Identification and characterization
of individual variability within a
population based on a mechanistic
model and mixed effects.
Application in breeding

unnersié
: Estelle Kuhn

Applied Mathematics and Computer
Science from Genome to Environment
Jouy-En-Josas

anr’ Stat4®lant

Joint works mainly with C. Baey, M.Delattre, J.B. Leger,
S. Lemler, T. Guédon, A. Caillebotte

e



Agriculture’s transition

= climate change, limited resource, demographic evolution,
economic constraints, ...



New objectives for agriculture

» multivariate traits performance — global system analysis
> robustness, resilience — global/local adaptation properties

= require finely understanding underlying processes

> new available technologies, new data




Plant breeding




Genotype by Environment effect

= Strong interaction between genotype and environment
(climat, soil, crop managment, ...)

Challenges :

> capitalize on genotype by environment interactions to find
well-adapted genotypes

> target multi-objective performance

P integrate biological knowledge through modeling
> ...



Plant growth process
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» Numerous covariates (temperature, rainfall, soil composition)

— description of processes
= plant ecophysiology



Crop growth modeling
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Arnica model

[Richard-Molard et al. (2007)]
= modeling carbon and nitrogen flow in Arabidopsis Thaliana
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Observations of growing process along time
[Pinheiro and Bates (2000)]

Given : Tree
orangers

temps

Figure: Circumferences of 5 orange trees measured at 7 times



Observations of growing process of five orange trees

logistic model y(t) = 1+exp(_%)



Theophylline concentration along time
[Davidian and Giltinan (1995)]

12 subjects, same oral dose (mg/kg) times in hours theophylline
concentration in mg/L



Biological objectives

» Understanding intra-subject processes

> Understanding variations of these processes across subjects

= fundamental for developing individual strategies and guidelines



General context

> Repeated measurements over time (or other conditions)
within individuals from a population of interest

» A model for individual profiles with interpretable parameters
available
> Inference focuses on mechanisms that underlie individual
profiles and variations in the population
Let Yj; be the observation at the jth measurement for individual i
for1<j<Jand1<i<N
Example of orange trees

i
Yi= L4

1+ exp <—7tj;if"2>

+€jj

where Yj; is circumference of tree i at time t; and ¢; parameters of
tree |



Individual level approach versus population approach

> Ajusting N regression models each with J observations

Yi = h(pi, tj) + €

Model parameters : (¢;,0?) € R9*1
= N(d + 1) parameters

> Ajusting 1 model with NJ observations

{Yi' = h(pi, tj) +¢j
i~ L(v)

Model parameters : Op0p = (v, 02)



Mixed effect model: art of modeling variabilities 7

» modeling observations conditionaly to individual parameter
— individual level model

yU:h(Oé,SO,,tJ)+5U, 1§I§N7 1§JSJ7

with y;; measurement of individual / in environment
@ parameter of individual 7

tj environnemental covariates

« population parameters vector

> noise parameter

» modeling variability of model parameter using individual
parameter
— population level model

i = B+ bj with b; ~ N(0;T), 1<i<N,



Statistical issues raised up
Consider the following mixed effects model:

Yi = hlo,pitj)+e; 1<i<N, 1<j<J
wi = B+ bj, 1<i<N

with b; 'EN(O; ) random effects, ¢ %J\/(O; Y) noise term
Objectives:
> estimate model parameters 6 = («, 5,I,X) = Focus 1
predict individual output as ¢; or Y;

>

> test if some random effects (b;) are null = Focus 2

> explain variabilities of individual parameters ¢; = Focus 3
>



Focus 1: Inference in mixed effects model
Consider the following mixed effects model:

Yi = hlo,eit)+e; 1<i<N, 1<;<J
pi = B+ bj, 1<i<N
with b; '15{/\/(0; [) random effects, ¢ ';'3./\/'(0; Y) noise term
Model parameter 6 = (o, 5,1, X) € ©
Complete likelihood of individual i:
Lcomp(e; Yi, b/) = f(Yl|bn «, 67 Z)f(bn r)

= the random effects (b;) are non observed

Observed marginal likelihood:

L83 V) = [ Leamp(6: Yi, )l
Define the maximum likelihood estimate (MLE) by:

~ N
On = arg g‘eae))( Lmarg(ev Yl )



