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Abstract. Interest in Declarative bias in Machine Learning is grow-
ing with the expressivity of the concept description language of ML
systems. Inductive Logic Programming more than any other ML field
is thus concerned with explicitely biasing learning. The main issues al-
ready identified in declarative bias [RG90] have been studied within the
ILP project, i.e. the restriction of the size of the search space for the
target concept and representation of the bias. As a first step, an ex-
tensive study of existing ILP systems and the elicitation of the role of
hidden bias has led to define typologies of bias in relation with their
effects on the learning process as well as alternative representation for
bias. Declarative representations of bias have been defined through dif-
ferent types of languages so that bias can be easily set and shifted. In
parallel with the definition, the representation and the experimentation
of various biases, the interactions between different types of bias have
been analyzed in term of computational learning cost so that reusable
guidelines for bias setting may be provided.

1 Introduction

1.1 Motivations

The issues on declarative bias studied within the ILP project, i.e. the restriction of the
size of the search space for the target concept, the control of its exploration, and the
declarative representation of bias, are motivated by the following results in ML.

The importance of bias was experimented with in early Machine Learning and Pat-
tern Recognition research [Cov69]. In particular, it was observed that stronger language
bias (i.e., smaller hypothesis spaces) would lead to better performance of the learned
programs on a test set of new examples not available to the system during the learning
phase. This fact has been explained in beautiful generality by the works of Vapnik
and Chervonenkis [VC81| and further developed within the Computational Learning



Theory community and in the Pattern Recognition literature [Dev88, SB93|. The first
observation of Vapnik and Chervonenkis is based directly on Bernoulli’s Theorem: the
difference between the percentage of errors made by the learned program on the given
examples and the same figure measured on a separate set of test data grows with the
size of the hypothesis space P of possible programs. The main result of Vapnik and
Chervonenkis is that the same holds for infinite hypothesis spaces, where cardinality
is replaced by a measure of the expressiveness of the hypothesis space, the so-called
Vapnik-Chervonenkis dimension of P.

The hypothesis language used in ILP is often Horn clauses: by far a more expressive
language than those used in Pattern Recognition (e.g., linear discriminants or proto-
types for nearest neighbor classification) and in propositional Machine Learning (e.g.,
decision trees or propositional classifiers). For the concerns on accuracy, Horn clauses
are hopeless: even the weakest notions of inductive success, such as identification in
the limit cannot be met without appropriate restrictions. Some form of language bias
is therefore necessary for restricting the hypothesis space, more necessary than it had
been in previous Machine Learning research. The hypothesis spaces of possible logic
programs must be extremely restricted, based on specific knowledge about the problem
at hand, for otherwise the behavior of the learned program on new data can be unpre-
dictable, and unrelated to completeness and consistency as measured on the training
examples.

Obviously, the hypothesis space cannot be too small either, because it must contain
some program that has an acceptable accuracy on the available data. Bias must, then,
be weak enough to allow for complete and consistent programs, and strong enough to
prevent total degradation of performance on new data.

Bias is not limited to the definition of a hypothesis space, and is also central to
addressing efficiency concerns, besides the issue of accuracy. The biased hypothesis
space can be wide enough so that extensively searching it may be unrrealistic from a
computational point of view. [Mit80] described learning in term of problem solving
where bias are considered as heuristics that efficiently guide the search through the
hypothesis space. In this framework, various types of bias have been studied such
as preference criteria, search biases and stopping criteria that exploit the available
classified examples and order relation on the hypothesis space in order to avoid an
extensive exploration of the hypothesis space.

The importance of a declarative description of bias has been stressed by [RG90|
and [RG90] among others. They argue that a declarative description of the language
bias is a condition sine qua non for the automation of language bias selection and shift
of language bias. More recently, [DB92] showed that expressing declaratively learning
strategies in generic algorithms provides a general framework, both for comparing and
adapting ML methods.

1.2 Declarative bias in ILP

The declarative representation of bias and its operationalisation in implemented sys-
tems requires the clarification of the notion of bias, that is, clearly defining the basic
knowledge and the learning operations, and the biases that affect them. Based on the
identified biases, section 2 intoduces typologies of bias. In section 3, representations of
bias are defined in relation to the learning task to achieve. Three complementary types
of language of bias for language bias setting, Clause sets, MILES-CTL and DLAB have



been developed for different purposes (section 3.2). Configuration of generic ML meth-
ods is an alternative solution for bias representation and setting that has been explored
with the knowledge level description and implementation of a generic generate-and-test
strategy in the system HAZKU (section 3.3). Some properties of the association of
language and search bias have been identified based on extensive experimentation with
HAZKU(section 4.3). The formalization of these properties has led to define general
guidelines for a more efficient implementation of biases.

2 Definitions and typologies of bias

The following typologies of bias (sections 2.2 and 2.3) we have defined, are based on
previous general definitions of bias, that appeared as too general to be fully operational
in ILP, but formed an interesting basis for discussion.

2.1 Definitions

Definition 1 (after [Mit80]) We use the term bias to refer to any basis for choosing
one generalization over another, other than strict consistency with the observed training
examples.

Definition 2 (after [Utg86]) Except for the presented examples and counterexamples
of the concept being learned, all factors that influence hypothesis selection constitute
bias. These factors include the following:

e The language in which hypotheses are described.

The space of hypotheses that the program can consider.

The procedures that define in what order hypotheses are to be considered.

The acceptance criteria that define whether a search procedure may stop with a
given hypothesis or should continue searching for a better choice.

