other 
examples from the inconsistent subset. To avoid having to 
study all the examples from this set which may be 
numerous, the expert has the possibility to select a subset 
by choosing predicates which seems to be problematic in 
the list of predicates that APT knows being involved in the 
over generalization problem. 

When negative examples have been identified, APT 
asks the expert to compare them with the positive example 
that he has previously accepted. These examples are 
semantically close since their predicates have the same 
direct parents in the theory and consequently it is much 
easier to find what knowledge description would allow to 
distinguish them. This technique of comparing close 
examples to elicit knowledge stems from psychology field 
and is applied with interesting results in KA . 

 APT is able to propose to the expert relevant means to 
use this elicited knowledge in order to correct the MSOG 
concept by exploiting the subpart of the vocabulary that is 
involved in the over generalization problem, the positive 
examples and the negative examples classified by the 
expert. 
We present here the tools which seems to be the most 
significant and powerful. They are detailed through an 
example in [Nédellec, 92b]. APT gives to the expert the 
possibility to complete the theory if the available 
vocabulary is insufficient and/or to add new constraints to 
the MSOG concept. So, some tools use the examples that 
APT knows in order to modify the theory when other tools 
allow to specialize the MSOG concept and to modify the 
theory if needed, without using the examples. APT reacts to 
each modification by indicating if they are sufficient or not 
in order to exclude the negative examples from the MSOG 
concept scope. Let us suppose that,  

- the expert concept is e1 (x), e2 (y), e3 (x, y) 
- the MSOG concept is Π1 (x), Π2 (y), Π3 (x, y) 

- the previous concept is P1 (x), Π2 (y), Π3 (x, y) 
- the positive example  p1 (x), p2 (y), p3 (x, y) 
has led to the generalization  into MSOG 
 
- The following examples from the inconsistent set have 
been classified by the expert 
Positive examples : 
 Ex1 :  P1,1(x) ,  P2,1 (y) ,  P3,1(x, y)   
  .... 
 Exi :  P1,i(x) ,  P2,i (y) ,  P3,i(x, y)  

Negative examples : 
 Exi+1 :  P1,i+1(x)  P2,i+1 (y) 
 P3,i+1(x, y)    
  .... 
 Exn :  P1,n(x) , P2,n (y) , P3,n(x, y)  

a. Modifying the Domain Theory 

We present four tools improving the theory so that 
positive examples may be described separately from 
negative ones by using the learning context. The first step 
that APT performs consists in listing separately the 
“positive” predicates that occur in positive examples and 
the “negative” predicates that occur in negative examples 
from the inconsistent set. The aim while modifying the 
theory is to find a way to separate the positive predicates 
and the negative predicates that define the same variable, 
such as separating the positive predicates P1,1(x)  ... P1,i(x) 
 and the negative predicates P1,i+1(x)  ... P1,n(x)  defining 
the same variable x in the examples. 

These group of predicates belong to the same hierarchy. 
They are less general than the predicate defining the same 
variable in the MSOG concept and more general than the 
predicate defining the variable in the expert example 
(Figure 1).  

• First, for each variable, APT proposes to add 
intermediate predicates  in the theory to gather in two 
different clusters the positive predicates and the negative 
predicates. Suppose that the expert adds the predicates 
q+,1  and q- ,

1 as sons of Π1 such as in figure 1. Then, if 
the expert adds also the constraint q+,1 (x)  to the MSOG 
concept, this is sufficient to exclude all the negative 
examples while covering all the positive ones. 

• Second, APT proposes to move the cluster of positive 
predicates or the cluster of negative predicates along their 
hierarchy. For instance, if q- ,

1  with its "negative” sons 
P1,i+1(x)  ... P1,n(x)  is attached to G1 instead of Π1, it is 
not necessary to change the MSOG concept for the 
negative examples to be excluded, because G1 is more 
general than Π1. 
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Figure 1: Part of the theory 

• Third, APT proposes to add to the theory new binary 
predicates to link together positive predicates separately 
from negative ones. For instance, it proposes to link each of 
the positive predicates P1,1(x)  ... P1,i(x)  that define x in 
the positive examples to the corresponding positive 
predicate P2,1(y)  ... P2,i(y)  that define y in the same 
examples (figure 1). For instance, R+,12  links P1,1  with 
P2,1 , ... P1,i with P2,i  in the theory. Next, if the expert 
adds the constraint R+,12 (x, y)  to the MSOG concept, that 
is sufficient to exclude all the negative examples while 
covering all the positive ones. 

• Fourth, APT also proposes to rename positive binary 
predicates separately from negative ones. 

APT verifies if the modifications performed by the 
expert lead to the exclusion of the negative examples from 
the scope of the MSOG concept, but it is the role of the 
expert to provide the knowledge needed by comparing the 
examples and to use these different tools in order to solve 
the over generalization problem. 
b. Adding new constraints to the rule 

APT gives also the possibility to add conjunctions of 
litterals with unary and binary predicates and known and 
unknown arguments in order to modify precisely the scope 
of the MSOG concept. APT helps the expert to integrate 
the unknown litterals in the theory by using the learning 
context to propose the most probable modifications 
[Nédellec, 92b]. 