Compute the maximum likelihood estimate

0 = arg meax Limarg(y; 0) = arg meax/ Leomp(y, z;0) dz

Main tools:
> Expectation Maximization like algorithms:
» EM algorithm (Dempster et al. (1977); Wu (1983);
Balakrishnan et al. (2017))
> stochastic versions of EM: Stochastic EM (Celeux et al 1995),
Monte Carlo EM, (Fort et al 2003), stochastic approximation
EM, (Delyon et al. (1999); Allassonniere et al. (2007))
> variational versions of EM (Bernardo et al 2003)
Main limitations:
> theoretical results in exponential family
> computationaly tricky out of exponential family
> target can be different from MLE using variational EM or
exponentialization trick (Debavelaere and Allassonniére (2021))

> gradient based method
— stochastic gradient like algorithm (Cappé et al. (2005))



Stochastic gradient algorithm

Objective: compute 6= arg maxg Lmarg (yv; 0)

Gradient algorithm : maximizing g(0) iteratively through

Ok+1 = Ok + 7 Vog(Ok)
Stochastic gradient algorithm:

If Vog(0, Z) is an estimate of Vyg(6) maximizing g()

for k=1,--- do
zi < random sample from Z
Ok1 = Ok + 7 Vog(Ok, Zk)
end for



Fisher identity in latent variable model

Observed log-likelihood: log g(y;8) = log [f(y, z;0)dz

Fisher identity:
Vologg(y;0) =E(Vglogf(y,Z;0)|y;0)

= compute 6= arg maxg log g(y; 0) iteratively
for k=1,--- do
zy < random sample from p(. | y; k)

Ok+1 = Ok + 7 Vaolog f(y, zk; 0k) | vibk)
end for



Preconditioning by Fisher information matrix

7(6) = E [(Vologg(Y: 0))(Vo logg(Y;0))|

P preconditionning the gradient allow a large speed-up
> caracterizing the MLE
= estimate Z(0) for (y1,...,yn) independent with

~ 1<
Z(6) =~ > Vologg(yi:0)(Vs logg(yii 0))
i=1
following Delattre and Kuhn (2023) and using again Fisher identity

~ 1 <&
Z(0) = EZ E[Veglog f(yi,zi:0) | yi: 0] E[Vglog f(yi, zi;0) | yi; 0]
i=1

Advantages: Z(#) > 0, no additional cost



The algorithm Fisher-SGD

[Baey et al. (2023)]

for k=1,...,K do
for i=1,...,Ndo
z,k < sample from pak,l(‘ | vi)
end for

Vi & 7y SN, Vo log f(yi, 2 0k)
for i=1,...,Ndo
AK — (1= ) A + Vg log f (yi, 2 04)
end for .
N
I 5 2img AF(AF)
Oks1 < Ok + il M vk
end for
Output: 0y, I



Theoretical result

Let F(0) = —logg(y; )

Theorem: Under regularity assumptions, and assuming ©
bounded, the iterates (6x)x defined in Fisher-SGD satisfy

(F(00) —min F) 30077

E | min [|[VeF(6)]?| <O .
O</<k Yo Yo



Application to nonlinear mixed effect model

. L Z; 2
\/IJ | Pi N(l+exp (_1“-]-7%,-2)70 )

[e3

Pi ~ N(ﬁ? r)

Parameters: § = (o, 3,T,02)
comparison with MCMC-SAEM which use exponentialisation trick
and block-diagonal FIM estimate

Fisher-SGD MCMC-SAEM
RMSE Coverage RMSE Coverage
f1 0.234 0.942+0.012 0.236 0.941 +0.015
B> 0586 0.958+0.010 0.625 0.941+0.015
a 0414 0.972+0.013 0.416 0.968+0.011
M1 2221 0.951+0.013 2241 0.949+0.014
Mo 4156 0.948+0.014 4.334 0.935+0.015
M 14.324 0.948+0.014 16.492 0.905+ 0.018
0?2 1.005 0.957+0.012 1.010 0.951+0.013

Type




Arnica model

[Richard-Molard et al. (2007)]
= modeling carbon and nitrogen flow in Arabidopsis Thaliana
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Individual prediction

[Tom Guédon's PhD]
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Take home message

> Fisher-SGD performs parameter estimation
in general latent variable models.
= Tom Rohmer's talk

efficient preconditioning through Fisher information matrix.
simultaneously estimate FIM for free

easy to implement and generic tuning rules are provided.

vvyyywy

theoretical guarantees in a wide range of latent variable
models.

Baey, C., Delattre, M., Kuhn, E., Leger, J.B., Lemler, S. (2023). Efficient
preconditioned stochastic gradient descent for estimation in latent variable models.
International Conference on Machine Learning



Focus 2: ldentifying individual variabilities among the
population

i = B+ bi, 1<i<N
with b; 'EN(O; [) random effects, ¢ L'E./\/(O; Y) noise term

= Test for variance components in mixed effects model

Objective: test that r random effects among p have null variances.