2.2 A typology of bias

There is now some agreement on dividing the notion of inductive bias based on Ut-
goff’s definition into three different categories, namely, language bias, search bias, and
validation bias.

e The language bias defines the target concept language, by determining the hypoth-
esis space of the possible concept descriptions. It restricts the Concept description
language. that hold for all concept learning. The language bias includes any lan-
guage restriction that is specific to the current concept to learn. For instance, the
concept description language may be Horn clauses without function symbols and
the language bias may restrict the target concept language to clauses with only 4
literals in the body.



e The search bias determines which part of the hypothesis space is searched, and
how it is searched. It can be a restriction or a preference bias. A restriction bias
determines which programs should be ignored, while a preference bias determines
which program should be considered first, which clauses should be considered first,
and which predicates should be first added or removed from clause antecedents.
This is a generalization of what had been called a preference criterion [Mic83b].

e The validation bias [Mic83b] determines an acceptance criterion for the learning
system, telling the system when the search for the desired logic program should
stop. This could happen whenever the learned program is complete and consistent
with respect to the given examples. In most Pattern Recognition applications,
one would rather stop when some degree of completeness and consistency has been
reached. Such a choice has also been made in some ILP applications [KMS92].

2.3 Refinement of the general typology

To reflect the complexity of the exploration of the search space by various ILP methods,
[NR94] has refined the above notions of search bias and validation bias in the following
way.

2.8.1 Search bias

Search bias can be decomposed into the following parameters.

e Ordering relation on the hypothesis space. In a generative approach, where the
candidate hypotheses are generated by altering a current concept definition into
a “better one”, the notion of search bias includes the operator that alters the
current concept definition, such as for instance, inversion of resolution, dropping-
literal, etc. It may be based on any partial order relation on the hypotheses
such as any generality relation (see [NR94]) that allows to prune the inconsistent
hypotheses from the hypothesis space. The generality relation is classically based
on background knowledge, that then plays the role of a bias. In a static approach
(as opposed to generative), the notion of search bias includes the order in which
the pre-compiled hypotheses are to be tested against the examples.

o Ezample selection criteria. The way examples are selected among the available
ones by the ML systems or by the user is also a bias: a given candidate hypothesis
is considered as valid or not depending to its consistency and its completeness with
respect to the selected examples. This holds whether the selected example is used
to drive learning as in a data-driven strategy or the selected example is used to
validate the current candidate hypothesis in a generate-and-test strategy.

o Coverage function. It determines if a given example is covered or not by a given
hypothesis. It is a bias in the sense that it is used for checking the correctness
the hypotheses. It may be based on resolution or #-subsumption and it uses or
not the background knowledge that once again can be exploited as a search bias.

o Intermediate validation criteria. This criterion determines the validation of a
candidate hypothesis with respect to the examples. Classically, the criterion tests



the consistency of the hypotheses with respect to the examples selected by the
example selection criteria. It may be absolute: the hypothesis has to be consistent
with all the selected examples, or relative: the hypothesis has to be consistent
with a subset of the selected examples such as the discrimination measures used in
FOIL. A given hypothesis may considered as “consistent” for a given intermediate
validation criteria while it is not for another. In this sense, it influences the search
through the hypothesis space and the learning result.

2.3.2 Validation bias

[NR94] distinguishes two kinds of validation bias, validation of a partial concept defi-
nition or program and stopping criterion.

e Validation criterion of a partial concept definition. In case of multi-concept learn-
ing or “disjunctive” concept description language, the learning algorithm requires
an additional criterion to determine if a given clause is part of the target con-
cept definition or not. In most systems, it is relative consistancy and measured
according to a threshold, or absolute consistency with respect to the whole set of
examples.

e Stopping criterion. It determines when learning must stop. It is usually rela-
tive (to a threshold) or absolute completeness with respect to the whole set of
examples.

Single concept learning in conjunctive concept description language obviously requires
a single criteria.

2.4 Declarativity

Eliciting biases and defining a typology that clearly states their roles is a first step
towards designing systems that can be adapted to the learning task. But to achieve
this goal, a declarative representation of the bias is also required so that bias setting
and shifting can be easily performed. Here, bias is said as being declarative once it is
explicitely represented, - beit at the knowledge level, or in the system specification -
and not hardwired in the system’s implementation. Bias declaration must be such that
one can reason about it, i.e., such that the correlation between input and output of a
learning system can be clearly defined. Within this framework, the role of background
knowledge as declarative bias is subject to discussion as it clearly depends on the way
it is exploited. Background knowledge is traditionally viewed as one input of inductive
learners, i.e., it has the same status as the examples. This is clearly contradictory with
Mitchell’s definition (section 2.1). One can argue that this is only due to historical
reasons as the background knowledge has not been exploited in the former systems as
it is in ILP systems.

The declarativity of the representation of the Background Knowledge (BK) obvi-
ously depends on the way it is exploited and the role it plays in learning. It may be act
as language bias as well as search bias.

e Background Knowledge as language bias. When BK is available, it usually deter-
mines the vocabulary of the concept definition language. For instance, in clause



models approach (section 3.2.1), the predicates used in the clauses of the hypothe-
ses are determined by the clause sets, which in turn are defined in terms of the
predicates in the background knowledge and predicates for which clauses have
to be constructed. This means that the background knowledge determines the
predicates that are in the concept definition language. In MILES-CTL (section
3.2.3), the predicates in the vocabulary of the hypothesis language can be defined
as some subset of predicates in the background knowledge. In case the search op-
erator makes use of BK, BK also determines the syntax of the concept definition
language as in HAZKU (section 3.3).

e Background Knowledge as search bias. Background Knowledge may influence
the search in three ways. It may be used to define a generality relation on the
hypothesis space and then a partial order for search. It may also be used to
define a coverage relation between the examples and the hypotheses and it then
determines whether a hypothesis is correct and complete or not. It may also
be used for checking the semantic criteria of the language (e.g. the determinacy
restriction and input-output modes) in relation with the coverage relation.