• First, the expert may add a literal with a binary 
predicate such as Π4 (x, y). If it is already defined in the 
theory, APT only verifies that the negative examples are no 
longer covered by the MSOG concept.  

If the new binary predicate is unknown, APT looks  
which predicates in the MSOG concept define the argument 

of the new predicate, such as here, Π1 defines x and Π2 
defines y. So, instead of directly linking Π1 and Π2 by Π4 
in the theory, what would not exclude any negative 
example, APT proposes to the expert to choose at which 
level in each hierarchies of Π1 and Π2 the expert wants to 
add the relation Π4. When the expert has chosen the 
relevant generality level, APT proposes to the expert to 
select, at that level, the predicates that he wants to be linked 
by the relation Π4. 

 The expert has thus not to directly modify the theory 
but only to choose which seems to him to be the right level 
of modifications. Notice that by selecting some sons of Π1 
and Π2 to be linked by Π4, the expert determines the 
examples covered by the new definition of the MSOG 
concept. The predicates that are not linked by Π4 are 
excluded from the scope of the MSOG concept (just as with 
the third tool described above). 

• Second, the expert may add  to the MSOG concept a 
literal with an unary predicate. APT looks if the argument 
of the new predicate is already defined by a predicate of the 
MSOG concept. For instance, the argument x of a new 
literal Π5 (x) is already defined by Π1. If the new predicate 
is known, APT only informs the expert whether these 
modification of the MSOG concept does or not exclude any 
negative example. It obviously depends of the generality 
degree of the new predicate. 

If the new unary predicate is unknown, APT asks the 
expert to choose at which level in the hierarchy of the 
expert wants to add it. When the expert has chosen the 
relevant generality level, APT proposes to the expert to 
select the predicates that he wants to be covered by the new 
predicate at that level.  The predicates that are not covered 
by Π5 are excluded from the scope of the MSOG concept 
such as it is done by the second tool described in the 
previous section. 

If the argument of the new literal is not defined in the 
MSOG concept, APT cannot propose any mean to add it in 
the theory and it asks to the expert to do it by himself. 

So, APT gives the expert the possibility to modify the 
theory as a consequence of the modification of the MSOG 
concept, but it is the role of the expert to provide the 
needed knowledge and to make the right choice among the 
propositions that APT makes. 

Therefore, by using the SGSS method, APT is able to 
closely cooperate with the expert and propose relevant 
modifications on the over general concept and on the 
theory, and to carry on these modifications under the 
control of the expert. 

It has been applied to real world problems [Nedellec, 
92b] for design [Tecuci, 90], for hypertension treatment 
and for loan analysis [Bento, 91ab].  

3 Related Work 



 MARVIN, described in [Sammut and Banerji 86] has 
some similarities with our work, although it does not 
address the problem of identifying the causes of an over-
generalization nor the problem of correcting them. 
MARVIN submits examples to an oracle in order to 
perform elementary generalization steps by applying one 
rewrite rule at a time. Unlike MARVIN’s rules, the rules 
used by APT to generalize have only one premise because 
they are represented by a semantic network. One the one 
hand, the representation by rewrite rules that can have more 
than one premise is more powerful, but on the other hand, 
the size of the generalization steps are larger.  

The SGSS method used by APT substitutes only one 
predicate  for a given predicate in the current hypothesis, 
while MARVIN substitutes one predicate for all the 
premises of the chosen rule. The consequences are 
significant. First, for APT there is no intermediate step 
between two successive generalization steps. Then, if an 
example is refused, APT does never need to specialize in 
the direction of  the previous generalization as MARVIN 
does, but the generalization is definitively stopped in this 
direction. Moreover, the examples that are newly covered 
by a generalization step are much less numerous and 
semantically very close since two successive steps differ by 
only one predicate. APT is thus able to provide powerful 
means to identify the cause of the over generalization and 
to provide adaptive KA tools to acquire new knowledge in 
order to constrain the over general learned concept. 
MARVIN does not provide such tools because its search 
space is too large, it asks the expert to correct the theory by 
himself. 

[Utgoff, 86] shows that the language in which concepts 
are described is one of the biases that determine how 
generalizations are performed. As the description language 
determines the limits of the hypothesis space, extending it 
to express more concepts means in effect to complete the 
language. Then, as we do, Utgoff studies how to change an 
incomplete language, with the aim of expressing concepts 
that are consistent with example sets. The syntax remains 
the same. 

Utgoff's method named STABB is applied to LEX 
[Mitchell, 82]. It consists in automatically integrating new 
symbol in the language so that the learned concepts may be 
expressed in a conjunctive form. 

APT generalizes in a quite similar way but it does not 
automatically create new symbols. It seems that expert 
abilities are generally required to modify the language 
because the needed modifications may be far more 
important than adding intermediate features at an arbitrary 
level in hierarchies as STABB does. So by interacting with 
an expert APT is able do perform more sophisticated 
changes. Rather than completing the concept language, 
APT refines it. 

5 Conclusion 
In this paper, we have presented a method implemented 

into APT to limit over-generalization when empirically 
learning. ML and KA techniques have been closely 
integrated into APT in order to identify the insufficiencies 
of the concept language and to improve it if necessary. So, 
the method is based on the close copperation between the 
learning system and an expert of the domain. 
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