M| r
Let T = ( ri F122 ) where '] € S;'_, and I, € §F

90:{0€Rq‘B€RP,r1 GS;—_r,FQZO,r]Q:O,ZESj}
©1={0cRIBERP,T €S LS}

= test Hp : 0 € ©p against H; : § € ©;



Asymptotic distribution of the LRT statistic

The likelihood ratio test statistic equals to

supgee, Ln(9)

LRTy = —2lo
N . <Supeeel Ln(0)

> =2(tn(0r,) — tn(0ry))

with Ly(8) = [TV f(Y;) for (Y4,..., Yn) a sample.
Consider the test defined by Hy : " R = 0" against Hy : " RO # 0"

where R is a full rank matrix of size rxp.

Then, assuming regularity conditions, under Hp:

supgeo, Ln(0) . s
LRTy = —21 SUPocoy NN oy B V(B
N og <Sup9€el LN(G) ( N( Hl) N( HO)) e d X (r)



Asymptotic distribution of the LRT statistic
for linear hypotheses defined by inequalities
when © is open

[Self and Liang (1987)]
Consider the test defined by Hy : " RO = Q" against H; : "RA > 0"

where R is a full rank matrix
Denote by Iy the corresponding Fisher information matrix.
Then, assuming regularity conditions, under Hp:

L . .
LRT, Z—0)h(Z-06)- —0)h(Z -
= min ( )"o(Z = 0) = min(Z —0)"lo(Z — 0)

where Z ~ N(0, ;1)



Limits of existing results

Example of testing one variance equals to zero considering two

correlated random effects: )

Let 6 = (8,1, ¥) with [ = ( ;Yl ';122 > and © = R2 x S§ x S}
12 2

Consider Hp : 0 € ©g against H; : § € ©1 with

60: {‘9’6 €R27712 = 712 :0773 > O,Z GSj}
O1={0.8 €R? 7§ > 0,7{75 — 11, > 0,7 > 0,T € S]}

— © is not open
= general hypotheses



|dentifying the asymptotic distribution of the LRT
statistics for testing variance components in nonlinear
mixed effects model

[Baey et al. (2019)]

Consider the test defined by

Hp : 6 € ©g against H; : 8 € ©1 where
Q={0ecRIBeR,T1 €SS, T,=0Tp,=0XeS}
©1={cRIBeR. TSI LeS]}

Then, assuming regularity assumptions, under Hp:

LRT, £ 22(I; Y, T(©0,00)* N T(©1,60)),

where T (0, 0) is the tangent cone of © at # and ¥%(V,C) has a
X-bar square distribution (mixture of chi square distributions) with
C a closed convex cone and V' a positive definite matrix



Example of testing one variance equals to zero considering
two random effects
Let 0 = (5,I,X)

2
> independent case: I = ( g 02 >
0 7

Consider Hp : 7% = 0 against H; : 'y% >0
d
LRT, = 3x*(0) + 3x*(1)

2
» correlated case: I = < N 7122 >
Y12 Y5

Consider Hp : 0 € ©¢ against H; : 0 € ©1

Qo ={0,8€R? 7 =712=0,7 >0,L € S}}
©1={0,8€R? % >0,7{73 7, > 0,7 >0,L € SJ}

d
LRT, = 5x*(1) + 3x°(2)



Empirical level of the test for one effect when two effects
are correlated in the linear model

Yii = o1i + @2itij +€jj

2
Let [ = < 71 /7122 )
Y12 V2

Consider Hp : 6 € ©¢ against Hy : 0 € O

Table: Percentages of rejection for the LRT procedure for n = 500 for the
nominal level of the test o on 300 repetitions.

~

o 6‘0.5x§+0.5x§ H @0.5x2+0.5x2
0.01 0.016 0.049
0.05 0.055 0.174
0.10 0.103 0.311



Take home message and related works

> asymptotic distribution of LRT for general hypotheses testing
> importance of alternative hypothesis

> effect of presence of nuisance parameter

Baey, C., Cournéde, P.H.,Kuhn, E.,(2019). Asymptotic distribution of likelihood ratio
test statistics for variance components in nonlinear mixed effects models.