As these generality relation, coverage relation and semantic criteria are not ex-
plicitely expressed from the background knowledge, but have to be computed
by non trivial methods, the status of BK as declarative search bias is an open
question.

3 Declarative representation of bias

The declarative representation of bias may be achieved in two ways, by languages that
allow bias specification, or by configurable generic methods that allow both specification
and implementation of bias. Both methods will be presented in the following through
examples.

3.1 Language bias

The declarative representations described below are provided with a number of options

corresponding to general constraints on the language, some of which have been used
before in ILP (see [BG95])

1. Predicate modes may be provided that indicate their desired input/output behav-
ior. Every argument of a predicate is labeled as either input or output. Modes
need not be unique, e.g., we may have both append(input, input, output) and
append(output, output, input). More sophisticated mode declarations involv-
ing determinate and nondeterminate literals are found in the PROGOL system
[SMK94|. Clause Sets can be reduced according to predicate modes as follows: a
clause is permitted only if any input variable of any predicate in the antecedent
either occurs earlier in the antecedent or is an input variable in the head. This is
called a requirement of instantiated inputs.

2. The output variables in the head of a possible clause may be required to occur as an
output of some predicate in the antecedent. This guarantees that an instantiated
output is produced when the clause is called.



3. Once an output is produced, one may require that it is not instantiated again.
Syntactically, this means that any variable cannot occur as output in the an-
tecedent more than once.

4. Forcing outputs to be used: any output variable in the antecedent must occur
either as input in some literal to the right or as output in the head.

5. Forcing inputs to be used: all input variables in the head must occur in the
antecedent.

6. Forbidden clauses: it is sometimes easier to define a large set of clauses, and list
a smaller number of clauses to be removed from the set, rather to list one by
one the clauses that are possible. The procedure for generating a set of possible
clauses also accepts in input a set of forbidden clauses.

7. Forbidden conjunctions: with the same motivations as above, some conjunctions
of literals may be ruled out, meaning that no antecedent of a possible clause may
contain them. This can be useful for two reasons: the conjunction is always true,
e.g., Yis X+1 A X=Y-1, or it is contradictory, e.g., head(L,A) A null(L).

3.2 Language of bias

Three complementary languages of bias have been defined within the ILP project that
allow a user to easily specify and shift different type of language biases. The choice of
a language among the possible ones will depend on the characteristics of the learning
task to achieve, i.e. the level of expressiveness and comprehensibility of the target
description language.

3.2.1 Clause Set Formalism

Clause sets allows to specify bias that adopts standard Prolog notation, with the addi-
tion of clause, literal, and term sets.

Clause sets:

The hypothesis space will be described by a pair < knownclauses, possibleclauses >.
A program P belongs to the hypothesis space if P = knownclauses U P1, where Pl is a
subset of the possible clauses. The simplest syntactic tool for specifying such inductive
bias is given by Clause Sets: known clauses are listed as in a Prolog program, while
possible clauses are surrounded by brackets denoting a set.

Clause Set language has been implemented so that the systems FILP and TRACY
can learn acceptable programs among the possible ones generated from the actual spec-
ifications of clause sets.

For instance, there follows a possible description of a priori information for learning
a logic program for member:

member(X, [X|]). {member(X,[Y|Z]) : =X # Y, member(X, Z).
{member(X,[Y|Z]) : —cons(X,W,Z).} member(X,[Y|Z]): —cons(Y,Z,W).
cons(X,Y, [X|Y]). member(X, [Y|Z]) : —member(X, Z).}



This means that the learned program will have to include the first clause, which is
known, possibly followed by the second clause member(X,[Y|Z]) : —cons(X,W, Z).;
the third clause cons(X,Y,[X|Y]). will have to follow. Finally, some or all of the
remaining clauses may be appended to the program. There are sixteen different logic
programs satisfying these very strict requirements; among these some represent a correct
implementation of member. All the user will need to do at this point is provide positive
and negative examples, e.g., member(a, [b, a]), member(c, [b, d, c])and—~member(a, [b]).

The learning systems FILP and TRACY could select, from among the 16 possible
inductive hypotheses, a program deriving the positive examples and not deriving any
negative example. As the bias is so strong, the task is very easy in this case, and the
learned program can only be a correct version of member.

Literal sets: Unfortunately, a priori information is not always so precise, and the
set of possible clauses may be much larger. As a consequence, the user may find it
awkward, or even impossible, to type them one after the other. To this purpose we
define literal sets. If a clause occurs in a clause set, then some conjunctions of literals
of its antecedent may be surrounded by brackets, denoting a set. In this case the clause
represents an expansion given by all the clauses that may be obtained by deleting one
or more literals from the set. Formally:

{P:-A {B C .}, D} ={P: A {C, ..}, D} U{P: A, B {C, ..}, D}

A case with variables is shown in figure 1.

q(X) - b(X).

{p(X).

p(X) - a(X,Y).

p(X) :- q(X).
q(X) - b(X). p(X) - q(X), a(X,Y).
{p(X) :- {a(X), a(X,Y)}. q(X) - ¢(X,Z).
a(X) - ¢(X,2), {a(2)}}. q(X) - ¢(X,Z), q(Z).}

(a) (b)

Figure 1: (a) Clauses with literal sets ... (b) and their expansion

In other words, the expansion of a clause is the set of clauses obtained by replacing
the literal sets with a conjunction of any of its literals. With this syntactic mechanism,
one can define in a concise way a large set of possible clauses.

Term sets: For defining sets of possible clauses even more concisely, our last tool
is given by term sets: a term occurring in a literal within a literal set may be replaced
by a set of terms listed within brackets. The literal is then duplicated in the set where
it occurs with different arguments, as indicated by the term set. For instance:

{..., pAX,Y,Z} , W), ...} is the same as:{..., p(X, W), p(Y,W), p(Z,W), ...}.

In general, term sets are expanded by means of the following rule:

(Dl {t1, s tndy o)} = 4P(onstry o)y oo Doy by o) ). (1)



This syntactic device is useful to avoid the rewriting of a predicate with simi-
lar arguments. The a priori information shown in figure 2 defines a larger set of
210 4 25 4+ 29 — 1568 possible clauses by using term sets. Inductive bias specified
as described above is both flexible and adequate for the inductive synthesis of more
complex programs. Flexibility is achieved by allowing the user to provide a priori infor-
mation of different strength and to adapt it to the particular case study. Stronger and
more informative prior knowledge is defined by a large set of known clauses and a lim-
ited number of possible clauses, i.e., the literal sets must be small and well constrained
within the structure of the rest of the program. This will lead to efficient induction,
and few examples are required.

Ent(X, Y,Z):-{null({X,Z} ), head(X,X1), tail(X,X2),
assign(W,Z), cons(X1,W,Z),
member(X1,Y), notmember(X1,Y),
int(X2,Y,{Z,W})

member(X,Y):-{head(Y,{ X, KW} ), tail(Y,Tail),
member({ X, KW}, Tail)}.
notmember(X,Y) :- {head({Y,Z} {X,KW} ), diff(X,KW),
tail({Y,Z}, Tail), notmember({ X, KW}, Tail)}.

}
notmember(X,[]).
null([]).
cons(X,Y,[X|Y]).
head(X,[X|_]).

tail (X[ XJ}.
diff(X,Y) :- X#£Y.
assign(X,X).

Figure 2: Inductive bias for intersection, with term sets

If such strong information is not available, while examples abound, then a larger set
of possible clauses may be defined with more frequent literal and term sets.

The Clause Set language is also provided with general mechanisms for eliminating
clauses from a set that is considered too large. In particular, the procedure that trans-
lates the clause set formalism into a set of possible clauses accepts all the language
constraints defined in section 3.1. All of these restrictions are syntactic and can be
determined before looking at the examples. The preprocessor that generates a file of
possible clauses, given a clause set specification of the bias, will check whether the
language constraints are satisfied, depending on the selected options. This check is
performed during the generation, and therefore the clauses that should not be included
are never added to the list.

As a conclusion, Clause Sets approach can not only be applied to simple programs
but also to complex, real-size programs, and represents a new perspective on inductive
synthesis. Learning very complex programs is probably just a dream, but this does not
mean that ILP cannot be a useful tool for building large software systems. Most clauses
in these programs must be hand-coded, and the basic structure of the program must
be determined with traditional techniques. However, Clause Sets approach would allow
the programmer to leave some parts of the code underdetermined, and to fill the gaps
with examples. Inductive bias could be defined in this framework and would look like a
normal Prolog program, with small literal sets and optional clauses occurring here and
there.



3.2.2 Effects on language bias on Hypothesis Space size

The effects on the hypothesis space of the language bias that can be specified by Clause
Set language and have been experimentally measured independently of any search bias.
This has been done by configuring the generic system HAZKU described below (sec-
tion 3.3) and experimenting with the bias to be tested. As a first step, the effect of the
following language biases on the size of the hypotheses space have been tested. The
items the following language biases referred to, are those defined in section 3.1.

Number of literals in the body of the clause (NL),

Number of variables (NV),

Forbidden literals (from item 6.), (FL),

Integrity constraint (from item 7. forbidden conjunctions, (IC),
Redundancy (restrict the generation of equivalent clauses), (RE),
Range-restriction (RR),

Connezion (CO),

Instantiation of the input variables (from item 1.), (II),

. Head output must appear in the body (from item 2.), (10),

10. Owverloaded output (from item 3.), (00),

11. Use of the body output variables (from item 4.), (UO),

12. Head input must occur in the body (from item 5.), (UI).

N TR R O SR

Items 1 and 2 directly derive from clause sets specification. Items 4 and 5 represent
biases that may be based on background knowledge. Items 8 to 12 define bias based on
input-output modes. One can find a detailed report of the way these biases have been
defined in HAZKU and how the results may be interpreted in [LRI95]. As a summary,
it appears in toy examples studied that each of those biases are either very restricting
or very weak. We will present here the results obtained on the intersection example
only, more details may be found in [LRI95].

Measures on the intersection domain

This example from [Ber93| allows the study of the effects of language bias based on
functionality.

The concept null, head, tail, member et notmember are pre-defined with the modes:
intersection(in,in,out), null(out), head(in,out), tail(in,out), member(in,in), notmem-
ber(in,in)
and the following program has to be learned,

intersection(X,Y,Z) «— null(X),null(Z).

intersection(X,Y,Z) « head(X,HX),tail(X,TX),member(HX,Y),
intersection(TX,Y,W),cons(HX,W, Z).

intersection(X,Y,Z) «— head(X,HX),tail(X,TX),notmember(HX,Y ),
intersection(TX,Y, Z).

The concept description language contains all predicates and is restricted to the clauses
that verify the appropriate type (e.g. the arguments of the predicates are specified as
lists or elements of lists.) Literals in the form of intersection (A,A,_) and cons(_,A,A)
are forbidden. Integrity constraints avoid an empty list to be tested and that a given
element both belong and does not belong to a list.