Computational Statistic Data Analysis

Related works
» R package VartestNIme [Baey and Kuhn (2023)]
> bootstrap test for small sample size [Guédon et al. (2024a)]

P estimating integral ratio using stochastic approximation
[Guédon et al. (2024b)]
— Tom Guédon’s talk



Focus 3: Introducing genomic information in the model

Consider the following mixed effects model:

Yi = hla,pit)+e; 1<i<N, 1<;<J
pi = S+ b;, 1<i<N

with b; ~ N(0;T) random effects, €;; ~ N(0; 02) noise term

Idea : explain genotypic parameter variability with genomic
information

pi=p+BM;+b;, 1<i<N

with M; genomic markers of size p large versus N

= Variable selection in high dimension in mixed model



Inference through reguralized maximum likelihood estimate

(on-going work, A. Caillebotte’'s PhD)

Consider the following mixed effects model:

{ Yi = hla,pit))+e; 1<i<N, 1<;<J
wi = pu+BM;+b;, 1<i<N
Consider the LASSO estimate [Tibshirani (1996)]
01570 = arg max {log g (6:y) — A1}
€

with g(6; y) marginal likelihood and X regularization parameter

In practice:
» Compute éf\ASSO on a grid using an adaptive stochastic
weighted proximal gradient algorithm [Duchi et al. (2011)]
» Choose the regularization parameter A using eBIC criterion
[Chen and Chen (2009)] A = arg minyc, eBIC(\)

eBIC(\) = —2log g\ (OVLE; y) +|5, | log(NJ)+2 log <<|5f’ 0)
A



Simulation study

Logistic model

Yi = it +eEij € Hid. J\/(O, (72)
1+ exp B
(@)
wi1 = 1+ BEM; + by , b1 %j'/\/(ov”‘%)
iid. 2
, bia =~ N(0,77)

WYi2 = /12 + bin
where M; € RP molecular markers, subject to selection, p >> 1

)

o)

0 = (1, p2, B, o, 73,

NN



Variable selection’s results

Regularization path

Regularization path

Parameter
2
g

Score

16000

15500

15000

14500

14000

13500

Regularization penalty (1)

Regularization penalty (A)

Figure: Regularization path, i.e. values of 3, in solid line and the eBIC
criterion in dotted line; the dotted vertical lines represent the chosen

regularization values



Parameter estimates across iterations of APWSG algo
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Estimates and Relative Root Mean Square Errors

N = 100
P = 200 P = 1000
0* 0 RRMSE 0 RRMSE

pp 200.00  199.92 039  199.92  0.38
po1200.00 1200.23  0.36  1200.15  0.35
¥2 49.00 47.71 9.29 47.56 9.13
v2  900.00 883.52 446  866.77  5.23
T 300.00 300.03 0.76  300.16 0.73
o2 30.00 31.49 7.56 31.38 7.22
Bo 120.00 120.12  3.54 11820 4.02
B 70.00 69.95 5.51 69.14 6.43
B2 40.00 40.23 9.98 3779 15.42




Bayesian variable selection in mixed effects models
[Naveau et al. (2024)]

Pharmacokinetic model:
N =200, p =500 and J =12 ; volume and dose are known

Y = % (exp(—¢piatij/volume) — exp (—pi1tij)) + €jj

wi1 = 111+ 51 EM; + by

pi2 = f1o + EM; + bio
i.i.d.

by '~ Nz( )

e = N(0,07)

= compare two step approach and mixed model approach
regarding robustness to partial observation settings
> complete data-set
> partial observations: only the first 3 observation times are kept
for a proportion p of individuals, and all observation times for
the remaining individuals (p € {0.10,0.20,0.30,0.40})



Results for variable selection

(exp(—wpiatjj/volume) — exp (—girtj))+ejj

dose pj1
volume pi1 — @iz

20

30

20

10
Percentage of partially observed individuals (in %)

40

30

20

10

0
Percentage of partially observed individuals (in %)

Method [] gaussian [_] mgaussian [_| SAEMVS Result [_] Exact [] Over-selection

Figure: Proportion of data-sets on which the three methods select the

correct model (“Exact”, unpatterned bars), or a model that strictly

includes the correct model (“Over-selection”, striped bars) for different

percentage of partially observed individuals ; left ¢; right @2 .



Take home message and open questions

» modeling genotypic variability in a mechanistic model

v

more interpretability

> explain variability of genotypic parameter with genomic
information

> identifying relevant biomarker

v

population approach regularize variable selection

P> new statistical tools to reduce parameter number

= Many open questions :

manage correlation between covariates
computational cost with complex mechanistic model
post model selection inference after LASSO

model variability within the population more finely
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