NL : Nb of literals restrictedto 5 NV : Nb of existential variables restricted to 3

CO : Connexion 10 : Head output in the body
UO : Use of the output OO : No overloaded output

1I : Instantiation of the input FL : Forbidden literals

IC : Integrity constraints

[NL[NV[CO[IO[UO[OO [II[FL[IC | HSsize | % |

2101 1 100
X 83463472 | 10721
X 3 x 10T | 10717
X * *
X 2101 _ 273 | 99.9
X * *
X 435 x 2%° | 10713
X 6 x 10%¢ | 0.024
X 29 | 3.125
X || 2197 x 2% | 10~°

* : not performed computation

Table 1: Measures on the intersection example

The results of the experimentation are given in table 1.
In this domain and the domains presented in [Tor95], the effects of language biases
appeared as very extreme. [Tor95] suggest some strategy to exploit this observation.

3.2.83 A scheme based language for language bias

The basic idea of the representation MILES-CTL [Tau94a] is an extension of the
approach in MOBAL [MWKEY4]|, i.e., sets of hypotheses are described by schemes.
The aim for developping MILES-CTL is to achieve an empirical comparison of the
biases used in ILP in terms of the size of the hypothesis space. One major prerequisite
was to extend the model of inductive learning in order to reveal the different biases
(section 2). They have been implemented in MILES-CTL in order to enable a systematic
investigation of the language bias in ILP systems. Basic constituents of language biases
have been identified, and biases have been classified with respect to the aspect of Horn
clauses they influence ([Tau94b], [Tau95a]).

A scheme for a hypothesis clause called clause template includes schemes for each
literal in the clause. Similar to record data types, a literal template consists of several
identifiers followed by a scheme variable or a constant. In addition, the domain of a
scheme variable in a literal template can be further restricted by conditions. Since the
items in a literal template describe the set of covered literals, they have to include at
least an item for the predicate name and the arguments. Other items, for example,
describe the arity, the number of new variables, the argument or the predicate types or
the depth of the covered literals. A declaration of a hypothesis language in MILES-
CTL consists of a set of schemes 7', the vocabulary ¥ including predicates, functors, and
types, and an instantiation function I. Given a set 7' and ¥, I constructs hypotheses
by instantiating the scheme variables in a clause template.

For example, suppose that we are to define a hypothesis language Ly, in MILES-
CTL. The vocabulary ¥; of Ly, includes predicates of type comp and listp and arity



less than 4 and the instantiation function is I;. The following sets of hypothesis clauses
has to be in Lp;:

o clauses with exactly one body literal the arity of which is less than 3

o clauses with two body literals where the arity of the first one is less than 2 and
the predicate type of the second one is comp,

e clauses with two body literals where the arity of the first one is less than 2 and
of the second is 3.

These clauses have to be covered by the clause templates in 77 of Ly, .
In MILES-CTL, T; can be defined by T = {T'1,72,T3} with

predicate : P11, predicate : P12,
T1: arauments : A1l | & arguments : Al12, .
9 : arity : Ar12||(Ar12 < 3)
predicate : P21, predicate : P22, predicate : P23,
T2: arauments : 421 | < arguments : A22, , arguments : A23, .
9 : arity : Ar22||(Ar22 < 2) predicate_type : comp
predicate : P31, predicate : P32, predicate : P33,
T3: arauments : A31 | & arguments : A32, , arguments : A33, |.
g : arity : Ar32||(Ar32 < 2) arity : 3
In these clause templates, P11, P23, A11,... are scheme variables to be instantiated

by I. Obviously, the first set of clauses in the specification of Ly, is covered by T'1, the
second by 7’2 and the third by 7'3. This example shows how a hypothesis language can
be defined declaratively in MILES-CTL language.

3.2.4 DLAB grammar

DLAB is a grammar formalism developed for representing language bias that allows
for an intensional syntactic definition of the hypothesis language £. DLAB stands for
Declarative LAnguage Bias. Together with the definition of DLAB, a user-friendly
tool has been developped that enables the specification of syntactic language bias.
At the same time a mechanism is provided that, based on the language specification,
systematically (and non-redundantly) generates all clauses in the hypothesis space.

DLAB further extends the formalism described in [ADRB95], and combines the
rule schemata of [EHR83] and the language representation of [Ber93]. The following
description is extracted from [DR95| on Clausal Discovery.

e Basic DLAB A DLAB grammar basically consists of a set of templates to which the
clauses in the language £ conform. Each such template has the form DTEMP =
HeadT'emplate «— BodyTemplate, where both HeadT emplate and BodyT emplate
are DLAB terms. Finally, a DLAB term is either an atomic formula, or a for-
mula of the form Min — Max : L, where Min and Max are integers with
0 < Min < Maz < length(L), Max > 0, and L is a list of DLAB terms.

The generation of a language £ given a DLAB grammar then basically consists of
the (recursive) selection of all subsets of L with length within range Min ... Max
from each DLAB term Min — Max : L in the grammar.

The following example illustrates how using a DLAB grammar, the language £
can be generated. It gives a first idea of the expressive power of the relatively
simple DLAB formalism.



Example 1 Given a well-formed DLAB term Min — Max : L, we can distinguish
the following cases of special interest:

— all subsets: Min = 0, Maxz = length(L)
DGRAM; = {0—1: [human(X)] — 0 —2: [female(X), male(X)]}

human(X) «—
— female(X)
— male(X)
human(X) «— female(X)
human(X) «— male(X)
| human(X) «— female(X) A male(X)

Ly

— all non-empty subsets: Min =1, Max = length(L)

DGRAMs = {0—1: [human(X)] — 1 —2:[female(X), male(X)]}
— female(X)
— male(X)
Ly =< human(X) «— female(X)
human(X) < male(X)
human(X) «— female(X) A male(X)

— exclusive or: Min = Maz =1

DGRAMs = {0 —1: [human(X)] — 1 —1:[female(X), male(X)]}
— female(X)
— male(X)

human(X) « female(X)
human(X) < male(X)

L3 =

— combined occurence: Min = Max = length(L)

DGRAMy= { 1-1: [human(X)]
0—-2:
2 —2:[female(X),is_daughter(X)],
2 —2: [male(X),is_son(X)]
]
}
human(X) «—
human(X) «— female(X) A is_daughter(X)
Ly =< human(X) «— male(X) Ais_son(X)
human(X) «— female(X) A is_daughter(X)A
male(X) A is_son(X)

A description of an extended version of DLAB and its application to mesh design
may be found in [DR95].

3.8 Bias configuration

The languages of bias described above allow a user to easily specify and shift the concept
description language, he wants a learning system to restrict its search within.



The configuration approach adopted with the HAZKU system differs in that the
goal is to provide the user with a generic learning system that allows not only to
represent but also to implement the types of bias identified in the typology (section 2).

The main results achieved consist in a complete model and implementation of
HATZKU for the combination and the application of bias with a generate-and-test strat-
egy. At this point, the configuration is graphically specified by the user through a panel
instead of a language. In HAZKU, the language bias is expressed in the form of cri-
teria such as those described in section 3.1. Conjunctive and disjunctive languages are
possible both for concept description language and hypothesis language.

3.3.1 Search bias in HAIKU

The notion of declarativity of bias is usually related to the notion of shift of bias and
then of genericity of the ML algorithm. It seems that the classical trade-off between
efficiency and generality [LB85] also applies here. That is, the more generic a system
is, the less efficient its implementation is. The gain in flexibility and adaptability by
the use of bias may be partially lost in term of complexity as generic implementation
requires many additional tests that are not necessary in a library of systems.

One of the main ideas that underlies the HAZKU system is that the effect of
search bias setting w.r.t the computational cost reduction could be greatly enhanced
if the architecture of the learning system itself would reflect the search method. More
precisely, the computational cost of exploring a wide search space is drastically reduced
if the combination of different biases is performed through the combination of pieces of
software, instead of parameters to be tested at each step.

More than only enhancing the efficiency of the search, this kind of approach offer a
better comprehensibility of the learning process. The generic system is associated to a
model that closely reflects the learning methods implemented, and the role of its input
and output. In this framework, bias appears as control knowledge the effect of which
is clearly elicited in the model. Therefore, bias and its effects on the learning method
are declaratively represented at both levels, model and implementation.

The fundamental strategy in HAZKU is based on generate-and-test method as
opposed to data-driven. The detailed description of the generic algorithm may be
found in [NR94|. In order to avoid an exhaustive search of the space, the hypothesis
space is ordered by a generality relation (i.e, #-subsumption, resolution, or generalized
subsumption), to be set by the user as a bias. Classically, any hypothesis that is more
general than an inconsistent one is pruned. The search process starts with an initial
bound (upper or lower) of the hypothesis space that is built from a completion bias and
optionally a single positive example. The candidate hypotheses are generated step by
step from the initial bound by applying an operator in a bottom-up or top-down strategy
(e.g. resolution / inversion of resolution, dropping / adding literals). The availability of
completion biases and the learning operators obviously depends on whether background
knowledge has been provided or not. In any case, background knowledge is reusable for
a whole application.

Section 4.3 details how language bias interferes with search bias in HAZKU so that
the search may be optimal.



3.4 Comparison of bias representation

Bias representation can be compared along two lines: the family of language it belongs
to (schemes, sets or grammar) on the one hand and on the other hand, the way it is
interpreted by the learning system.

3.4.1 Comparison of language of bias

Languages of bias fall into one of the following categories: the representation by pa-
rameterized languages, schemes, clause sets, grammars, or combined approaches that
exploit some of the previous approaches.

o Representation by parameterized languages: (example, CLINT [DR92|). This type
of representation of declarative bias is the first one that have been defined and
implemented in ILP systems. Abstraction is achieved by describing the bias the
hypothesis clauses have to verify, such as for instance, the number of existential
variables, or the connexion criteria. This type of representation is not directly
related to the form of the possible clauses as it is in scheme-based or Clause Sets
representation.

e Scheme-based Representations: The scheme-based representations are graph-based
or non graph-based. Graph-based approaches include, dependency graphs as in
SIERES [WO91], in [Tau92], Algorithm Sketches [BJ93]. Non-graph-based in-
clude rule models [KW92], clause templates [Tau94b|, relational cliches [SP91]
As shown in section 3.2.3, abstraction is achieved by replacing some parts of
the hypothesis clauses by variable parts, e.g. predicate name, arguments. They
represent some abstraction of sets of Horn clauses. It is particularly suitable for
representing hypothesis languages that consists of small subsets of possible clauses
with different features.

e Representation by clause sets: (see section 3.2.1) This representation overcomes
one of the limitation of the scheme-based representation by enabling a concise
expression of variable numbers of clauses, literals and terms. However the rep-
resentation of language biases that are not related to clause, term or predicate
sets, such as mode declarations, or argument types, are not as integrated in this
representation as in scheme-based approaches.

e Representation by grammars: (for example, GRENDEL [Coh93]) Abstraction is
achieved by grammar rules the application of which can be restricted by various
types of biases. Large languages can be very concisely represented. All types of
biases can be easily integrated in grammar specification but as the representation
is not close to the target representation, i.e., programs, the concept definition
language generated is not as easily predictable for a “naive” user, as it may be in
scheme-based or Clause Set approaches. Moreover, the order in which clauses are
generated cannot be controlled as easily.

e Combined approaches: GRDT [Kli94] and DLAB grammar as shown in section
3.2.4, combine the rule schemata of [EHR83] and Clause Set language.



3.4.2 Comparison of static versus generative approaches

Many works on declarative bias concentrated on the study of the most efficient bias in
terms of the number of hypotheses remaining in the hypothesis space. This criterion
can be balanced by another criterion: the usefulness of the bias for the end-user of the
ILP system. It is clear that there is no general answer, as this criterion depends on the
type of application the system is designed for. Thus, the answer to the question “what
are the most useful bias for my application”, requires that the quality of the bias is
not only evaluated on the basis of the number of hypotheses it prunes. Although the
“usefulness” including the “comprehensiblity” cannot be yet easily measured without
extensive experiments with users, we will try here to give some answer with respect to
the representation we have defined within the ILP project.

The distinction between static and generative approaches seems to be relevant to
evaluate the representation on the base of the nature of the knowledge the user has to
provide the system with, and the facility for the user to do it. With static approaches:
a candidate clause belongs to the hypothesis space for learning a program P, if it
matches a given schema. Language bias such as input-output modes, range-restriction,
etc, may be attached to the schemas (see section 3.1). Clause Set and scheme-based
languages typically falls under this category. By contrast, generative bias languages
do not provide a template to be matched against candidate clauses but, rather, a set
of operators that incrementally construct clauses. Refinement operators as in NINA
[ADRB95] and CLAUDIEN (section 4.2), and MILES-CTL and ‘HAZKU operators are
forms of generative bias. Some forms of analytic learning and Antecedent Description
Grammars [Coh93] that use domain theories, also fit into this framework.

e Static approaches requires from the user the description of the set of the possible
clauses. This type of requirements seems to be more appropriate for program-
mers developing Prolog programs and more generally in software development
contexts where the developer may have in mind some approximation of the target
program. When developing Prolog programs, the programmer will soon reach
some syntactic approximation of the desired program where the control structure
is more or less determined but the precise input-output behavior may need fur-
ther work. Programs with mutations, sets of possible clauses and literals, and
templates of different kinds seem appropriate for describing such syntactic ap-
proximations. However, in this approach, the role of the background knowledge
is usually restricted to the vocabulary of the concept description language. As no
generality relation on the hypotheses generated from the templates can be easily
derived from the language bias they represent, except from the number of literals,
most of the static approaches exhaustively explore the hypothesis space without
exploiting an order relation to prune it. The gain in comprehensibility of the
language bias may thus lead to loose efficiency when searching.

e Generative approaches are appropriate for describing in a concise way and for effi-
ciently exploring very large spaces of possible clauses. In a top-down or bottom-up
strategy, for instance, they only require the user’s description of an initial example
and possibly some vocabulary, the user does not need to provide any hints about
the target concept. As a consequence, the control on the form of the hypotheses
considered by the system is not as easy as with static approaches. The reason is
that there is a large gap separating a generative language and the Prolog clauses



that are produced. It may take time for a programmer to determine whether a
clause can be generated or not, and a small modification in the bias specifica-
tion may cause important changes in the space P of possible programs. In case
the solution reached is not satisfying, he has to modify the initial hypothesis,
the background knowledge and the search operator without clearly evaluating the
effects on the results. This has been called the unfolding problem for generative
bias languages: the specification of which clauses are possible has to be “unfolded”
several times before these clauses are generated. Therefore, the hierarchical struc-
ture of the bias specification and the one of the programs that may be learned is
different. This approach is thus much less demanding for the user but the form of
the results is also more difficult to control. Moreover generative approaches are
suitable for exploiting domain theory to guide the s earch, prune the hypothesis
space and restrict the vocabulary. For that reason, generative approaches seem to
be more appropriate for “classical” Knowledge-Based System development where
structured background knowledge may be available and the form of the results is
not a priori known than for software development.

4 Interaction of Biases

Although it took time to understand why bias was important for accuracy, its effects
on the efficiency of learning is immediate and rather obvious. If there are more pos-
sible programs to consider, it may take longer to find one that is acceptable, based
on the available examples. But, to this purpose, it is necessary also to consider the
search bias and the stopping criterion. The languages of bias described above have
been implemented and integrated with search bias and stopping criterion that exploit
the capability of the language they are associated with. In particular, Clause Set
and DLAB representation are a priori independent of the exploration of the hypothesis
space, as opposed to grammars such as GRENDEL’s or configuration framework such
as HAZKU’s, but, in fact, the search bias they can be associated with is more or less ef-
ficient in terms of computational costs depending on the order it will fix for considering
the clauses generated from the language.

4.1 Clause Set and Search bias for programs learning

The Clause Sets language, suitable for program learning as opposed to single concept
learning, has been associated to the system TRACY that is able to learn consistent and
correct programs from a set of classified examples. Searching a space of logic programs
is more difficult and slower than tuning linear discriminants or growing decision trees,
as clauses depend on each other through recursion and contain variables that may be
chosen or instantiated in many different ways. This problem of searching a hypothesis
space of Logic Programs has been studied and experimented in connection with the
learning system TRACY. TRACY is given a set of clauses, and looks for a subset of
these clauses that is consistent with the examples, with a complexity that is polynomial
with respect to the number of given clauses. TRACY uses a special form of search bias,
due to its special way of finding a complete and consistent logic program. The clause
set language allows the user to define a set of possible clauses. The relevant aspect
here is that this set of clauses comes with an order, and this order is also determined



by the user. Intuitively, TRACY’s search bias consists in preferring the first clauses
in the set, with respect to the given ordering. From the point of view of the user, it
is always desirable to describe a language bias with an order where clauses that have
a higher probability of being in the target program come first. Therefore, if is often a
good thing to split large clause sets and large literal sets, so that user preferences for
possible clauses can be made explicit. In fact, expressing such preferences with large
literal sets may be ackward, and longer, but simpler, lists of plane clauses may be more
appropriate.

4.2 DLAB and Search bias

Together with the clause model formalism DLAB an optimal refinement operator for the
system CLAUDIEN has been developed (see [Van93]) that exploit the clause models.
This operator non redundantly generates all clauses in the hypothesis space in a general-
to-specific way, i.e., it starts from a most general clause allowed by the clause model(s),
and systematically searches all nodes (clauses) in the refinement graph, without visiting
a node (clause) more than once. A top-down search with #-subsumption as generality
relation is particularly well adapted to DLAB that allows to easily control the number
of literals in the generated clauses.

4.8 Language bias properties and search

The approach developed in HAZKU consists in providing the user with the possibility
of both setting static language bias and generative search bias.

The main question arisen by such an approach concerns the best way to combine
these two types of bias so that the complexity of the learning process is minimum.
Depending on whether it is tested prior to or while searching, a same language bias
may require more or less operations.

One scenario for combining static and generative approaches may consist in gen-
erating all the allowed clauses from the clause set, and then searching the hypothesis
space from an initial hypothesis by applying an operator and testing the candidate
hypothesis against the set of allowed clauses. Another scenario consists in searching
the hypothesis space in a generative way and check if the generated hypotheses verify
the language bias before testing them against the examples. None of these scenarii
solves the following problem: if static language bias and generative search bias are set
independently, their effects may be redundant and then the system may have to test
unuseful restrictions. For instance, range-restriction as language bias is redundant with
inversion of resolution as search bias with range-restricted initial clause and domain
theory.

Finally, an efficient combined approach implemented in HAZKU system consists
in first excluding redundant language bias and then applying some language bias prior
to searching and the others while searching, so that their application may be as less
costly as possible. This require to precisely identify the interaction between biases,
independently of their representation.



4.3.1 Language bias properties

The analysis of the interaction between language bias and search operators leads to
define the following properties of the language bias with respect to the hypothesis
space generated by the search operator (see [LRI95] for more details).

Notation 4.1 Given a language bias B, the set of clauses satisfying B is denoted Lp.

Definition 1 (Private bias) A bias B is private with respect to an operator O iff for
all hypotheses H and H' so that H' € O*(H), H¢ Ly = H' ¢ Lp.

For instance, the limitation on the size of the body of the concept definition is a
private bias for the adding-literal operator. Symmetrically,

Definition 2 (Closed bias) A bias B is closed with respect to an operator O iff for
all hypotheses H and H' so that H' € O*(H), H € Ly = H' € Lp.

For instance, range-restriction is a closed bias for the absorption operator with a
range-restricted theory.

4.3.2 Ezxploitation of the properties

Depending on the properties of a given language bias B (e.g. private or closed), some
redundant tests of bias and generation of hypotheses can be avoided.

e B is both closed and private w.r.t. the operator O. If a given hypothesis H
satisfies B, any hypothesis generated from H will also satisfy B. It is therefore
unnecessary to test B on further alterations of H by O. If a given hypothesis
H does not satisfies B, any hypothesis generated from H will not satisfy B, it is
thus unuseful to generate new hypotheses from H.

e B is only closed w.r.t. the operator O. If a given hypothesis H satisfies B, any
hypothesis generated from H will also satisfy B.It is therefore unnecessary to test
B on further alteration of H by O. If not, the hypotheses generated from H have
to be tested against B.

e B is only private w.r.t. the operator O. If a given hypothesis H does not satisfy B
it is thus unuseful to generate new hypotheses from H. If it does, the hypotheses
generated from H have to be tested against B.

e B is neither closed nor privatew.r.t. the operator @. The hypotheses generated
from H have to be tested against B.

These conclusions lead to the following learning scenario. The initial bound or,
starting clauses have to be tested against biases that are both closed and private. Then
each generated hypothesis has to tested against private biases. Finally, when a clause
is learned as part of the target program, it has to be tested against not private biases
before being validated. In any case, a hypothesis that failed when being tested against
language biases is left.



4.3.3 Properties of classical language biases

Table 2 shows that there are few closed or private biases and no private and closed bias
for the dropping-literal operator (the same observation for the adding-literal operator
may be found in [LRI95]). The absorption operator is a combination of the adding-

| Language Bias || Closed Bias | Private Bias |
Number of literals X
Number of variables X
Depth X
Degree
Range-restriction X
Connexion
Functionality UI X
Functionality IO X
Functionality UO
Functionality OO X
Functionality 11

| Total || 4 | 3 |

Table 2: Bias properties for dropping-literal

Language Bias || Closed Bias | Private Bias |

Number of literals X
Number of variables no
Depth
Degree no
Range-restriction X
Connection
Functionnality Ul
Functionnality 10
Functionnality UO
Functionnality OO
Functionnality 1T

Total I 1 | 3

| <

Table 3: Bias properties for absorption

and dropping-literal operators. Thus, one could predict that the absorption operator
will not exhibit any private or closed properties. However some useful properties remain
as shown in table 3. For instance, the biases Number of existential variables and Degree
are closed only if the domain theory is range-restricted. This can be explained by
the relationship defined in BK, between literals that are dropped and added by the
absorption operator.

5 Conclusion

The results that have been achieved within the ILP project are considerable with re-
spect to the initial state of the art. Not only general and reusable typologies of bias have



been defined along the line by previous works but also models of learning have been
developed that elicit the role of bias with respect to the input knowledge and the learn-
ing operations. Based on this conceptual representation, operationalisation has been
achieved through two kinds of representation of bias in learning systems: language of
bias that are interpreted by systems in the form of tests, and bias configuration, that
can be viewed as a a pre-compilation of bias into pieces of software that are assem-
blied for bias setting. General properties of bias have been identified for both type of
methods, that first provide guidelines for choosing a representation according to the
learning task to achieve and second, provide clear rules for an efficient bias setting. As
a next step, extensive experiments in various domains with the implemented systems
and theoretical study on the effects of combinations of biases should allow to relate in
a more general way application requirements and bias setting and shifting.
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